Curvelet-Based Primary-Multiple Separation from a Bayesian Perspective

Rayan Saab

February 20, 2008

Rayan Saab

Co-authors

- Deli Wang (Jilin University)
- Felix Herrmann (Earth and Ocean Sciences, Univesity of British Columbia)
- Ozgur Yilmaz (Mathematics Department, UBC)

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

3 →

- 1 Introduction and Overview
 - Problem and Scope
- 2 Sparse Model and Bayesian Interpretations
 - Sparse Model
 - Bayesian Interpretation
- 3 Separation Algorithm
 - Objective Function
 - The Algorithm
 - Optimization by Iterative Thresholding
 - Description of Parameters
- 4 Sample Results
- 5 Generalization
 - Model Generalization
 - Generalized Cost Function and Iterative Algorithm

Rayan Saab

DNOISE group, UB

1 Introduction and Overview

Problem and Scope

- 2 Sparse Model and Bayesian Interpretations
 - Sparse Model
 - Bayesian Interpretation
- 3 Separation Algorithm
 - Objective Function
 - The Algorithm
 - Optimization by Iterative Thresholding
 - Description of Parameters
- 4 Sample Results
- 5 Generalization
 - Model Generalization
 - Generalized Cost Function and Iterative Algorithm
- 6 Conclusion

Rayan Saab

DNOISE group, UBC

∃ >

Introduction

- We introduce a new primary-multiple separation scheme that
 - utilizes the sparsity of primaries and multiples in the curvelet domain, and
 - uses both seismic data and prediction of multiples (e.g. from SRME)
- The algorithm can be derived from a Bayesian formulation that assumes
 - a sparsity enforcing Laplacian prior distribution,
 - an assumption of Gaussian noise and errors.
- The algorithm uses soft-thresholding operations, no matrix inversions, makes great progress and almost converges in only a few iterations (for this type of problems).

• • • • • • • • • • • • • •

Introduction

- We introduce a new primary-multiple separation scheme that
 - utilizes the sparsity of primaries and multiples in the curvelet domain, and
 - uses both seismic data and prediction of multiples (e.g. from SRME)
- The algorithm can be derived from a Bayesian formulation that assumes
 - a sparsity enforcing Laplacian prior distribution,
 - 2 an assumption of Gaussian noise and errors.
- The algorithm uses soft-thresholding operations, no matrix inversions, makes great progress and almost converges in only a few iterations (for this type of problems).

Introduction

- We introduce a new primary-multiple separation scheme that
 - utilizes the sparsity of primaries and multiples in the curvelet domain, and
 - uses both seismic data and prediction of multiples (e.g. from SRME)
- The algorithm can be derived from a Bayesian formulation that assumes
 - a sparsity enforcing Laplacian prior distribution,
 - 2 an assumption of Gaussian noise and errors.
- The algorithm uses soft-thresholding operations, no matrix inversions, makes great progress and almost converges in only a few iterations (for this type of problems).

(日) (同) (三) (

- Suppose that we have
 - Seismic data:

$$\mathbf{b} = \mathbf{s}_1 + \mathbf{s}_2 + \mathbf{n}$$

composed of the true primaries (s_1) , multiples (s_2) , noise (n)

methods):

$$\mathbf{b}_2 = \mathbf{s}_2 + \mathbf{n}_2$$

which we assume are not perfect, so n_2 represents (SRME) prediction error, residual noise,

- Our objective is to recover the original primaries s₁ and multiples s₂.
- Note that we can generalize the model and algorithm, to account for higher order multiples.

- Suppose that we have
 - Seismic data:

$$\mathbf{b} = \mathbf{s}_1 + \mathbf{s}_2 + \mathbf{n}$$

composed of the true primaries $(\mathbf{s}_1),$ multiples $(\mathbf{s}_2),$ noise (\mathbf{n})

Predictions of the multiples (e.g. from SRME or other methods):

$$\mathbf{b}_2 = \mathbf{s}_2 + \mathbf{n}_2$$

which we assume are not perfect, so \mathbf{n}_2 represents (SRME) prediction error, residual noise,

- Our objective is to recover the original primaries s₁ and multiples s₂.
- Note that we can generalize the model and algorithm, to account for higher order multiples.

