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Introduction
Problems with WE-based multiple elimination

 imperfect multiple predictions
 amplitude
 phase
 timing

 failure of direct subtraction after matched filtering

Exploit the ability of curvelets to 
 sparsify the to-be-separated signal components
 separation based on the curvelet parameterization

 location
 angle
 scale
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Figure 2. 2D discrete curvelet transform. (a) Discrete frequency tiling. eUj,! has center slope α!. It smoothly localizes
the frequency near the shaded wedge. (b) One curvelet at scale j and orientation " in spatial domain. Notice that the
major axes of the curvelet in the frequency and space domains are orthogonal to each other.

It is clear that Ũj,! isolates frequencies near the wedge {(ω1,ω2) : 2j−1 ≤ ω1 ≤ 2j+1, −2−j/2 ≤ ω2/ω1 − α! ≤
2−j/2}.

With the localized frequency window Ũj,! available, the final step is to choose a spatial grid to translate the
curvelet at scale j and orientation #. In the continuous transform, the grid we use has its two axes aligned with
the major and minor axes of the frequency window. For the discrete transform, two approaches are possible: (1)
a slanted grid mostly aligned with the axes of the frequency window which leads to the USFFT-based curvelet
transform (for details, see Candès at al1); (2) a grid aligned with the input Cartesian grid which leads to the
wrapping-based curvelet transform. Here we follow the wrapping-based approach.

Fix the scale j and angle #. Suppose L1,j,! and L2,j,! are a pair of positive integers which satisfy the following
conditions: (1) one cannot find two ω and ω′ such that Ũj,!(ω) ≥ 0, Ũj,!(ω′) ≥ 0, and ω1 − ω′

1 and ω2 − ω′
2 are

multiples of L1,j,! and L2,j,! respectively; and (2) L1,j,! · L2,j,! is minimal.

The discrete curvelet with index k at scale j and angle # is defined by means of its Fourier transform:

ϕ̂D
j,!,k(ω) = Ũj,!(ω) · exp[−2πi(k1ω1/L1,j,! + k2ω2/L2,j,!)]/

√
L1,j,! · L2,j,!.

for 0 ≤ k1 < L1,j,! and 0 ≤ k2 < L2,j,!. Geometrically, the computation of the coefficients ϕD
j,!,k for fixed j and #

is equivalent to wrapping the windowed frequency data Ũj,!(ω)f̂(ω) around a L1,j,! by L2,j,! rectangle centered
at the origin, and then applying the inverse FFT to the wrapped data. This justifies the word “wrapping”. Our
choice of L1,j,! and L2,j,! guarantees the data does not overlap with itself after the wrapping process.

Last scale j = je = log2(n/2). This final scale extracts the highest frequency content. For the purpose of
this paper, the basis functions used at this scale are like wavelets (for other choices, see Candès et al1). The
frequency window is

Ũje,0(ω) = W̃je(ω).

The curvelets at this level are defined by

ϕ̂D
je,0,k(ω) = Ũje,0(ω) · exp[−2πi(k1ω1/L1,je + k2ω2/L2,je)]/

√
L1,je · L2,je ,

with L1,je = L2,je = n and 0 ≤ k1, k2 < n.
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Figure 2. 2D discrete curvelet transform. (a) Discrete frequency tiling. eUj,! has center slope α!. It smoothly localizes
the frequency near the shaded wedge. (b) One curvelet at scale j and orientation " in spatial domain. Notice that the
major axes of the curvelet in the frequency and space domains are orthogonal to each other.

It is clear that Ũj,! isolates frequencies near the wedge {(ω1,ω2) : 2j−1 ≤ ω1 ≤ 2j+1, −2−j/2 ≤ ω2/ω1 − α! ≤
2−j/2}.

With the localized frequency window Ũj,! available, the final step is to choose a spatial grid to translate the
curvelet at scale j and orientation #. In the continuous transform, the grid we use has its two axes aligned with
the major and minor axes of the frequency window. For the discrete transform, two approaches are possible: (1)
a slanted grid mostly aligned with the axes of the frequency window which leads to the USFFT-based curvelet
transform (for details, see Candès at al1); (2) a grid aligned with the input Cartesian grid which leads to the
wrapping-based curvelet transform. Here we follow the wrapping-based approach.

Fix the scale j and angle #. Suppose L1,j,! and L2,j,! are a pair of positive integers which satisfy the following
conditions: (1) one cannot find two ω and ω′ such that Ũj,!(ω) ≥ 0, Ũj,!(ω′) ≥ 0, and ω1 − ω′

1 and ω2 − ω′
2 are

multiples of L1,j,! and L2,j,! respectively; and (2) L1,j,! · L2,j,! is minimal.

