Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2018 SINBAD consortium - SLIM group @ The University of British Columbia.

Applications of Curvelets/ Surfacelets to seismic data processing

Evgeniy Lebed

Outline

- Wavefield reconstruction
 - physical domain restriction
 - frequency domain restriction
- Wavefield separation
 - primary-multiple separation
 - Bayesian perspective

Forward model

$$y = RMf_0 + n$$

Analysis / Synthesis operators

$$S, S^H$$

□ Inverse problem: $\tilde{f} = S^H \tilde{x}$ where

 $\tilde{x} = \arg\min_{x} \|x\|_1$ such that $\|y - \underbrace{RMS^H}_{A} x\|_2 \le \epsilon$

Solver

 $\mathbf{x}_0 := \text{initial guess}$ $\lambda_0 :=$ initial Lagrange multiplier while $\mathbf{r} > \epsilon$ $\{\min_{\mathbf{x}} \mathcal{L}(\mathbf{x}, \lambda_k)\}$ $\lambda_{k+1} = \alpha_k \lambda_k$ with $0 < \alpha_k < 1$ end while. $\mathbf{x}_{i+1} = \mathcal{S}_{\lambda_k} \left(\mathbf{x}_i + \mathbf{A}^H (\mathbf{y} - \mathbf{A}\mathbf{x}_i) \right)$ $\mathcal{S}_{\lambda_k}(x) := \operatorname{sign}(x) \cdot \max(|x| - \lambda_k, 0)$

Signal Recovery - physical domain restriction

SLIM Seismic Laboratory for Imaging and Modeling

Signal Recovery - physical domain restriction

Recovered Signal

Surfacelets

Recovered Signal

Trace #

150

200

250

300

Curvelets

Data in x-t domain

The importance of irregular subsampling

regular subsampling example

Recovered Signal

Primary-Multiple separation Bayesian Perspective

forward model

$\mathbf{b} = \mathbf{s}_1 + \mathbf{s}_2 + \mathbf{n}$	(total data)	\mathbf{x}_1	curv/surf coefficients of primaries
$\mathbf{b}_1 = \mathbf{A}\mathbf{x}_1 + \mathbf{n}_1$	(predicted primaries)	\mathbf{x}_2	curv/surf coefficients of multiples
$\mathbf{b}_2 = \mathbf{A}\mathbf{x}_2 + \mathbf{n}_2$	(predicted multiples)	\mathbf{A}	inverse curv/surf transform

inverse problem $\begin{cases} \tilde{\mathbf{x}} = \arg\min_{\mathbf{x}} \lambda_1 \|\mathbf{x}_1\|_{1,\mathbf{W}_1} + \lambda_2 \|\mathbf{x}_2\|_{1,\mathbf{W}_2} + \\ \|\mathbf{A}\mathbf{x}_2 - \mathbf{b}_2\|_2^2 + \eta \|\mathbf{A}(\mathbf{x}_1 + \mathbf{x}_2) - \mathbf{b}\|_2^2 \\ \tilde{\mathbf{s}}_1 = \mathbf{A}\tilde{\mathbf{x}}_1 \quad \text{and} \quad \tilde{\mathbf{s}}_2 = \mathbf{A}\tilde{\mathbf{x}}_2. \end{cases}$

solver $\begin{aligned} \mathbf{x}_{1}^{n+1} &= \mathbf{T}_{\frac{\lambda_{1}\mathbf{W}_{1}}{2\eta}} \left[\mathbf{A}^{T}\mathbf{b}_{2} - \mathbf{A}^{T}\mathbf{A}\mathbf{x}_{2}^{n} + \mathbf{A}^{T}\mathbf{b}_{1} - \mathbf{A}^{T}\mathbf{A}\mathbf{x}_{1}^{n} + \mathbf{x}_{1}^{n} \right] \\ \mathbf{x}_{2}^{n+1} &= \mathbf{T}_{\frac{\lambda_{2}\mathbf{W}_{2}}{2(1+\eta)}} \left[\mathbf{A}^{T}\mathbf{b}_{2} - \mathbf{A}^{T}\mathbf{A}\mathbf{x}_{2}^{n} + \mathbf{x}_{2}^{n} + \frac{\eta}{\eta+1} \left(\mathbf{A}^{T}\mathbf{b}_{1} - \mathbf{A}^{T}\mathbf{A}\mathbf{x}_{1}^{n} \right) \right] \end{aligned}$