Rayan Saab

- Suppose that we have
 - Seismic data:

$$\mathbf{b} = \mathbf{s}_1 + \mathbf{s}_2 + \mathbf{n}$$

composed of the true primaries (s_1) , multiples (s_2) , noise (n)

Predictions of the multiples (e.g. from SRME or other methods):

$$\mathbf{b}_2 = \mathbf{s}_2 + \mathbf{n}_2$$

which we assume are not perfect, so \mathbf{n}_2 represents (SRME) prediction error, residual noise,

- Our objective is to recover the original primaries s₁ and multiples s₂.
- Note that we can generalize the model and algorithm, to account for higher order multiples.

- Suppose that we have
 - Seismic data:

$$\mathbf{b} = \mathbf{s}_1 + \mathbf{s}_2 + \mathbf{n}$$

composed of the true primaries (s_1) , multiples (s_2) , noise (n)

Predictions of the multiples (e.g. from SRME or other methods):

$$\mathbf{b}_2 = \mathbf{s}_2 + \mathbf{n}_2$$

which we assume are not perfect, so n_2 represents (SRME) prediction error, residual noise,

- Our objective is to recover the original primaries s₁ and multiples s₂.
- Note that we can generalize the model and algorithm, to account for higher order multiples.

(日) (同) (三) (三)

- Introduction and OverviewProblem and Scope
- 2 Sparse Model and Bayesian Interpretations
 - Sparse Model
 - Bayesian Interpretation
- 3 Separation Algorithm
 - Objective Function
 - The Algorithm
 - Optimization by Iterative Thresholding
 - Description of Parameters
- 4 Sample Results
- 5 Generalization
 - Model Generalization
 - Generalized Cost Function and Iterative Algorithm
- 6 Conclusion

Rayan Saab

DNOISE group, UBC

Outline	Introduction and Overview	Sparse Model and Bayesian Interpretations $\bullet 00000$	Separation Algorithm	Sample Results	Generalizat 0000
Sparse N	/lodel				

Sparsity

What is Sparsity ?

• A signal is

said to be "sparse" if most of its values are zero, or almost zero.

Outline	Introduction and Overview	Sparse Model and Bayesian Interpretations	Separation Algorithm	Sample Results	
		00000			0000
Sparse N	/lodel				

Sparsity

What is Sparsity ?

• A signal is

said to be "sparse" if most of its values are zero, or almost zero.

- If a signal ${\bf s}$ is not sparse, sometimes we can find a representation ${\bf s}={\bf A}{\bf x}$ where ${\bf x}$ is sparse.
- Primaries and multiples are sparse in the curvelet domain.
- $\bullet\,$ In other words, a seismic signal can be represented as ${\bf s}={\bf A}{\bf x}$ where
 - $\bullet~\mathbf{A}=\mathbf{C}^{\mathbf{H}}$ is the synthesis curvelet operator and
 - $\circ \mathbf{x}$ is the vector of curvelet coefficients.

Curvelets

- Curvelets are localized 'little plane-waves' that are oscillatory in one direction and smooth in the other direction(s).
- They are multiscale and multi-directional.
- Curvelets have an anisotropic shape they obey the so-called parabolic scaling relationship, yielding a width \propto length² for the support of curvelets.
- Very good for detecting wavefronts

Outline	Introduction and Overview	Sparse Model and Bayesian Interpretations $0 \bullet 0 \circ 0 \circ 0$	Separation Algorithm	Sample Results	Generalizat 0000
Sparse N	/lodel				

Curvelets

Figure: Curvelet examples. (a)-(b) spatial and frequency representation of four different curvelets in the spatial domain at three different scales and in the Fourier domain.

