Applications of Curvelets/ Surfacelets to seismic data

 processingEvgeniy Lebed

Outline

\square Wavefield reconstruction

- physical domain restriction
- frequency domain restriction
\square Wavefield separation
- primary-multiple separation
- Bayesian perspective

Signal Recovery

\square Forward model

$$
y=R M f_{0}+n
$$

\square Analysis / Synthesis operators

$$
S, S^{H}
$$

\square Inverse problem: $\tilde{f}=S^{H} \tilde{x}$ where

$$
\tilde{x}=\arg \min _{x}\|x\|_{1} \text { such that }\|y-\underbrace{R M S^{H}}_{A} x\|_{2} \leq \epsilon
$$

Solver

$\mathbf{x}_{0}:=$ initial guess
$\lambda_{0}:=$ initial Lagrange multiplier while $\mathbf{r}>\epsilon$

$$
\min _{\mathbf{x}} \mathcal{L}\left(\mathbf{x}, \lambda_{k}\right) \quad \text { ith } 0<\alpha_{k}<1
$$ end while.

$$
\begin{aligned}
& \mathbf{x}_{i+1}=\mathcal{S}_{\lambda_{k}}\left(\mathbf{x}_{i}+\mathbf{A}^{H}\left(\mathbf{y}-\mathbf{A} \mathbf{x}_{i}\right)\right) \\
& \mathcal{S}_{\lambda_{k}}(x):=\operatorname{sign}(x) \cdot \max \left(|x|-\lambda_{k}, 0\right)
\end{aligned}
$$

Signal Recovery - physical domain restriction

Signal Recovery - physical domain restriction

Curvelets

Surfacelets

Signal Recovery - frequency domain

 restriction

SLIM
Seismic Laboratory for
Imaging and Modeling

Signal Recovery - frequency domain

 restriction

Signal Recovery - frequency domain

 restriction

Signal Recovery - frequency domain restriction

Signal Recovery - frequency domain restriction

Curvelets

Surfacelets

The importance of irregular subsampling

regular subsampling example

0
0.2
0.4

Recovered Signal

Primary-Multiple separation Bayesian Perspective

forward model

$$
\begin{array}{ll}
\mathbf{b}=\mathbf{s}_{1}+\mathbf{s}_{2}+\mathbf{n} & \text { (total data) } \\
\mathbf{b}_{1}=\mathbf{A} \mathbf{x}_{1}+\mathbf{n}_{1} & \text { (predicted primaries) } \\
\mathbf{b}_{2}=\mathbf{A} \mathbf{x}_{2}+\mathbf{n}_{2} & \text { (predicted multiples) }
\end{array}
$$

\mathbf{X}_{1} curv/surf coefficients of primaries
\mathbf{X}_{2} curv/surf coefficients of multiples
A inverse curv/surf transform
inverse problem

$$
\mathbf{P}_{\mathbf{w}}:\left\{\begin{array}{l}
\tilde{\mathbf{x}}=\arg \min _{\mathbf{x}} \lambda_{1}\left\|\mathbf{x}_{1}\right\|_{1, \mathbf{w}_{1}}+\lambda_{2}\left\|\mathbf{x}_{2}\right\|_{1, \mathbf{w}_{2}}+ \\
\left\|\mathbf{A} \mathbf{x}_{2}-\mathbf{b}_{2}\right\|_{2}^{2}+\eta\left\|\mathbf{A}\left(\mathbf{x}_{1}+\mathbf{x}_{2}\right)-\mathbf{b}\right\|_{2}^{2} \\
\tilde{\mathbf{s}}_{1}=\mathbf{A} \tilde{\mathbf{x}}_{1} \quad \text { and } \quad \tilde{\mathbf{s}}_{2}=\mathbf{A} \tilde{\mathbf{x}}_{2}
\end{array}\right.
$$

solver

$$
\begin{aligned}
& \mathbf{x}_{1}^{n+1}=\mathbf{T}_{\frac{\lambda_{1} \mathbf{w}_{1}}{2 \eta}}\left[\mathbf{A}^{T} \mathbf{b}_{2}-\mathbf{A}^{T} \mathbf{A} \mathbf{x}_{2}^{n}+\mathbf{A}^{T} \mathbf{b}_{1}-\mathbf{A}^{T} \mathbf{A} \mathbf{x}_{1}^{n}+\mathbf{x}_{1}^{n}\right] \\
& \mathbf{x}_{2}^{n+1}=\mathbf{T}_{\frac{\lambda_{2} \mathbf{w}_{2}}{2(1+\eta)}}\left[\mathbf{A}^{T} \mathbf{b}_{2}-\mathbf{A}^{T} \mathbf{A} \mathbf{x}_{2}^{n}+\mathbf{x}_{2}^{n}+\frac{\eta}{\eta+1}\left(\mathbf{A}^{T} \mathbf{b}_{1}-\mathbf{A}^{T} \mathbf{A} \mathbf{x}_{1}^{n}\right)\right]
\end{aligned}
$$

