
Seismic inversion through
operator overloading

Sean Ross-Ross

Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0).
Copyright (c) 2018 SINBAD consortium - SLIM group @ The University of British Columbia.

Synopsis
 Challenge:

 integrate & scale IO intensive “Pipe”-based software
 does not facilitate transfer of knowledge
 extend flow-based processing to iterative processing

 Opportunity:
 Create an object-oriented layer

 Implement algorithms modeled directly from math
 Independent of the lower-level software.

 (p)SLIMpy:
 A Collection of Python classes
 vector, linear operator, R/T operation

 Benefits:
 Reusable
 Scalable (with parallelization including domain decomposition)

Motivation
 Inverse problems in (exploration) seismology are

 large scale
 # of unknowns exceeds 230

 matrix-free implementation of operators
 matrix-vector operations take hours, days, weeks

 Software development
 highly technical coding
 little code reuse
 emphasis on processing flows
 no environment to do iterations as part of

optimization

Opportunity
 Create a abstraction layer for the user to implement

algorithms
 Object-oriented
 Interfaces ANAs (coordinate-free abstract

numerical algorithms) with lower level flow-based
seismic processing software (e.g. Madagascar)

 Independent of the lower level software that can be
in-core
out-of-core (pipe-based)
serial or parallel

(p)SLIMpy
 Provides a collection of Python classes and

functions, to represent abstract numerical
algorithms

 Is a tool used to design and implement algorithms
 clean code
 no overhead
 designed to facilitate the knowledge transfer

between end users and the algorithm designers
(scientists)

 Easily scaleable
 transparent parallel IO service

(p)SLIMpy

 Industry uses scalable in-core solutions which are
not applicable for non-separable transforms in
dimensions higher than two (e.g. 3-D curvelet
transform)

 SLIM’s technology is based on nonseparable
transforms that take 100.000’s of traces as input for
a single transform

 SLIMPy is designed to handle large IO intensive
non-separable transforms

Context
 SLIMpy is a IO-intensive adaptation of exisiting

ideas:
 William Symes’ Rice Vector Library.

 http://www.trip.caam.rice.edu/txt/tripinfo/rvl.html
 http://www.trip.caam.rice.edu/txt/tripinfo/rvl2006.pdf

 Ross Bartlett's C++ object-oriented interface, Thyra.
 http://trilinos.sandia.gov/packages/thyra/index.html

 Reduction/Transformation operators (both part of the
Trilinos software package).
 http://trilinos.sandia.gov/

 PyTrilinos by William Spotz.
 http://trilinos.sandia.gov/packages/pytrilinos/

http://www.trip.caam.rice.edu/txt/tripinfo/rvl.html
http://www.trip.caam.rice.edu/txt/tripinfo/rvl.html
http://www.trip.caam.rice.edu/txt/tripinfo/rvl2006.pdf
http://www.trip.caam.rice.edu/txt/tripinfo/rvl2006.pdf
http://trilinos.sandia.gov/packages/thyra/index.html
http://trilinos.sandia.gov/packages/thyra/index.html
http://trilinos.sandia.gov
http://trilinos.sandia.gov
http://trilinos.sandia.gov/packages/pytrilinos/
http://trilinos.sandia.gov/packages/pytrilinos/

Methodology
SLIMpy package is divided into four distinct parts

 Vector/Operator interface
 For the algorithm designer
 Enforce consistency & enable code reuse

 Abstract Syntax Tree
 For SLIMpy developers
 Allows for pipe optimization & parallelization

 Compiler
 for developers porting to another lower level software
 Interface to low-level pipe-based commands (e.g. SU, RSF)

 Reproducible research interface
 For end users
 Allows for access from scons & integration with papers

Operator Overloading
 Operators like +, -, or * have different

implementations depending on the types of their
arguments

 SLIMpy uses operator overloading on
 vectors

 vec1 + vec2

 linear operators
 Oper * vec

 adds nodes to the Abstract Syntax Tree

Abstract Syntax Tree (AST)

 An AST is a finite, labeled, directed tree where:
 Internal nodes are labeled by operators
 Leaf nodes represent variables/vectors

 AST is used as an intermediate between a parse
tree and a data structure.