Image: A mathematical states and a mathem

Rayan Saab

Outline	Introduction and Overview	Sparse Model and Bayesian Interpretations	Separation Algorithm	Sample Results	Generalizat
Sparse N	/lodel				0000

- Here, s₁ are the primaries and s₂ are the multiples. We want to separate them.
- Recall:
 - **1** seismic data: $\mathbf{b} = \mathbf{s}_1 + \mathbf{s}_2 + \mathbf{n}$
 - 2 predictions of multiples: $\mathbf{b}_2 = \mathbf{s}_2 + \mathbf{n}_2$
 - 3) equivalently $\mathbf{b}_1 = \mathbf{s}_1 + \mathbf{n}_1$ and $\mathbf{b}_2 = \mathbf{s}_2 + \mathbf{n}_2$
- s₁ and s₂ are sparse in the curvelet domain. A is the inverse curvelet transform; it is overcomplete, i.e., a frame.
- ullet $\mathbf{s}_1 = \mathbf{A}\mathbf{x}_1$ and $\mathbf{s}_2 = \mathbf{A}\mathbf{x}_2$

Outline	Introduction and Overview	Sparse Model and Bayesian Interpretations	Separation Algorithm	Sample Results	Generalizat
Sparse N	/lodel				0000

- Here, s₁ are the primaries and s₂ are the multiples. We want to separate them.
- Recall:
 - **1** seismic data: $\mathbf{b} = \mathbf{s}_1 + \mathbf{s}_2 + \mathbf{n}$
 - 2 predictions of multiples: $\mathbf{b}_2 = \mathbf{s}_2 + \mathbf{n}_2$
 - (3) equivalently $\mathbf{b}_1 = \mathbf{s}_1 + \mathbf{n}_1$ and $\mathbf{b}_2 = \mathbf{s}_2 + \mathbf{n}_2$
- s₁ and s₂ are sparse in the curvelet domain. A is the inverse curvelet transform; it is overcomplete, i.e., a frame.

$$ullet$$
 $\mathbf{s}_1 = \mathbf{A}\mathbf{x}_1$ and $\mathbf{s}_2 = \mathbf{A}\mathbf{x}_2$

▲ □ ▶ ▲ □ ▶ ▲

Outline	Introduction and Overview	Sparse Model and Bayesian Interpretations	Separation Algorithm	Sample Results	Generalizat
Sparse N	/lodel				0000

- Here, s₁ are the primaries and s₂ are the multiples. We want to separate them.
- Recall:
 - 1 seismic data: $\mathbf{b} = \mathbf{s}_1 + \mathbf{s}_2 + \mathbf{n}$
 - 2 predictions of multiples: $\mathbf{b}_2 = \mathbf{s}_2 + \mathbf{n}_2$
 - **(3)** equivalently $\mathbf{b}_1 = \mathbf{s}_1 + \mathbf{n}_1$ and $\mathbf{b}_2 = \mathbf{s}_2 + \mathbf{n}_2$
- s_1 and s_2 are sparse in the curvelet domain. A is the inverse curvelet transform; it is overcomplete, i.e., a frame.

• $\mathbf{s}_1 = \mathbf{A}\mathbf{x}_1$ and $\mathbf{s}_2 = \mathbf{A}\mathbf{x}_2$

Outline	Introduction and Overview	Sparse Model and Bayesian Interpretations	Separation Algorithm	Sample Results	Generalizat
Sparse N	/lodel				0000

- Here, s₁ are the primaries and s₂ are the multiples. We want to separate them.
- Recall:
 - **1** seismic data: $\mathbf{b} = \mathbf{s}_1 + \mathbf{s}_2 + \mathbf{n}$
 - 2 predictions of multiples: $\mathbf{b}_2 = \mathbf{s}_2 + \mathbf{n}_2$
 - **(3)** equivalently $\mathbf{b}_1 = \mathbf{s}_1 + \mathbf{n}_1$ and $\mathbf{b}_2 = \mathbf{s}_2 + \mathbf{n}_2$
- s_1 and s_2 are sparse in the curvelet domain. A is the inverse curvelet transform; it is overcomplete, i.e., a frame.