The discrete curvelet with index k at scale j and angle # is defined by means of its Fourier transform:

ϕ̂D
j,!,k(ω) = Ũj,!(ω) · exp[−2πi(k1ω1/L1,j,! + k2ω2/L2,j,!)]/

√
L1,j,! · L2,j,!.

for 0 ≤ k1 < L1,j,! and 0 ≤ k2 < L2,j,!. Geometrically, the computation of the coefficients ϕD
j,!,k for fixed j and #

is equivalent to wrapping the windowed frequency data Ũj,!(ω)f̂(ω) around a L1,j,! by L2,j,! rectangle centered
at the origin, and then applying the inverse FFT to the wrapped data. This justifies the word “wrapping”. Our
choice of L1,j,! and L2,j,! guarantees the data does not overlap with itself after the wrapping process.

Last scale j = je = log2(n/2). This final scale extracts the highest frequency content. For the purpose of
this paper, the basis functions used at this scale are like wavelets (for other choices, see Candès et al1). The
frequency window is

Ũje,0(ω) = W̃je(ω).

The curvelets at this level are defined by

ϕ̂D
je,0,k(ω) = Ũje,0(ω) · exp[−2πi(k1ω1/L1,je + k2ω2/L2,je)]/

√
L1,je · L2,je ,

with L1,je = L2,je = n and 0 ≤ k1, k2 < n.

Ying et al,2005

Discrete frequency tiling One curvelet
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Curvelet-based separation
Forward model

Soft thresholding

where

and

 predictions may contain  moderate
 amplitude, phase 
 and sign errors

s = s1 + s2 + n

s̃1 = CT Sw(Cs)

Sw(x) := sgn(x) · max(0, |x|− w)

w := |Cs̆2|

Herrmann et al,2006

primaries

s2 :
s1 :

multiples
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Nonlinear optimization from a Bayesian perspective

Curvelet-based separation

Forward model

curvelet coefficients of multiples

curvelet coefficients of primaries

where

inverse  curvelet transform

(total data)

(predicted multiples)

(predicted primaries)

x1

x2

b = s1 + s2 + n

b2 = Ax2 + n2

b1 = Ax1 + n1

A
Saab et. al. 2007 & Wang et al,2008
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Can be solved by iterative soft thresholding.

Curvelet-based separation

where

predicted multiples 

inverse discrete curvelet transforms

Separate by solving the nonlinear problem

b2

A

λ1,2 and are control parametersη

Pw :






x̃ = arg minx λ1‖x1‖1,w1 + λ2‖x2‖1,w2+
‖Ax2 − b2‖2

2 + η‖A(x1 + x2)− b‖2
2

s̃1 = Ax̃1 and s̃2 = Ax̃2.

s̃1,2 estimated primaries(1)and multiples(2) 
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Curvelet-based separation

Given initial estimates of       and      , the       iteration of the 
algorithm proceeds as follows 

x0
1 x0

2 nth

xn+1
1 = Tλ1w1

2η

[
AT b2 −AT Axn

2 + AT b1 −AT Axn
1 + xn

1

]

xn+1
2 = T λ2w2

2(1+η)

[
AT b2 −AT Axn

2 + xn
2 +

η

η + 1
(
AT b1 −AT Axn

1

)]

Tu : R|M| !→ R|M|where                                       is the elementwise soft-
thresholding operator

(Rayan Saab et al.,2007 and his presentation this meeting)
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Examples

Example 1

Synthetic data:  
                   361 shots
                   361 traces/shot
                   501 samples/trace 

Data are modeled in a fixed-spread configuration, with sources and
receivers positioned between x = 0 and x = 5400 m, with a step size
of 15 m. This results in a prestack data set of 361 ! 361 traces. For
this example, the data matrix P is far from Toeplitz !see Figure
A-2b"; hence, the least-squares inverse of "P was computed with the
aid of equations 8b and 8c. Note that each column of matrix "P rep-

resents one frequency component of a shot record with 361 traces.
To make the example more realistic, the band-limited version of a
measured air-gun signature with a visible bubble was used for the
source wavelet !see Figure 9". This information is contained in the
source matrix S. Figure 10 displays three shot records. The source
locations are at x = 750 m, x = 1500 m, and x = 2250 m, respec-
tively, the 2250-m value being located close to the top of the salt

Figure 6. Multiple removal for the data in Figure 4a. !a" Input data
with multiples. !b" Focal transform of input data, using the primary
estimate of SRME1. !c" SRME2 output in the focal domain by adap-
tive subtraction in x–t. !d" Input data in #− p. !e" Focal transform of
input data in the #− p domain. !e" SRME2 output in the focal domain
by adaptive subtraction in #− p.