1 2

add = 3

Example

 Apply Operator to two data-sets
 add the transformed data
 apply soft thresholding
 apply adjoint operator

Example SLIMpy

vec1 = vector('vec1.rsf')
vec2 = vector('vec2.rsf')

C = fft(domain=vec.space)

coeffs1 = C * vec1

coeffs2 = C * vec2

tmp3 = coeffs1 + coeffs2

tmp4 = tmp3.thr(0.001)

result = C.adj() * tmp3

End()

Example SLIMpy

vec1 = vector('vec1.rsf')
vec2 = vector('vec2.rsf')

C = fft(domain=vec.space)

coeffs1 = C * vec1

coeffs2 = C * vec2

tmp3 = coeffs1 + coeffs2

tmp4 = tmp3.thr(0.001)

result = C.adj() * tmp3

End()

} Define Vectors &
Linear Operator

Example SLIMpy

vec1 = vector('vec1.rsf')
vec2 = vector('vec2.rsf')

C = fft(domain=vec.space)

coeffs1 = C * vec1

coeffs2 = C * vec2

tmp3 = coeffs1 + coeffs2

tmp4 = tmp3.thr(0.001)

result = C.adj() * tmp3

End()

} Perform operations
on vectors

Example SLIMpy

vec1 = vector('vec1.rsf')
vec2 = vector('vec2.rsf')

C = fft(domain=vec.space)

coeffs1 = C * vec1

coeffs2 = C * vec2

tmp3 = coeffs1 + coeffs2

tmp4 = tmp3.thr(0.001)

result = C.adj() * tmp3

End() } Compile AST

Example SLIMpy

vec1 = vector('vec1.rsf')
vec2 = vector('vec2.rsf')

C = fft(domain=vec.space)

coeffs1 = C * vec1

coeffs2 = C * vec2

tmp3 = coeffs1 + coeffs2

tmp4 = tmp3.thr(0.001)

result = C.adj() * tmp3

End()

Highlight data and commands

vec1 = vector('vec1.rsf')
vec2 = vector('vec2.rsf')

C = fft(domain=vec.space)

coeffs1 = C * vec1

coeffs2 = C * vec2

tmp3 = coeffs1 + coeffs2

tmp4 = tmp3.thr(0.001)

result = C.adj() * tmp3

End()

Can be split into
different nodes:

commands

data

Abstract Syntax Tree

fftadj

fft

fft

add thr

vec1

vec1

coeffs2

tmp1 tmp2 result

coeffs1

Madagascar

< ./data2.rsf sffft1 opt="n" inv="n" sym="y" | DATAPATH=/
Tools/toolboxes/rsf_stuff/tmp_datapath/ sffft3 opt="n"
inv="n" sym="y" pad="1" axis="2" > /Tools/toolboxes/
rsf_stuff/tmp_datapath/slim.12648.env1.FakeMo.fft.
00004.rsf
< ./data1.rsf sffft1 opt="n" inv="n" sym="y" | sffft3 opt="n"
inv="n" sym="y" pad="1" axis="2" | sfmath output="vec
+input" vec="/Tools/toolboxes/rsf_stuff/tmp_datapath/slim.
12648.env1.FakeMo.fft.00004.rsf" | sfthr mode="soft"
thr="0.001" | sffft3 opt="n" inv="y" sym="y" pad="1"
axis="2" | DATAPATH=/Tools/toolboxes/rsf_stuff/datapath/
sffft1 opt="n" inv="y" sym="y" > ./result.rsf

Could work for any Lower Level software

SLIMpy Compiles
 Most Compilers build an AST

 c,c++ build and AST with processor instruction set

 SLIMpy builds coarse-grained AST with Linear
Algebra commands.
� reduction/transformation operations that include

� element-wise addition, subtraction, multiplication
� vector inner products
� norms l1, l2 etc

