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Problem and Scope

Introduction

We introduce a new primary-multiple separation scheme that
1 utilizes the sparsity of primaries and multiples in the curvelet

domain, and
2 uses both seismic data and prediction of multiples (e.g. from

SRME)

The algorithm can be derived from a Bayesian formulation
that assumes

1 a sparsity enforcing Laplacian prior distribution,
2 an assumption of Gaussian noise and errors.

The algorithm uses soft-thresholding operations, no matrix
inversions, makes great progress and almost converges in only
a few iterations (for this type of problems).
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Problem and Scope

Problem and Scope

Suppose that we have
1 Seismic data:

b = s1 + s2 + n

composed of the true primaries (s1), multiples (s2), noise (n)
2 Predictions of the multiples (e.g. from SRME or other

methods):
b2 = s2 + n2

which we assume are not perfect, so n2 represents (SRME)
prediction error, residual noise, ....

Our objective is to recover the original primaries s1 and
multiples s2.

Note that we can generalize the model and algorithm, to
account for higher order multiples.
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Sparse Model

Sparsity

What is Sparsity ?

A signal is
said to be “sparse” if most of its values are zero, or almost zero.
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Figure: An Example of a Sparse Signal
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Sparse Model

Sparsity

What is Sparsity ?

A signal is
said to be “sparse” if most of its values are zero, or almost zero.

If a signal s is not sparse, sometimes we can find a representation
s = Ax where x is sparse.

Primaries and multiples are sparse in the curvelet domain.

In other words, a seismic signal can be represented as s = Ax where

A = CH is the synthesis curvelet operator and

x is the vector of curvelet coefficients.
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Sparse Model

Curvelets

Curvelets are localized ’little plane-waves’ that are oscillatory
in one direction and smooth in the other direction(s).

They are multiscale and multi-directional.

Curvelets have an anisotropic shape – they obey the so-called
parabolic scaling relationship, yielding a width ∝ length2 for
the support of curvelets.

Very good for detecting wavefronts
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Sparse Model

Curvelets
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Figure: Curvelet examples. (a)-(b) spatial and frequency representation
of four different curvelets in the spatial domain at three different scales
and in the Fourier domain.
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Sparse Model

Seismic Primary Multiple Separation

Here, s1 are the primaries and s2 are the multiples. We want
to separate them.

Recall:
1 seismic data: b = s1 + s2 + n
2 predictions of multiples: b2 = s2 + n2

3 equivalently b1 = s1 + n1 and b2 = s2 + n2

s1 and s2 are sparse in the curvelet domain. A is the inverse
curvelet transform; it is overcomplete, i.e., a frame.

s1 = Ax1 and s2 = Ax2
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Bayesian Interpretation

Sparsity Enforcing Bayesian Prior

We know that primaries and multiples are sparse in curvelets,
and we want to use that knowledge.

A good sparsity enforcing prior distribution is the Laplacian
(Cauchy) distribution p(x) = ce−a|x|
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Bayesian Interpretation

Sparsity Enforcing Bayesian Prior

We know that primaries and multiples are sparse in curvelets,
and we want to use that knowledge.

A good sparsity enforcing prior distribution is the Laplacian
(Cauchy) distribution p(x) = ce−a|x|

We also have predictions of the multiples (and primaries), so
we use a weighted laplacian prior instead.

p(x1) = ce−w1|x1|

p(x2) = ce−w2|x2|

In other words we make it unlikely that the curvelet
coefficients of the primaries are high where there are high
coefficients for the multiples and vice versa.
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Bayesian Interpretation

MAP estimator

We want to find the curvelet coefficients of the primaries and
multiples (x1 and x2) knowing that

b1 = s1 + n1 and b2 = s2 + n2

Maximize P (x1,x2|b1,b2)
This leads to the following formulation

arg max
x1,x2

P (x1,x2|b1,b2) = arg max
x1,x2

P (x1,x2)P (n)P (n2)

= arg max
x1,x2

−
(
α1‖x1‖1,w1

+α2‖x2‖1,w1
+
‖Ax2 − b2‖22

σ2
2

+
‖A(x1 + x2)− (b1 + b2)‖22

σ2

)
= arg min

x1,x2
f(x1,x2)

Here ‖xi‖1,wi =
∑

µ |wi,µxi,µ|, µ ∈M
Rayan Saab DNOISE group, UBC
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Bayesian Interpretation

Selection of Weights

If the weights are selected independently, then the Bayesian
interpretation is valid, and the corresponding priors are as in
the previous slide.

In practice, we select the weights as w1 = λ1AHb2 and
w2 = λ2AHb1.

This choice still corresponds to the same posterior distribution
(with the new choice of weights) but with a different prior
that is not explicitly formulated.
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Objective Function

Three Key Components

Objective Function

f(x1,x2) =
‖x1‖1,w1

+‖x2‖1,w2
+‖Ax2 − b2‖22+η‖A(x1 + x2)− (b1 + b2)‖22
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‖x1‖1,w1

+‖x2‖1,w2
+‖Ax2 − b2‖22+η‖A(x1 + x2)− (b1 + b2)‖22

Bayesian Interpretation

Minimizing f(x1,x2) is equivalent to finding the MAP estimator
assuming that the coefficients of the sources follow independent
weighted Laplacian prior and noise (error) is Gaussian.
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Bayesian Interpretation

Minimizing f(x1,x2) is equivalent to finding the MAP estimator
assuming that the coefficients of the sources follow independent
weighted Laplacian prior and noise (error) is Gaussian.