•
$$\mathbf{s}_1 = \mathbf{A}\mathbf{x}_1$$
 and $\mathbf{s}_2 = \mathbf{A}\mathbf{x}_2$

• • • • • • • • • • • • • •

Sparsity Enforcing Bayesian Prior

- We know that primaries and multiples are sparse in curvelets, and we want to use that knowledge.
- A good sparsity enforcing prior distribution is the Laplacian (Cauchy) distribution $p(x) = ce^{-a|x|}$

Rayan Saab

DNOISE group, UBC

Sparsity Enforcing Bayesian Prior

- We know that primaries and multiples are sparse in curvelets, and we want to use that knowledge.
- A good sparsity enforcing prior distribution is the Laplacian (Cauchy) distribution $p(x) = ce^{-a|x|}$
- We also have predictions of the multiples (and primaries), so we use a weighted laplacian prior instead.
- $p(\mathbf{x}_1) = ce^{-\mathbf{w}_1|\mathbf{x}_1|}$
- $p(\mathbf{x}_2) = ce^{-\mathbf{w}_2|\mathbf{x}_2|}$
- In other words we make it unlikely that the curvelet coefficients of the primaries are high where there are high coefficients for the multiples and vice versa.

MAP estimator

We want to find the curvelet coefficients of the primaries and multiples $(x_1 \text{ and } x_2)$ knowing that

- $\mathbf{b}_1 = \mathbf{s}_1 + \mathbf{n}_1$ and $\mathbf{b}_2 = \mathbf{s}_2 + \mathbf{n}_2$
- Maximize $P(\mathbf{x}_1, \mathbf{x}_2 | \mathbf{b}_1, \mathbf{b}_2)$
- This leads to the following formulation

$$\begin{split} & \arg \max_{\mathbf{x}_{1},\mathbf{x}_{2}} P(\mathbf{x}_{1},\mathbf{x}_{2}|\mathbf{b}_{1},\mathbf{b}_{2}) = \arg \max_{\mathbf{x}_{1},\mathbf{x}_{2}} P(\mathbf{x}_{1},\mathbf{x}_{2})P(\mathbf{n})P(\mathbf{n}_{2}) \\ &= \arg \max_{\mathbf{x}_{1},\mathbf{x}_{2}} - \left(\alpha_{1}\|\mathbf{x}_{1}\|_{1,\mathbf{w}_{1}} + \alpha_{2}\|\mathbf{x}_{2}\|_{1,\mathbf{w}_{1}} + \frac{\|\mathbf{A}\mathbf{x}_{2} - \mathbf{b}_{2}\|_{2}^{2}}{\sigma^{2}} \right. \\ & \left. + \frac{\|\mathbf{A}(\mathbf{x}_{1} + \mathbf{x}_{2}) - (\mathbf{b}_{1} + \mathbf{b}_{2})\|_{2}^{2}}{\sigma^{2}} \right) \\ &= \arg \min_{\mathbf{x}_{1},\mathbf{x}_{2}} f(\mathbf{x}_{1},\mathbf{x}_{2}) \end{split}$$

• Here
$$\|\mathbf{x}_i\|_{1,\mathbf{w}_i} = \sum_{\mu} |w_{i,\mu}x_{i,\mu}|, \ \mu \in \mathcal{M}$$

Rayan Saal

DNOISE group, UBC

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

∃ >

Selection of Weights

- If the weights are selected independently, then the Bayesian interpretation is valid, and the corresponding priors are as in the previous slide.
- In practice, we select the weights as $\mathbf{w}_1 = \lambda_1 \mathbf{A}^H \mathbf{b_2}$ and $\mathbf{w}_2 = \lambda_2 \mathbf{A}^H \mathbf{b_1}$.
- This choice still corresponds to the same posterior distribution (with the new choice of weights) but with a different prior that is not explicitly formulated.

