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Definition of  the Problem

 Basic Imaging problem:

 Desired seismic image characteristics:
 Broad-band

 Sharp, high resolution
 2D curves/3D sheets

 Continuity along the reflectors
 Noise in seismic images

 Random noise
 Instruments distortion
 Ambient

 Imaging operator imperfections

d = Km + n



Imaging as an Inverse Problem

 Following inversion problem is introduced

J(m) is a norm or penalty function
 This norm has to

 promote continuity along reflectors
 promote sparsity of image in the curvelet 

domain
 reduce the artifacts from image
 enhance the amplitudes of the reflectors
 remove noise from seismic image

minm J(m) subject to ‖d−Km‖22 ≤ ε



Curvelets and their properties
Curvelets:
 are multiscale and multi-directional
 sparsely represent seismic images
 are invariant under the action of 

idealize normal operator
 are constructed as tight frames
 permit a fast transformation
 are used reliably for denoising in image 

processing applications 



Approximation Rate Comparison

a) Mrmoussi Model
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Example 
(three curvelets)



Normal operator approximation
✤ Approximation with curvelet eigenvalue-like 

decomposition: 

 Diagonal matrix is smooth in phase space (in the 
curvelet domain) for smooth background velocity 
models

 Computationally cheap, requires only “one” evaluation 
of the normal operator to estimate the diagonal 
scaling

CT DΨC ≈ KT K



Diagonal Approximation
 Approximation with curvelet regularization,

 Positivity constraint on diagonal estimation,

 Solve using quasi-Newton method
 Explore smoothness along the curvelet symbol
 Computationally cheap, requires only “one” evaluation 

of normal operator

L = [Dx
T

Dy
T

Dθ
T ]T

min
u

(||KT Kr−CT diag(eu)Cr||22 + λ||Leu||22)

CT DΨC ≈ KT K

DΨ = diag(eu)



Problem reformulation

 Forming the normal equation,

 with

     is scaled the inverse curvelet transformA
A = CT

√
DΨ



Recovery Problem Formulation

 With 

          promotes sparsity on the weighted 
curvelet coefficients of the reflectivity

Our approach

The computational cost of evaluating the migration operator is O(nd+2) for a d-dimensional

image with n samples in each direction. This large cost makes it a major challenge to

conduct least-squares migration for d > 2 or large n (33; 14; 20; 30; 31; 36; 30). We

address this issue by exploiting recently developed curvelet frames. These frame expansions

compress seismic images (see e.g. 7; 27, for the compression of seismic data and Fig. 1 for

the compression of a typical migrated seismic image) and consist of a collection of frame

elements ’curvelets’ that are invariant under PsDO′s. These two properties allow for the

development of an approach similar to the so-called wavelet-vaguelette method (WVD) (see

e.g. 21; 23; 32). In this approach, scale-invariant homogeneous operators are nonlinearly

inverted, using the eigenfunction-like behavior of wavelets and curvelets.

Our main contribution to earlier ideas on stable seismic image recovery (see e.g. 28) is

threefold: (i) the WVD method is extended to expanding PsDO′s with respect to redundant

curvelet frames; (ii) bounds on the diagonal-approximation error are derived, including a

method to estimate the diagonal from test images and (iii) a formulation for the amplitude

recovery is presented in terms of a nonlinear sparsity-and continuity-enhancing optimization

problem.

After discretization, the nonlinear optimization problem for the seismic amplitude re-

covery (see e.g. 47; 13; 18) has the following form

Pε :






x̃ = minx J(x) subject to ‖y −Ax‖2 ≤ ε

m̃ =
(
AT

)† x̃.

(5)

During the optimization, the vector x is optimized with respect to the penalty functional

J(x) and the "2-data misfit. The term sparsity vector is used for x to stress the point that

5

J(x) = ||x||1

J(x)



Recovery Method
 Form the normal operator           .

 Select a reference vector that is close to the 
unknown image.

 Estimate the diagonal. 

 Construct  the matrix                    .

 Solve L1 optimization problem to find the solution 
for the reflectivity. 

KT K

(i.e.,Dµ)

A = CT
√

Dµ



Conflicting-dips example
Linearized Born modeled Data



Conflicting-dips example
Diagonal approximation



Model in Curvelet Domain

Diagonal Before Smoothing Diagonal After Smoothing

Example 
Curvelet Mosaic Plot



Conflicting-dips example
Result



Conflicting-dips example
Full synthetic data



Conflicting-dips example
Full synthetic data



BP-dataset example
 Velocity Model



BP-dataset example
 Description

 Dataset with
 ...streamer configuration 
 ...15 (km) streamer and 12.5 (m) group interval and 50 (m) shot 

interval
 ...14 (s) of recording time with 6 (ms) sampling interval
 ...total of 1340 shots and 1201 receivers

 Pre-processing steps:
 free surface waves (direct arrivals) are removed
 free surface multiple are removed (using SRME)  
 dipping waves are removed using band pass filtering
 background velocity is smoothed
 both migrated and re-migrated images were corrected for 

illumination map



BP-dataset example
migrated image



BP-dataset example
 amplitude-corrected migrated image 



BP-dataset example
zoomed comparisons



Conclusion

… introduces a novel approach to migration 
amplitude recovery
… employs an accurate diagonal decomposition of 
the expensive normal operator
… employs curvelets as essential elements in 
both approximation and estimation
… can be used instead of illumination map or in 
conjunction with it

This work
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