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Outline
 Wavefield reconstruction

 physical domain restriction
 frequency domain restriction

 Wavefield separation
 primary-multiple separation
 Bayesian perspective 



Signal Recovery
 Forward model

 Analysis / Synthesis operators

 Inverse problem:               where

y = RMf0 + n

S, SH

f̃ = SH x̃

x̃ = arg min
x
‖x‖1 such that ‖y −RMSH

︸ ︷︷ ︸
A

x‖2 ≤ ε



Solver
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Figure 3: Block-diagram of the experiment performed

Solver for !1-regularization minimization

Recently an algorithm has been proposed by (5) to solve Eq. (3). The solver is based
on cooling method optimization and an iterative thresholding algorithm. The cooling
method aims at finding the optimal multiplier λ∗ for L(x, λ) := λ‖x‖1+‖Ax−y‖2

2−ε2,
the Lagrangian function of Equation (3), such that the residual r := ‖Ax− y‖2 ≤ ε.
The algorithm is as follows

x0 := initial guess
λ0 := initial Lagrange multiplier
while r > ε

minx L(x, λk)
λk+1 = αk λk with 0 < αk < 1

end while.

The critical part of this algorithm is the minimization of L(x, λk) done by the
iterative thresholding algorithm presented in (3). At each sub-iteration, evaluation of

xi+1 = Sλk

(
xi + AH(y −Axi)

)
(5)
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with
Sλk

(x) := sign(x) · max(|x|− λk, 0) (6)

yields an approximate estimate for x which converges to the solution of the sub prob-
lem for a large enough number of iterations. In practice, one only needs to approxi-
mately solve each sub problem, which significantly accelerates the overall procedure.

RESULTS

Synthetic dataset

In this section we demonstrate the method described in the previous section on a syn-
thetic dataset. Figure 4(a) shows the full model in the physical domain and Figure
4(b) shows the Fourier spectrum of that dataset.

(a) (b)

Figure 4: (a) Model in physical domain; (b) Fourier spectra of (a)

Next we apply the restriction operation to the model to generate the data. We sub
sample the frequency domain, and throw away 60 percent of the frequency content
to get the data. The data in in the physical domain and in the frequency domain in
shown in Figures 5(a) and 5(b) respectivly.

Curvelet recovery

To solve the optimization problem presented in Eq. (3) we limit ourselves to 200
iterations - 40 updates of the Lagrange multiplier and 5 sub-iterations (evaluation
of xi+1 in Eq. (5)). The curvelet recovery result, the frequency spectrum and the
difference between the original signal and the recovered result is presented in Figure
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Signal Recovery - frequency domain 
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Signal Recovery - frequency domain 
restriction



Signal Recovery - frequency domain 
restriction



Curvelets Surfacelets

Signal Recovery - frequency domain 
restriction



The importance of  irregular 
subsampling
 regular subsampling example



Primary-Multiple separation
Bayesian Perspective

Pw :






x̃ = arg minx λ1‖x1‖1,w1 + λ2‖x2‖1,w2+
‖Ax2 − b2‖2

2 + η‖A(x1 + x2)− b‖2
2

s̃1 = Ax̃1 and s̃2 = Ax̃2.

xn+1
1 = Tλ1w1

2η

[
AT b2 −AT Axn

2 + AT b1 −AT Axn
1 + xn

1

]

xn+1
2 = T λ2w2

2(1+η)

[
AT b2 −AT Axn

2 + xn
2 +

η

η + 1
(
AT b1 −AT Axn

1

)]

(total data)

(predicted multiples)

(predicted primaries)

b = s1 + s2 + n

b2 = Ax2 + n2

b1 = Ax1 + n1 curv/surf coefficients of multiples

curv/surf coefficients of primaries

inverse  curv/surf transform

x1

x2

A

(Saab et al.,2007)

solver

inverse problem

forward model



Primary-Multiple separation
Bayesian Perspective



Summary

Curvelets
    SNR

Surfacelets
     SNR

Physical
   Restriction

6.4 4.2

Frequency 
Restriction

5.4 6.8

PMS Bayesian 11.6 12.2



SLIMpy note
 Interchangeability between curvelet / surfacelet operators is simple! 



Conclusions 
 Wavefield reconstruction
 Irregular subsampling is key!

 Physical domain restriction
 Curvelets SNR: higher  |  Surfacelets SNR: lower

 Frequency domain restriction
 Curvelets SNR: lower   |  Surfacelets SNR: higher

 Bayesian wavefield separation
 Curvelets SNR: lower   |  Surfacelets SNR: higher
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