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Definition of the Problem

Basic Imaging problem:

d=Km-+n
Desired seismic image characteristics:

= Broad-band

Sharp, high resolution
2D curves/3D sheets

= Continuity along the reflectors
Noise In seismic images

® Random noise

Instruments distortion
Ambient

®" Imaging operator imperfections




Imaging as an Inverse Problem

Following inversion problem is introduced

nfl}ln J(m) subject to ||[d — Kml5 < €

J(m) is a norm or penalty function

This norm has to
= promote continuity along reflectors

= promote sparsity of image in the curvelet
domain

® reduce the artifacts from image
® enhance the amplitudes of the reflectors
®" remove noise from seismic image




Curvelets and their properties

Curvelets:
® are multiscale and multi-directional
® sparsely represent seismic images

® gre invariant under the action of
idealize normal operator

® are constructed as tight frames
= permit a fast transformation

= are used reliably for denoising in image
processing applications




Approximation Rate Comparison
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Example
(three curvelets)
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Normal operator approximation

Approximation with curvelet eigenvalue-like
decomposition:

CTD\IJC ~ KTK

Diagonal matrix is smooth in phase space (in the
curvelet domain) for smooth background velocity
models

Computationally cheap, requires only “one” evaluation
of the normal operator to estimate the diagonal
scaling




Diagonal Approximation

Approximation with curvelet regularization,
C'DyC ~ K'K

Positivity constraint on diagonal estimation,

min(||K" Kr — C" diag(e")Cr|[3 + Al[Le"[3)

L=[D," D,” Dg']" Dg = diag(e")

Solve using quasi-Newton method
Explore smoothness along the curvelet symbol

Computationally cheap, requires only “one” evaluation
of normal operator




Problem reformulation

Forming the normal equation,

d=Km+n=K/d=K'Km+K'n
=>y~AA'm+e

— A.XO + e
with

y=Kid, A=CT{/Dyg

A is scaled the inverse curvelet transform




Recovery Problem Formulation

2

X = miny J(x) subject to |y — Ax||2 <€

With J(x) = |[x|[x

J(x) promotes sparsity on the weighted
curvelet coefficients of the reflectivity




Recovery Method

Form the normal operator KY{K.

Select a reference vector that is close to the
unknown image.

Estimate the diagonal. (¢.e.,D,,)

Construct the matrixA = C*y/D,,.

Solve L1 optimization problem to find the solution
for the reflectivity.




Contlicting-dips example

Linearized Born modeled Data
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Contlicting-dips example
Diagonal aBproximation
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Example
Curvelet Mosaic Plot

Model in Curvelet Domain
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Contlicting-dips example
Result
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Contlicting-dips example
Full synthetic data
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Contlicting-dips example
Full synthetic data

Offset (m) Offset (m)
800 1000 1200 1400 1600 800 1000 1200 1400 1600

0

o
o
a2
o
o
<
o
o
©
o
o
@
o
o
o
—

Migrated Enhanced

S L\SLIM
\ Seismic Laboratory for
Imaging and Modeling



BP-dataset example
Velocity Model
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BP-dataset example

Description

Dataset with
= ..streamer configuration

= ...15 (km) streamer and 12.5 (m) group interval and 50 (m) shot
interval

= ...14 (s) of recording time with 6 (ms) sampling interval
= ..total of 1340 shots and 1201 receivers
Pre-processing steps:
= free surface waves (direct arrivals) are removed
= free surface multiple are removed (using SRME)
= dipping waves are removed using band pass filtering
background velocity is smoothed

both migrated and re-migrated images were corrected for
illumination map
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BP-dataset example

migrated image
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BP-dataset example

amplitude-corrected migrated image
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BP-dataset example
zoomed Comparisons
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Conclusion

This work

... introduces a novel approach to migration
amplitude recovery

... employs an accurate diagonal decomposition of
the expensive normal operator

... employs curvelets as essential elements in
both approximation and estimation

... can be used instead of illumination map or in
conjunction with it
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