Outline	Introduction and Overview	Sparse Model and Bayesian Interpretations	Separation Algorithm	Sample Results	
			000 ⁻		
01.1	- Franklan				

bjective Function

- 1 Introduction and Overview
 - Problem and Scope
- 2 Sparse Model and Bayesian Interpretations
 - Sparse Model
 - Bayesian Interpretation
- 3 Separation Algorithm
 - Objective Function
 - The Algorithm
 - Optimization by Iterative Thresholding
 - Description of Parameters
- 4 Sample Results
- 5 Generalization
 - Model Generalization
 - Generalized Cost Function and Iterative Algorithm
- 6 Conclusion

Rayan Saab

DNOISE group, UBC

/⊒ > < ∃ >

Outline	Introduction and Overview	Sparse Model and Bayesian Interpretations	Separation Algorithm	Sample Results	Generalizat
	00	000000	000		0000
Objectiv	e Function				

Three Key Components

Objective Function

$$\begin{split} f(\mathbf{x}_1, \mathbf{x}_2) = \\ \|\mathbf{x}_1\|_{1, \mathbf{w}_1} + \|\mathbf{x}_2\|_{1, \mathbf{w}_2} + \|\mathbf{A}\mathbf{x}_2 - \mathbf{b}_2\|_2^2 + \eta \|\mathbf{A}(\mathbf{x}_1 + \mathbf{x}_2) - (\mathbf{b}_1 + \mathbf{b}_2)\|_2^2 \end{split}$$

Rayan Saab

DNOISE group, UBC

Image: Image:

3 →

Outline	Introduction and Overview	Sparse Model and Bayesian Interpretations	Separation Algorithm	Sample Results	Generalizat
			0 00		0000
Objectiv	e Function				

Three Key Components

Objective Function

$$\begin{split} f(\mathbf{x}_1, \mathbf{x}_2) = \\ \|\mathbf{x}_1\|_{1, \mathbf{w}_1} + \|\mathbf{x}_2\|_{1, \mathbf{w}_2} + \|\mathbf{A}\mathbf{x}_2 - \mathbf{b}_2\|_2^2 + \eta \|\mathbf{A}(\mathbf{x}_1 + \mathbf{x}_2) - (\mathbf{b}_1 + \mathbf{b}_2)\|_2^2 \end{split}$$

Bayesian Interpretation

Minimizing $f(\mathbf{x}_1, \mathbf{x}_2)$ is equivalent to finding the MAP estimator assuming that the coefficients of the sources follow independent weighted Laplacian prior and noise (error) is Gaussian.

Rayan Saab

Curvelet-Based Primary-Multiple Separation from a Bayesian Perspective

글 > : < 글 >

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Outline	Introduction and Overview	Sparse Model and Bayesian Interpretations	Separation Algorithm	Sample Results	Generalizat
Obiectiv	e Function				

Three Key Components

Objective Function

$$\begin{split} f(\mathbf{x}_1, \mathbf{x}_2) = \\ \|\mathbf{x}_1\|_{1, \mathbf{w}_1} + \|\mathbf{x}_2\|_{1, \mathbf{w}_2} + \|\mathbf{A}\mathbf{x}_2 - \mathbf{b}_2\|_2^2 + \eta \|\mathbf{A}(\mathbf{x}_1 + \mathbf{x}_2) - (\mathbf{b}_1 + \mathbf{b}_2)\|_2^2 \end{split}$$

Bayesian Interpretation

Minimizing $f(\mathbf{x}_1, \mathbf{x}_2)$ is equivalent to finding the MAP estimator assuming that the coefficients of the sources follow independent weighted Laplacian prior and noise (error) is Gaussian.

Separation Algorithm

$$\begin{array}{lll} \mathbf{x_1^{n+1}} & = & \mathbf{S}_{\frac{\mathbf{w_1}}{2\eta}} \left[\mathbf{A}^T \mathbf{b_2} - \mathbf{A}^T \mathbf{A} \mathbf{x_2^n} + \mathbf{A}^T \mathbf{b_1} - \mathbf{A}^T \mathbf{A} \mathbf{x_1^n} + \mathbf{x_1^n} \right] \\ \mathbf{x_2^{n+1}} & = & \mathbf{S}_{\frac{\mathbf{w_2}}{2(1+\eta)}} \left[\mathbf{A}^T \mathbf{b_2} - \mathbf{A}^T \mathbf{A} \mathbf{x_2^n} + \mathbf{x_2^n} + \frac{\eta}{\eta+1} \left(\mathbf{A}^T \mathbf{b_1} - \mathbf{A}^T \mathbf{A} \mathbf{x_1^n} \right) \right] \end{array}$$