(Saab et al., 2007

Primary-Multiple separation Bayesian Perspective

Seismic Laboratory for Imaging and Modeling

Summary

	Curvelets SNR	Surfacelets SNR
Physical Restriction	6.4	4.2
Frequency Restriction	5.4	6.8
PMS Bayesian	11.6	12.2

SLIMpy note

Interchangeability between curvelet / surfacelet operators is simple!

```
def main( data, mask, output,
                                                                                    def main( data, mask, output,
         transparams=[4,16,1], angconst=[90,90], coutput=None,
                                                                                              surf_k="4,4,3,2,1", surf_pyr=5, angconst=[90,90], coutput=None,
         thrparams=[.01,.99], solverparams=[10,5] ):
                                                                                              thrparams=[.01,.99], solverparams=[10,5]):
    # define curvelet matrix (analysis/decomposition)
                                                                                        # define surfacelet matrix (analysis/decomposition)
   C = fdct2(data.getSpace(), *transparams)
                                                                                       C = surf(data.getSpace(),K=surf_k,Pyr_Level=surf_pyr)
    # define thresholding weights as norms of columns of curvelet
                                                                                        # define thresholding weights as norms of columns of surfacelet
    # synthesis matrix
                                                                                        # synthesis matrix
    ThrWeights = C.norm()
                                                                                        ThrWeights = C.norm()
    # define angular constraint in the curvelet domain
                                                                                        # define angular constraint in the curvelet domain
    AngWeights = C.minvelconst(ang=angconst)
                                                                                        AngWeights = C.minvelconst(ang=angconst)
    # define picking operator
                                                                                        # define picking operator
    P = pickingoper(data.getSpace(),mask)
                                                                                        P = pickingoper(data.getSpace(),mask)
    # define global operator
                                                                                        # define global operator
   A = CompoundOperator([P,C.adj(),AngWeights])
                                                                                        A = CompoundOperator([P,C.adj(),AngWeights])
    # define the threshold scheme to pass to the lanweber solver
                                                                                        # define the threshold scheme to pass to the lanweber solver
    thresh = logcooling(thrparams[0],thrparams[1],ThrWeights=ThrWeights)
                                                                                        thresh = logcooling(thrparams[0],thrparams[1],ThrWeights=ThrWeights)
    # define the solver to use
                                                                                        # define the solver to use
    solver = GenThreshLandweber(solverparams[0], solverparams[1], thresh=thresh)
                                                                                        solver = GenThreshLandweber(solverparams[0], solverparams[1], thresh=thresh)
    # run the interpolation
                                                                                        # run the interpolation
   x = solver.solve(A, data)
                                                                                        x = solver.solve(A,data)
    # return solution in the transform domain if wanted
                                                                                        # return solution in the transform domain if wanted
    if coutput:
                                                                                        if coutput:
       x.setName(os.path.abspath(coutput))
                                                                                            x.setName(os.path.abspath(coutput))
    # compute solution in the (t,x) domain
                                                                                        # compute solution in the (t,x) domain
    final = (C.adj() * x)
                                                                                        final = (C.adj() * x)
    # return solution in the (t,x) domain
                                                                                        # return solution in the (t,x) domain
    final.setName(output)
                                                                                        final.setName(output)
    End()
                                                                                        End()
```

Conclusions

- Wavefield reconstruction
- Irregular subsampling is key!
 - Physical domain restriction
 - Curvelets SNR: higher | Surfacelets SNR: lower
 - Frequency domain restriction
 - Curvelets SNR: lower | Surfacelets SNR: higher
- Bayesian wavefield separation
 - Curvelets SNR: lower | Surfacelets SNR: higher

Acknowledgments

This presentation was carried out as part of the SINBAD project with financial support, secured through ITF, from the following organizations: BG, BP, Chevron, ExxonMobil, and Shell. SINBAD is part of the collaborative research & development (CRD) grant number 334810-05 funded by the Natural Science and Engineering Research Council (NSERC).

