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Definition of  the Problem

 Basic Imaging problem:

 Desired seismic image characteristics:
 Broad-band

 Sharp, high resolution
 2D curves/3D sheets

 Continuity along the reflectors
 Noise in seismic images

 Random noise
 Instruments distortion
 Ambient

 Imaging operator imperfections

d = Km + n



Imaging as an Inverse Problem

 Following inversion problem is introduced

J(m) is a norm or penalty function
 This norm has to

 promote continuity along reflectors
 promote sparsity of image in the curvelet 

domain
 reduce the artifacts from image
 enhance the amplitudes of the reflectors
 remove noise from seismic image

minm J(m) subject to ‖d−Km‖22 ≤ ε



Curvelets and their properties
Curvelets:
 are multiscale and multi-directional
 sparsely represent seismic images
 are invariant under the action of 

idealize normal operator
 are constructed as tight frames
 permit a fast transformation
 are used reliably for denoising in image 

processing applications 



Approximation Rate Comparison

a) Mrmoussi Model
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Example 
(three curvelets)



Normal operator approximation
✤ Approximation with curvelet eigenvalue-like 

decomposition: 

 Diagonal matrix is smooth in phase space (in the 
curvelet domain) for smooth background velocity 
models

 Computationally cheap, requires only “one” evaluation 
of the normal operator to estimate the diagonal 
scaling

CT DΨC ≈ KT K



Diagonal Approximation
 Approximation with curvelet regularization,

 Positivity constraint on diagonal estimation,

 Solve using quasi-Newton method
 Explore smoothness along the curvelet symbol
 Computationally cheap, requires only “one” evaluation 

of normal operator

L = [Dx
T

Dy
T

Dθ
T ]T

min
u

(||KT Kr−CT diag(eu)Cr||22 + λ||Leu||22)

CT DΨC ≈ KT K

DΨ = diag(eu)



Problem reformulation

 Forming the normal equation,

 with

     is scaled the inverse curvelet transformA
A = CT

√
DΨ



Recovery Problem Formulation

 With 

          promotes sparsity on the weighted 
curvelet coefficients of the reflectivity

Our approach

The computational cost of evaluating the migration operator is O(nd+2) for a d-dimensional

image with n samples in each direction. This large cost makes it a major challenge to

conduct least-squares migration for d > 2 or large n (33; 14; 20; 30; 31; 36; 30). We

address this issue by exploiting recently developed curvelet frames. These frame expansions

compress seismic images (see e.g. 7; 27, for the compression of seismic data and Fig. 1 for

the compression of a typical migrated seismic image) and consist of a collection of frame

elements ’curvelets’ that are invariant under PsDO′s. These two properties allow for the

development of an approach similar to the so-called wavelet-vaguelette method (WVD) (see

e.g. 21; 23; 32). In this approach, scale-invariant homogeneous operators are nonlinearly

inverted, using the eigenfunction-like behavior of wavelets and curvelets.

Our main contribution to earlier ideas on stable seismic image recovery (see e.g. 28) is

threefold: (i) the WVD method is extended to expanding PsDO′s with respect to redundant

curvelet frames; (ii) bounds on the diagonal-approximation error are derived, including a

method to estimate the diagonal from test images and (iii) a formulation for the amplitude

recovery is presented in terms of a nonlinear sparsity-and continuity-enhancing optimization

problem.

After discretization, the nonlinear optimization problem for the seismic amplitude re-

covery (see e.g. 47; 13; 18) has the following form

Pε :






x̃ = minx J(x) subject to ‖y −Ax‖2 ≤ ε

m̃ =
(
AT

)† x̃.

(5)

During the optimization, the vector x is optimized with respect to the penalty functional

J(x) and the "2-data misfit. The term sparsity vector is used for x to stress the point that

5

J(x) = ||x||1

J(x)



Recovery Method
 Form the normal operator           .

 Select a reference vector that is close to the 
unknown image.

 Estimate the diagonal. 

 Construct  the matrix                    .

 Solve L1 optimization problem to find the solution 
for the reflectivity. 

KT K

(i.e.,Dµ)

A = CT
√

Dµ



Conflicting-dips example
Linearized Born modeled Data



Conflicting-dips example
Diagonal approximation



Model in Curvelet Domain

Diagonal Before Smoothing Diagonal After Smoothing

Example 
Curvelet Mosaic Plot



Conflicting-dips example
Result



Conflicting-dips example
Full synthetic data



Conflicting-dips example
Full synthetic data



BP-dataset example
 Velocity Model



BP-dataset example
 Description

 Dataset with
 ...streamer configuration 
 ...15 (km) streamer and 12.5 (m) group interval and 50 (m) shot 

interval
 ...14 (s) of recording time with 6 (ms) sampling interval
 ...total of 1340 shots and 1201 receivers

 Pre-processing steps:
 free surface waves (direct arrivals) are removed
 free surface multiple are removed (using SRME)  
 dipping waves are removed using band pass filtering
 background velocity is smoothed
 both migrated and re-migrated images were corrected for 

illumination map



BP-dataset example
migrated image



BP-dataset example
 amplitude-corrected migrated image 



BP-dataset example
zoomed comparisons



Conclusion

… introduces a novel approach to migration 
amplitude recovery
… employs an accurate diagonal decomposition of 
the expensive normal operator
… employs curvelets as essential elements in 
both approximation and estimation
… can be used instead of illumination map or in 
conjunction with it

This work
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