Figure 7. Multiple removal for the data in Figure 4a. !a" Modeled pri-
maries. !b" Primaries obtained using three iterations of SRME1
+ SRME2. !c" Difference between !a" and !b". Note the very small
subtraction leakage compared to Figure 5f.

Figure 8. Subsurface model that contains a high-velocity salt layer
that overlies the target area with a fault structure.

Figure 9. Band-limited version of a measured air-gun signature that
was used in the data simulation. !a" Time-domain representation. !b"
Amplitude spectrum.

Figure 10. Three shot records — including all types of multiples —
that were modeled in the subsurface model of Figure 8 and using the
air-gun wavelet of Figure 9. Note the artificial reflection that comes
from the bubble !see the arrows".

SI214 Berkhout and Verschuur

Geology model 
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Example 1

Total data
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Example 1

SRME primaries
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Example 1

3D single threshold
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Example 1

3D Bayesian
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Example 1

True primaries
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Example 1

SRME primaries
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Example 1

3D Bayesian threshold
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Example 1

3D Bayesian no predicted  
      multiple control  
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Can be solved by iterative soft thresholding.

Curvelet-based separation

where

predicted multiples 

inverse discrete curvelet transforms

Separate by solving the nonlinear problem

b2

A

λ1,2 and are control parametersη

Pw :






x̃ = arg minx λ1‖x1‖1,w1 + λ2‖x2‖1,w2+
‖Ax2 − b2‖2

2 + η‖A(x1 + x2)− b‖2
2

s̃1 = Ax̃1 and s̃2 = Ax̃2.

s̃1,2 estimated primaries(1)and multiples(2) 

20



Example 1

Total data
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Example 1

SRME
 primaries
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Example 1

3D single
 thresholded
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Example 1

3D Bayesian
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Example 1

“True” primaries
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Example 1

SRME
 primaries
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Example 1

3D Bayesian
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Example 1

3D Bayesian
no predicted
multiple control
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Example 1

Sensitivity analysis for the performance of Bayesian

SNRs are computed with respect to the  “true” primaries are 
relative robust  against changes. The inclusion of  control on 
the estimated multiples adds 1.48      .  dB (SRME :9.82      )dB

SNR (dB) {λ∗1, λ∗2} {2 · λ∗1, λ∗2} {λ∗1, 2 · λ∗2} 100 · {λ∗1, λ∗2}
η∗ 12.13 11.21 11.46 -

1
2 · η∗ 11.36 9.43 11.46 -
2 · η∗ 11.44 12.13 9.92 -

100 · η∗ - - - 10.65
λ∗1 = 0.7,λ∗2 = 2.0, η∗ = 0.5with

Pw :






x̃ = arg minx λ1‖x1‖1,w1 + λ2‖x2‖1,w2+
‖Ax2 − b2‖2

2 + η‖A(x1 + x2)− b‖2
2

s̃1 = Ax̃1 and s̃2 = Ax̃2.

29



Examples

Example 2

Saga data:  
                   261 shots
                   126 traces/shot
                   1024 samples/trace 

The original  data contains many strong 
surface-related multiples

30



Example 2

Data
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Example 2

Multiples
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Example 2

SRME primaries
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Example 2

Single threshold
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Example 2

Bayesian primaries
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SRME primaries
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Example 2

SRME primaries Bayesian primaries
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Example 2
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Example 2
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44



Example 2

Data
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Example 2

Multiples
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Example 2

SRME primaries
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Single threshold
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Example 2

Bayesian primaries
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SRME primaries
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SRME primaries Bayesian primaries
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Data
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Example 2

Multiples
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Example 2

SRME 
primaries
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Example 2

Single 
threshold
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Example 2

Bayesian
primaries
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SRME 
primaries
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Discussion and conclusions
 Curvelets represent the ideal domain for primary-

multiple separation. It’
 The curvelet’s multi-angular parameterization 

helps the separation, even for erroneous 
predictions. 

 The nonlinear optimization algorithm shows a 
clear improvement in the primary-multiple 
separation and is robust against parameters 
changes. 

 The convergence and the quality of the separation 
results both follow from the ability of curvelets to 
sparsely represent each signal component

 Results application to synthetic and real data are 
encouraging.
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Discussion and conclusions

Future plans:
 Multi-term Bayesian signal separation (in 

collaboration with Eric Verschuur)
 Parallellization using SLIMPy
 Automatic parameter selection
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