� Matrix/Vector operations that include
� implicit linear operators
� explicit linear operators

Parallelization
 Different Branches of the AST can be run on

different hosts.
 handles copying and organizing data
 exploits parallel extension of RSF (parallel “file

system”)

 SLIMpy can also utilize existing MPI programs

 Look at the previous example again
 Can use domain decomposition

Parallel:
Domain Decomposition

vec1 = vector('vec1.rsf')
vec2 = vector('vec2.rsf')

P = Scatter(domain=vec.space , [2,1])
F = fft(domain=P.range)
C = CompoundOperator([F,P])

coeffs1 = C * vec1
coeffs2 = C * vec2

tmp3 = coeffs1 + coeffs2

tmp4 = tmp3.thr(0.001)

result = C.adj() * tmp3

End()

Redefine operator C as:
F(P(X))

C <=> Scatter -> fft
C.adj() <=> fft inv -> Gather

fftadj

tmp3

add thrtmp1 tmp2

coeffs1fft

fft coeffs1

Abstract Syntax Tree

Scatter

vec1

result

Scatter

vec1
s11

s12

s21

s22

fftadj

add thrtmp1 tmp2

coeffs1fft

fft coeffs1

tmp3

Gather

fftadj

tmp3

add thrtmp1 tmp2

coeffs1fft

fft coeffs1

Abstract Syntax Tree

Scatter

vec1

result

Scatter

vec1
s11

s12

s21

s22

fftadj

add thrtmp1 tmp2

coeffs1fft

fft coeffs1

tmp3

Gather

Host 1

Host 2

Output
< ./s2.rsf sfwindow f1="0" f2="0" n1="5" n2="10" | sffft1 opt="False" inv="n" sym="True" |
DATAPATH=/Tools/toolboxes/rsf_stuff/tmp_datapath/ sffft3 opt="False" inv="n" sym="True" pad="1"
axis="2" > /Tools/toolboxes/rsf_stuff/tmp_datapath/slim.14381.env1.FakeMo.fft.00011.rsf
< ./s2.rsf sfwindow f1="5" f2="0" n1="5" n2="10" | sffft1 opt="False" inv="n" sym="True" |
DATAPATH=/Tools/toolboxes/rsf_stuff/tmp_datapath/ sffft3 opt="False" inv="n" sym="True" pad="1"
axis="2" > /Tools/toolboxes/rsf_stuff/tmp_datapath/slim.14381.env1.FakeMo.fft.00012.rsf
< ./s1.rsf sfwindow f1="5" f2="0" n1="5" n2="10" | sffft1 opt="False" inv="n" sym="True" | sffft3
opt="False" inv="n" sym="True" pad="1" axis="2" | sfmath output="vec+input" vec="/Tools/toolboxes/
rsf_stuff/tmp_datapath/slim.14381.env1.FakeMo.fft.00012.rsf" | sfthr mode="soft" thr="0.001" | sffft3
opt="False" inv="y" sym="True" pad="1" axis="2" | DATAPATH=/Tools/toolboxes/rsf_stuff/
tmp_datapath/ sffft1 opt="False" inv="y" sym="True" > /Tools/toolboxes/rsf_stuff/tmp_datapath/slim.
14381.env1.FakeMo.fft1.00020.rsf
< ./s1.rsf sfwindow f1="0" f2="0" n1="5" n2="10" | sffft1 opt="False" inv="n" sym="True" | sffft3
opt="False" inv="n" sym="True" pad="1" axis="2" | sfmath output="vec+input" vec="/Tools/toolboxes/
rsf_stuff/tmp_datapath/slim.14381.env1.FakeMo.fft.00011.rsf" | sfthr mode="soft" thr="0.001" | sffft3
opt="False" inv="y" sym="True" pad="1" axis="2" | sffft1 opt="False" inv="y" sym="True" |
DATAPATH=/Tools/toolboxes/rsf_stuff/datapath/ sfcat /Tools/toolboxes/rsf_stuff/tmp_datapath/slim.
14381.env1.FakeMo.fft1.00020.rsf axis="1" > ./res.rsf
sfrm /Tools/toolboxes/rsf_stuff/tmp_datapath/slim.14381.env1.FakeMo.fft1.00020.rsf
sfrm /Tools/toolboxes/rsf_stuff/tmp_datapath/slim.14381.env1.FakeMo.fft.00012.rsf
sfrm /Tools/toolboxes/rsf_stuff/tmp_datapath/slim.14381.env1.FakeMo.fft.00011.rsf