Rayan Saab

DNOISE group, UBC

Iterative Thresholding

• Thus our algorithm can be described as

$$\begin{aligned} \mathbf{x_1^{n+1}} &= \mathbf{S}_{\frac{\mathbf{w_1}}{2\eta}} \begin{bmatrix} \mathbf{A}^T \mathbf{b}_2 - \mathbf{A}^T \mathbf{A} \mathbf{x_2^n} + \mathbf{A}^T \mathbf{b}_1 - \mathbf{A}^T \mathbf{A} \mathbf{x_1^n} + \mathbf{x_1^n} \end{bmatrix} \\ \mathbf{x_2^{n+1}} &= \mathbf{S}_{\frac{\mathbf{w_2}}{2(1+\eta)}} \begin{bmatrix} \mathbf{A}^T \mathbf{b}_2 - \mathbf{A}^T \mathbf{A} \mathbf{x_2^n} + \mathbf{x_2^n} + \frac{\eta}{\eta+1} \left(\mathbf{A}^T \mathbf{b}_1 - \mathbf{A}^T \mathbf{A} \mathbf{x_1^n} \right) \end{bmatrix} \end{aligned}$$

• Here \mathbf{S}_{α} is the soft-thresholding operator acting *elementwise* as

$$S_{\alpha_{\mu}}(v_{\mu}) = \operatorname{sgn}(v_{\mu}) \cdot \max(0, |v_{\mu}| - |\alpha_{\mu}|).$$

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- Theorem: The algorithm converges to the minimizer of the objective function.
- Proof: Similar to work of Daubechies04.

- The parameters λ_1, λ_2 and η control the tradeoff between the sparsity of the curvelet coefficients (primaries and multiples) and how well we fit both the predicted multiples and the total data. How ?
 - As we increase \u03c6₁ (or \u03c6₂) we are forcing the estimated curvelet coefficients to be more sparse, allowing for better separation of primaries from multiples. On the other hand, we may introduce artifacts.
 - 2 As we increase η, we are putting more weight on the total data fit, and less on the predicted multiples.
- While this describes a general trend, in practice the algorithm is robust to parameter choice (within reason).

(日) (同) (三) (

- The parameters λ_1, λ_2 and η control the tradeoff between the sparsity of the curvelet coefficients (primaries and multiples) and how well we fit both the predicted multiples and the total data. How ?
 - As we increase λ₁ (or λ₂) we are forcing the estimated curvelet coefficients to be more sparse, allowing for better separation of primaries from multiples. On the other hand, we may introduce artifacts.
 - 2 As we increase η, we are putting more weight on the total data fit, and less on the predicted multiples.
- While this describes a general trend, in practice the algorithm is robust to parameter choice (within reason).

(ロ) (四) (三) (三)

- The parameters λ_1, λ_2 and η control the tradeoff between the sparsity of the curvelet coefficients (primaries and multiples) and how well we fit both the predicted multiples and the total data. How ?
 - As we increase λ₁ (or λ₂) we are forcing the estimated curvelet coefficients to be more sparse, allowing for better separation of primaries from multiples. On the other hand, we may introduce artifacts.
 - As we increase η, we are putting more weight on the total data fit, and less on the predicted multiples.
- While this describes a general trend, in practice the algorithm is robust to parameter choice (within reason).

(日) (同) (三) (三)

- The parameters λ_1, λ_2 and η control the tradeoff between the sparsity of the curvelet coefficients (primaries and multiples) and how well we fit both the predicted multiples and the total data. How ?
 - As we increase λ₁ (or λ₂) we are forcing the estimated curvelet coefficients to be more sparse, allowing for better separation of primaries from multiples. On the other hand, we may introduce artifacts.
 - As we increase η, we are putting more weight on the total data fit, and less on the predicted multiples.
- While this describes a general trend, in practice the algorithm is robust to parameter choice (within reason).