Primary-Multiple separation
 Bayesian Perspective

Summary

	Curvelets SNR	Surfacelets SNR
Physical Restriction	6.4	4.2
Frequency Restriction	5.4	6.8
PMS Bayesian	11.6	12.2

Seismic Laboratory for

SLIMpy note

\square Interchangeability between curvelet / surfacelet operators is simple!

```
def main( data, mask, output,
    transparams=[4,16,1], angconst=[90,90], coutput=None,
    thrparams=[.01,.99], solverparams=[10,5] ):
# define curvelet matrix (analysis/decomposition)
C = fdct2(data.getSpace(), *transparams)
# define thresholding weights as norms of columns of curvelet
# synthesis matrix
ThrWeights = C.norm()
# define angular constraint in the curvelet domain
AngWeights = C.minvelconst(ang=angconst)
# define picking operator
P = pickingoper(data.getSpace(),mask)
# define global operator
A = CompoundOperator([P,C.adj(),AngWeights])
# define the threshold scheme to pass to the lanweber solver
thresh = logcooling(thrparams[0],thrparams[1],ThrWeights=ThrWeights)
# define the solver to use
solver = GenThreshLandweber(solverparams[0],solverparams[1],thresh=thresh)
# run the interpolation
x = solver.solve(A, data)
# return solution in the transform domain if wanted
if coutput:
    x.setName(os.path.abspath(coutput))
# compute solution in the ( }t,x\mathrm{ ) domain
final = (C.adj() * x)
# return solution in the ( }t,x\mathrm{ ) domain
final.setName(output)
\# compute solution in the \((t, x)\) domain
final \(=\left(C . a d j()^{*} x\right)\)
\# return solution in the \((t, x)\) domain
final.setName(output)
```

 def main(data, mask, output,
 surf_k="4,4,3,2,1", surf_pyr=5, angconst=[90,90], coutput=None,
 thrparams \(=[.01, .99]\), solverparams=[10,5]):
 \# define surfacelet matrix (analysis/decomposition)
C = surf(data.getSpace(),K=surf_k,Pyr_Level=surf_pyr)
\# define thresholding weights as norms of columns of surfacelet \# synthesis matrix
ThrWeights $=$ (.norm()
\# define angular constraint in the curvelet domain
AngWeights = C.minvelconst(ang=angconst)
\# define picking operator
$P=$ pickingoper(data.getSpace(),mask)
\# define global operator
$\mathrm{A}=$ CompoundOperator ([P,C.adj(),AngWeights])
\# define the threshold scheme to pass to the lanweber solver thresh $=$ logcooling(thrparams[0],thrparams[1],ThrWeights=ThrWeights)
\# define the solver to use
solver $=$ GenThreshLandweber(solverparams[0], solverparams[1], thresh=thresh)
\# run the interpolation
$x=$ solver.solve(A, data)
\# return solution in the transform domain if wanted
if coutput:
x.setName(os.path.abspath(coutput))
\# compute solution in the (t, x) domain
final $=\left(C . a d j()^{*} x\right)$
\# return solution in the (t, x) domain
final. setName(output)

Conclusions

\square Wavefield reconstruction
\square Irregular subsampling is key!

- Physical domain restriction
\square Curvelets SNR: higher | Surfacelets SNR: lower
- Frequency domain restriction
- Curvelets SNR: Iower | Surfacelets SNR: higher
\square Bayesian wavefield separation
- Curvelets SNR: lower | Surfacelets SNR: higher

Acknowledgments

\square This presentation was carried out as part of the SINBAD project with financial support, secured through ITF, from the following organizations: BG, BP, Chevron, ExxonMobil, and Shell. SINBAD is part of the collaborative research \& development (CRD) grant number 334810-05 funded by the Natural Science and Engineering Research Council (NSERC).