Other Benefits of AST
 Lots of existing software use AST

 Potential for optimization
 C++: has “-O2” flag

 SLIMpy: Symbolic optimization
 F(x) + F(y) <=> F(x+y)

 Useful for augmented system of equations
 [F F] * [x y]T

AST Optimization

fft

fft

add

vec1

vec1

coeffs2

tmp1

coeffs1

Sub-tree of first
example

AST Optimization

fft

fft

add

vec1

vec1

coeffs2

tmp1

coeffs1

fftadd

vec1

vec1

tmp1coeffs1

1 addition
1 fft

1 addition
2 fft’s

Features
 Automatic Domain/Range checking of Operators
 Automatic dot-test for linear operators

 <F(x), F(y)> == <x,y>
 Plugin system to add definitions of lower level

software

Demo
 Using an l1-solver

 For 2d and 3d de-noise:
 where A == ST is the inverse curvelet transform

 For interpolation:
 A = [R CH]
 ST = CH

 For interpolation with parallel and MPI
 A = ...
 x = ...

Curvelet-based processing 3

SPARSITY-PROMOTING INVERSION

Our solution strategy is built on the premise that seismic
data and images have a sparse representation, x0, in the
curvelet domain. To exploit this property, our forward
model reads

y = Ax0 + n (1)

with y a vector with noisy and possibly incomplete mea-
surements; A the modeling matrix that includes CT ; and
n, a zero-centered white Gaussian noise. Because of the
redundancy of C and/or the incompleteness of the data,
the matrix A can not readily be inverted. However, as
long as the data, y, permits a sparse vector, x0, the ma-
trix, A, can be inverted by a sparsity-promoting program
(Candès et al., 2006b; Donoho, 2006) of the following type:

Pε :

{
x̃ = arg minx ‖x‖1 s.t. ‖Ax− y‖2 ≤ ε

f̃ = ST x̃
(2)

in which ε is a noise-dependent tolerance level, ST the
inverse transform and f̃ the solution calculated from the
vector x̃ (the symbol ˜ denotes a vector obtained by non-
linear optimization) that minimizes Pε.

Nonlinear programs such as Pε are not new to seismic
data processing and imaging. Refer, for instance, to the
extensive literature on spiky deconvolution (Taylor et al.,
1979) and transform-based interpolation techniques such
as Fourier-based reconstruction (Sacchi and Ulrych, 1996).
By virtue of curvelets’ high compression rates, the non-
linear program Pε can be expected to perform well when
CT is included in the modeling operator. Despite its large-
scale and nonlinearity, the solution of the convex problem
Pε can effectively be approximated with a limited (< 250)
number of iterations of a threshold-based cooling method
derived from work by Figueiredo and Nowak (2003) and
Elad et al. (2005). Each step involves a descent projection,
followed by a soft thresholding.

SEISMIC DATA RECOVERY

The reconstruction of seismic wavefields from regularly-
sampled data with missing traces is a setting where a
curvelet-based method will perform well (see e.g. Herr-
mann, 2005; Hennenfent and Herrmann, 2006a, 2007). As
with other transform-based methods, sparsity is used to
reconstruct the wavefield by solving Pε. It is also shown
that the recovery performance can be increased when in-
formation on the major primary arrivals is included in the
modeling operator.