- < 同 > < 三 > < 三 >

Total Data and Predicted Multiples

Rayan Saab

DNOISE group, UB0

Separation Results

Rayan Saab

DNOISE group, UBC

Results with Different Parameter Choices

SNR (dB)	$\{\lambda_1^*,\lambda_2^*\}$	$\{2\cdot\lambda_1^*,\lambda_2^*\}$	$\{\lambda_1^*, 2 \cdot \lambda_2^*\}$	$100 \cdot \{\lambda_1^*, \lambda_2^*\}$
η^*	12.133	11.211	11.455	-
$\frac{1}{2} \cdot \eta^*$	11.356	9.428	11.459	-
$2\cdot\eta^*$	11.436	12.129	9.924	-
$100\cdot\eta^*$	-	-		10.647

Rayan Saab

DNOISE group, UBC

A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Outline	Introduction and Overview	Sparse Model and Bayesian Interpretations	Separation Algorithm	Sample Results	Generalizat
					000
Model Generalization					

- 1 Introduction and Overview
 - Problem and Scope
- 2 Sparse Model and Bayesian Interpretations
 - Sparse Model
 - Bayesian Interpretation
- 3 Separation Algorithm
 - Objective Function
 - The Algorithm
 - Optimization by Iterative Thresholding
 - Description of Parameters
- 4 Sample Results
- 5 Generalization
 - Model Generalization
 - Generalized Cost Function and Iterative Algorithm
- 6 Conclusion

Rayan Saab

DNOISE group, UB0

Model Generalization

• The model can be generalized by assuming that we have *m* observations of *n* sources:

$$\mathbf{b}_i = \sum_{j=1}^N \psi_{ij} \mathbf{s}_j + \mathbf{n}_j, \quad i \in \{1, ..., m\}$$

and n' available predictions of the sources:

$$\mathbf{b}_{i+m} = \mathbf{s}_i + \mathbf{n}_{i+m}, \quad i \in \{1, ..., n'\}$$

• We still assume that the underlying sources are sparse in the transform domain:

$$\mathbf{s}_j = \mathbf{A}\mathbf{x}_j$$

where $\mathbf{s}_j \in \mathbb{R}^{M \times 1}$, $\mathbf{A} \in \mathbb{R}^{M \times N}$ and $\mathbf{x}_j \in \mathbb{R}^{N \times 1}$

Rayan Saab

DNOISE group, UBC

Outline Introduction and Overview Sparse Model and Bayesian Interpretations Separation Algorithm Sample Results Generalizat

Generalized Cost Function and Iterative Algorithm

Generalized Cost Function and Iterative Algorithm

 Using the same approach as before we can derive a cost function and an optimization algorithm to minimize it.

$$f(\mathbf{x}_1, ..., \mathbf{x}_n) = \sum_{i=1}^n \lambda_i \|\mathbf{x}_i\|_{1, \mathbf{w}_i} + \sum_{i=1}^{m+n'} \eta_i \|\mathbf{A} \sum_{j=1}^n \psi_{ij} \mathbf{x}_j - \mathbf{b}_i\|_2^2.$$

• In order to derive the algorithm, define

$$\hat{\mathbf{x}} = \begin{bmatrix} \mathbf{x}_1 \\ \vdots \\ \mathbf{x}_n \end{bmatrix}, \hat{\mathbf{w}} = \begin{bmatrix} \lambda_1 \mathbf{w}_1 \\ \vdots \\ \lambda_n \mathbf{w}_n \end{bmatrix}, \hat{\mathbf{b}} = \begin{bmatrix} \sqrt{\eta_1} \mathbf{b}_1 \\ \vdots \\ \sqrt{\eta_{m+n'}} \mathbf{b}_{m+n'} \end{bmatrix}, \\ \hat{\mathbf{\Psi}} = \begin{bmatrix} \sqrt{\eta_1} \psi_{11} & \cdots & \sqrt{\eta_1} \psi_{1n} \\ \vdots \\ \sqrt{\eta_{m+n'}} \psi_{m+n',1} & \cdots & \sqrt{\eta_{m+n'}} \psi_{m+n',n} \end{bmatrix}.$$