Separation Algorithm

xn+1
1 = Sw1

2η

[
ATb2 −ATAxn

2 + ATb1 −ATAxn
1 + xn

1

]
xn+1

2 = S w2
2(1+η)

[
ATb2 −ATAxn

2 + xn
2 + η

η+1

(
ATb1 −ATAxn

1

)]
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Optimization by Iterative Thresholding

Iterative Thresholding

Thus our algorithm can be described as

xn+1
1 = Sw1

2η

[
ATb2 −ATAxn

2 + ATb1 −ATAxn
1 + xn

1

]
xn+1

2 = S w2
2(1+η)

[
ATb2 −ATAxn

2 + xn
2 + η

η+1

(
ATb1 −ATAxn

1

)]
Here Sα is the soft-thresholding operator acting elementwise
as

Sαµ(vµ) = sgn(vµ) ·max(0, |vµ| − |αµ|).

Theorem: The algorithm converges to the minimizer of the
objective function.

Proof: Similar to work of Daubechies04.
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Description of Parameters

Description of Parameters

The parameters λ1, λ2 and η control the tradeoff between the
sparsity of the curvelet coefficients (primaries and multiples)
and how well we fit both the predicted multiples and the total
data. How ?

1 As we increase λ1 (or λ2) we are forcing the estimated curvelet
coefficients to be more sparse, allowing for better separation of
primaries from multiples. On the other hand, we may
introduce artifacts.

2 As we increase η, we are putting more weight on the total data
fit, and less on the predicted multiples.

While this describes a general trend, in practice the algorithm
is robust to parameter choice (within reason).
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Total Data and Predicted Multiples
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Separation Results

SRME Single threshold (Herrmann07) proposed algorithm
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Results with Different Parameter Choices

Rayan Saab DNOISE group, UBC

Curvelet-Based Primary-Multiple Separation from a Bayesian Perspective 20



Outline Introduction and Overview Sparse Model and Bayesian Interpretations Separation Algorithm Sample Results Generalization Conclusion

Model Generalization

1 Introduction and Overview
Problem and Scope

2 Sparse Model and Bayesian Interpretations
Sparse Model
Bayesian Interpretation

3 Separation Algorithm
Objective Function
The Algorithm
Optimization by Iterative Thresholding
Description of Parameters

4 Sample Results

5 Generalization
Model Generalization
Generalized Cost Function and Iterative Algorithm

6 Conclusion

Rayan Saab DNOISE group, UBC

Curvelet-Based Primary-Multiple Separation from a Bayesian Perspective 21



Outline Introduction and Overview Sparse Model and Bayesian Interpretations Separation Algorithm Sample Results Generalization Conclusion

Model Generalization

Model Generalization

The model can be generalized by assuming that we have m
observations of n sources:

bi =
N∑
j=1

ψijsj + nj , i ∈ {1, ...,m}

and n′ available predictions of the sources:

bi+m = si + ni+m, i ∈ {1, ..., n′}

We still assume that the underlying sources are sparse in the
transform domain:

sj = Axj

where sj ∈ RM×1, A ∈ RM×N and xj ∈ RN×1

Rayan Saab DNOISE group, UBC
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Generalized Cost Function and Iterative Algorithm

Generalized Cost Function and Iterative Algorithm

Using the same approach as before we can derive a cost
function and an optimization algorithm to minimize it.

f(x1, ...,xn) =
n∑
i=1

λi‖xi‖1,wi +
m+n′∑
i=1

ηi‖A
n∑
j=1

ψijxj − bi‖22.

In order to derive the algorithm, define

x̂ =

 x1

...
xn

 , ŵ =

 λ1w1

...
λnwn

 , b̂ =

 √
η1b1

...√
ηm+n′bm+n′

 ,
Ψ̂ =


√
η1ψ11 . . .

√
η1ψ1n

...
...√

ηm+n′ψm+n′,1 . . .
√
ηm+n′ψm+n′,n

 .
Rayan Saab DNOISE group, UBC
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Generalized Cost Function and Iterative Algorithm

Iterative Algorithm

We still need to define the matrix Â = A⊗ Ψ̂ where ⊗ represents
the Kroenecker product of two operators. We can now rewrite the
cost function as

f(x1, ...,xn) = f(x̂) = ‖x̂‖1,ŵ + ‖b̂− Âx̂‖22 (1)

We can now derive the following recursion to optimize the cost
function at iteration k + 1, with c = ‖Â‖22 = ‖Ψ̂‖22‖A‖22.

x̂(k+1) = S ŵ
2c

(
1
c
[ÂH b̂− ÂHÂx̂(k)] + x̂(k)

)
(2)

Rayan Saab DNOISE group, UBC
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Conclusion

We introduced a primary-multiple separation algorithm that
1 utilizes the sparsity of primaries and multiples in the curvelet

domain, and
2 uses both seismic data and prediction of multiples (e.g. from

SRME)

It can be derived from a Bayesian formulation that assumes
1 a sparsity enforcing Laplacian prior distribution,
2 noise and errors are Gaussian.

The algorithm uses soft-thresholding operations, no matrix
inversions, converges in only a few iterations (for this type of
problems).
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inversions, converges in only a few iterations (for this type of
problems).
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