Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2018 SINBAD consortium - SLIM group @ The University of British Columbia.

Wavefield Reconstruction Using Simultaneous Denoising Interpolation VS Denoising after Interpolation

Jiupeng Yan 2008 Consortium Meeting

Outline

- Introduction
- General Problem Formulation
 - Denoising after Interpolating
 - Interpolating and Denoising Simultaneous
- Results
 - comparison with different noise levels
 - comparison with different missing trace percentages
- Conclusion & Future Work

Introduction

Seismic Interpolation

- Seismic data with missing traces due to physical or economic constrains
- Require Interpolation
- Seismic Denoising
 - Seismic data Corrupted by noise
 - Require Denoising

Problem formulation by sparsitypromoting inversion

Interpolation

Denoising

 $\min \|\mathbf{x}\|_1$
s.t. $\mathbf{A}\mathbf{x} = \mathbf{y}$

where

 $\min \|\mathbf{x}\|_1$
s.t. $\|\mathbf{A}\mathbf{x} - \mathbf{y}\|_2 \le \epsilon$

where

 $\mathbf{A} = \mathbf{R}\mathbf{C}^T$

 $\mathbf{A} = \mathbf{C}^T$ $\epsilon \sim \text{noise level}$

- Strategy 1:
 - First Interpolate

 $\mathbf{y}_0 \sim \mathrm{Input}$ data

 $\widetilde{\mathbf{x}} = \arg \min \|x\|_1$
s.t. $\mathbf{y}_0 = \mathbf{R}\mathbf{C}^T\mathbf{x}$

Then Denoise $\mathbf{f} = \mathbf{C}^T \widetilde{\mathbf{x}}$

 $\min_{\mathbf{x} \in \mathbf{x}} \|\mathbf{x}\|_{1}$ s.t. $\|\mathbf{C}^T \mathbf{x} - \mathbf{f}\|_{2} \le \epsilon_1$

Strategy 2: Interpolate and Denoise Simultaneously

 $\mathbf{y}_0 \sim \mathrm{Input}$ data

 $\min \|\mathbf{x}\|_1$ s.t. $\|\mathbf{R}\mathbf{C}^T\mathbf{x} - \mathbf{y}_0\|_2 \le \epsilon_2$

Choice of ϵ

denoise problem assumes white noise (Gaussian, standard deviation σ), N measurements

$$\begin{array}{ll} \mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{n} \\ \text{data} & \text{noise} \\ \frac{\|\mathbf{A}\mathbf{x} - \mathbf{y}\|_2^2}{\sigma^2} \sim \chi^2(N) & \begin{array}{ll} \text{chi square} & mean \sim N \\ \text{distribution} & SD \sim \sqrt{2N} \end{array}$$

-choose $\ \epsilon^2 = \sigma^2 [N + 2\sqrt{2N}]$ then,

pr $(\|\mathbf{A}\mathbf{x} - \mathbf{y}\|_2 > \epsilon)$ is small

Choice of ϵ

Interpolating then Denoising

 $\epsilon 1 = \sigma \sqrt{N}$

~ need to fit full interpolated data

Combined

$$\epsilon 2 = \sigma \sqrt{N * (1 - miss\%)}$$

~ need to fit incomplete data

Seismic Laboratory for Imaging and Modeling

Seismic Laboratory for Imaging and Modeling

Denoising after Interpolating

Combined

Input SNR=3.35 dB

Seismic Laboratory for Imaging and Modeling

Denoising after Interpolating

Combined

Input SNR=2.37 dB

Seismic Laboratory for Imaging and Modeling

Denoising after Interpolating

Combined

Input SNR=1.77 dB

Comparison under different noises

- miss%=percentage of missing traces=20%
- SNR1 Interpolate and Denoise SNR2 Combined

	input SNR	SNR1	SNR2
1	3.50	14.71	14.79
2	3.35	10.01	9.96
3	2.93	7.91	7.93
4	2.37	6.45	6.66
5	1.77	5.31	5.76

Seismic Laboratory for Imaging and Modeling

Denoising after Interpolating

Combined

miss%=30%

Seismic Laboratory for Imaging and Modeling

miss%=50%

Comparison for different percentages of missing traces

 $\Box \quad \epsilon 1 = \sigma \sqrt{N} \quad \epsilon 2 = \sigma \sqrt{N * (1 - miss\%)}$

- SNR3 ~ the SNR of interpolated data from data with missing traces but without noise
- SNR4 ~ the SNR of denoised data from data with noise but without missing traces is 8.58 dB

	miss%	Input SNR	SNR1(dB)	SNR2(dB)	SNR3(dB)	SNR4(dB)
1	10%	3.95	8.25	8.26	19.49	8.58
2	20%	2.93	7.91	7.93	15.70	8.58
3	30%	2.36	6.68	7.43	12.57	8.58
4	40%	1.84	6.10	6.89	10.45	8.58
5	50%	1.50	5.43	5.97	7.90	8.58

Conclusion

Conclusion

- Synthetic data tests show Combined results slightly better than Denoise after Interpolate
- small percentage of missing traces, close results; larger percentage of missing traces, larger difference

Acknowledgements

SLIM team members G. Hennenfent, S. Ross Ross, H. Modzelewski, and C. Brown

E. J. Candès, L. Demanet, D. L. Donoho, and L. Ying for CurveLab (<u>www.curvelet.org</u>)

S. Fomel, P. Sava, and the other developers of Madagascar (rsf.sourceforge.net)

This presentation was carried out as part of the SINBAD project with financial support, secured through ITF, from the following organizations: BG, BP, Chevron, ExxonMobil, and Shell. SINBAD is part of the collaborative research & development (CRD) grant number 334810-05 funded by the Natural Science and Engineering Research Council (NSERC).