Rayan Saab

DNOISE group, UB0

Outline Introduction and Overview Sparse Model and Bayesian Interpretations Separation Algorithm Sample Results Generalizat

Iterative Algorithm

We still need to define the matrix $\hat{\mathbf{A}}=\mathbf{A}\otimes\hat{\Psi}$ where \otimes represents the Kroenecker product of two operators. We can now rewrite the cost function as

$$f(\mathbf{x}_1, \dots, \mathbf{x}_n) = f(\hat{\mathbf{x}}) = \|\hat{\mathbf{x}}\|_{1, \hat{\mathbf{w}}} + \|\hat{\mathbf{b}} - \hat{\mathbf{A}}\hat{\mathbf{x}}\|_2^2$$
(1)

We can now derive the following recursion to optimize the cost function at iteration k + 1, with $c = \|\hat{\mathbf{A}}\|_2^2 = \|\hat{\boldsymbol{\Psi}}\|_2^2 \|\mathbf{A}\|_2^2$.

$$\hat{\mathbf{x}}^{(k+1)} = \mathbf{S}_{\frac{\hat{\mathbf{w}}}{2c}} \left(\frac{1}{c} [\hat{\mathbf{A}}^H \hat{\mathbf{b}} - \hat{\mathbf{A}}^H \hat{\mathbf{A}} \hat{\mathbf{x}}^{(k)}] + \hat{\mathbf{x}}^{(k)} \right)$$
(2)

DNOISE group, UBC

Rayan Saab

- 1 Introduction and Overview
 - Problem and Scope
- 2 Sparse Model and Bayesian Interpretations
 - Sparse Model
 - Bayesian Interpretation
- 3 Separation Algorithm
 - Objective Function
 - The Algorithm
 - Optimization by Iterative Thresholding
 - Description of Parameters
- 4 Sample Results
- 5 Generalization
 - Model Generalization
 - Generalized Cost Function and Iterative Algorithm

Rayan Saab

DNOISE group, UBC

/⊒ > < ∃ >

- We introduced a primary-multiple separation algorithm that
 - utilizes the sparsity of primaries and multiples in the curvelet domain, and
 - uses both seismic data and prediction of multiples (e.g. from SRME)
- It can be derived from a Bayesian formulation that assumes
 a sparsity enforcing Laplacian prior distribution,
 noise and errors are Gaussian.
- The algorithm uses soft-thresholding operations, no matrix inversions, converges in only a few iterations (for this type of problems).

▲ @ ▶ < ∃ ▶</p>

- We introduced a primary-multiple separation algorithm that
 - utilizes the sparsity of primaries and multiples in the curvelet domain, and
 - uses both seismic data and prediction of multiples (e.g. from SRME)
- It can be derived from a Bayesian formulation that assumes
 - a sparsity enforcing Laplacian prior distribution,
 - 2 noise and errors are Gaussian.
- The algorithm uses soft-thresholding operations, no matrix inversions, converges in only a few iterations (for this type of problems).

A (1) > A (1) > A

- We introduced a primary-multiple separation algorithm that
 - utilizes the sparsity of primaries and multiples in the curvelet domain, and
 - uses both seismic data and prediction of multiples (e.g. from SRME)
- It can be derived from a Bayesian formulation that assumes
 - a sparsity enforcing Laplacian prior distribution,
 - 2 noise and errors are Gaussian.
- The algorithm uses soft-thresholding operations, no matrix inversions, converges in only a few iterations (for this type of problems).

A (1) > (1) > (1)

The authors would like to thank

- The authors of CurveLab (Demanet, Ying, Candes, Donoho)
- SLIM team members: S. Ross Ross, H. Modzelewski, and C. Brown for SLIMpy (slim.eos.ubc.ca/SLIMpy)

This presentation was carried out as part of the SINBAD project with financial support, secured through ITF, from the following organizations: BG, BP, Chevron, ExxonMobil, and Shell. SINBAD is part of the collaborative research and development (CRD) grant number 334810-05 funded by the Natural Science and Engineering Research Council (NSERC).