Curvelet-based recovery

The reconstruction of seismic wavefields from incomplete
data corresponds to the inversion of the picking operator
R. This operator models missing data by inserting zero
traces at source-receiver locations where the data is miss-
ing. The task of the recovery is to undo this operation
by filling in the zero traces. Since seismic data is sparse

in the curvelet domain, the missing data can be recovered
by compounding the picking operator with the curvelet
modeling operator, i.e., A := RCT . With this defini-
tion for the modeling operator, solving Pε corresponds to
seeking the sparsest curvelet vector whose inverse curvelet
transform, followed by the picking, matches the data at
the nonzero traces. Applying the inverse transform (with
S := C in Pε) gives the interpolated data.

An example of curvelet based recovery is presented in
Figure 1, where a real 3-D seismic data volume is recov-
ered from data with 80% traces missing (see Figure 1(b)).
The missing traces are selected at random according to a
discrete distribution, which favors recovery (see e.g. Hen-
nenfent and Herrmann, 2007), and corresponds to an av-
erage sampling interval of 125 m . Comparing the ’ground
truth’ in Figure 1(a) with the recovered data in Figure 1(c)
shows a successful recovery in case the high-frequencies
are removed (compare the time slices in Figure 1(a) and
1(c)). Aside from sparsity in the curvelet domain, no prior
information was used during the recovery, which is quite
remarkable. Part of the explanation lies in the curvelet’s
ability to locally exploit the 3-D structure of the data
and this suggests why curvelets are successful for complex
datasets where other methods may fail.

Focused recovery

In practice, additional information on the to-be-recovered
wavefield is often available. For instance, one may have
access to the predominant primary arrivals or to the ve-
locity model. In that case, the recently introduced focal
transform (Berkhout and Verschuur, 2006), which ’decon-
volves’ the data with the primaries, incorporates this addi-
tional information into the recovery process. Application
of this primary operator, ∆P, adds a wavefield interaction
with the surface, mapping primaries to first-order surface-
related multiples (see e.g. Verschuur and Berkhout, 1997;
Herrmann, 2007). Inversion of this operator, strips the
data off one interaction with the surface, focusing pri-
maries to (directional) sources, which leads to a sparser
curvelet representation.

By compounding the non-adaptive curvelet transform
with the data-adaptive focal transform, i.e., A := R∆PCT ,
the recovery can be improved by solving Pε. The solution
of Pε now entails the inversion of ∆P, yielding the spars-
est set of curvelet coefficients that matches the incomplete
data when ’convolved’ with the primaries. Applying the
inverse curvelet transform, followed by ’convolution’ with
∆P yields the interpolation, i.e. ST := ∆PCT. Compar-
ing the curvelet recovery with the focused curvelet recov-
ery (Fig ?? and ??) shows an overall improvement in the
recovered details.

SEISMIC SIGNAL SEPARATION

Predictive multiple suppression involves two steps, namely
multiple prediction and the primary-multiple separation.
In practice, the second step appears difficult and adap-

Who should use SLIMpy?
 Anyone working on large-to-extremely large scale

optimization:
 NumPy, Matlab etc. etc.
 unix pipe-based (Madagascar, SU, SEPlib etc.)
 seamless migration from in-core to out-of-core to

parallel
 Anyone who would like to produce code that is:

 readable & reusable
 deployable in different environments
 integrable with existing OO solver libraries

 Write solver once, deploy “everywhere” ...

Conclusions
Use a scripting language to access low-level
implementations of (linear) operators (seismic
processing tools).

Easy to use automatic checking tools such as domain-
range checks and dot-test.

Overloading and abstraction with small overhead.

AST allows for optimization.

Reusable ANAs and Applications.

Is growing into a “compiler” for ANA’s

Future plans
Improve stability of parallel extension

Prepare a public-domain release

Extend the functionality of the AST
 symbolic optimization

Implement the Kronecker product

Acknowledgments
 Madagascar Development Team

 Sergey Fomel
 CurveLab 2.0.2 Developers

 Emmanuel Candes, Laurent Demanet, David
Donoho and Lexing Ying

 SINBAD project with financial support
 BG Group, BP, Chevron, ExxonMobil, and Shell

 SINBAD is part of a collaborative research and
development grant (CRD) number 334810-05
funded by the Natural Science and Engineering
Research Council (NSERC)

