Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2018 SINBAD consortium - SLIM group @ The University of British Columbia.

Curvelet Denoising

Vishal Kumar Department of Earth & Ocean Sciences University of British Columbia

Forward Problem

y = m + n $y \rightarrow Noisy Signal$ $m \rightarrow True signal$ $n \rightarrow Noise$

Denoising as an Optimization problem

$$\begin{split} \min_{x} & \|\mathbf{x}\|_{1} \\ s.t & \|\mathbf{y} - \mathbf{C}^{\mathsf{T}} \mathbf{x}\|_{2} \le \varepsilon \\ & \stackrel{\wedge}{\mathbf{m}} = \mathbf{C}^{\mathsf{T}} \stackrel{\wedge}{\mathbf{x}} \\ & \mathbf{C}^{\mathsf{T}} \to \text{Curvelet Synthesis Operator} \end{split}$$

 $\epsilon^2 = \sigma^2 [N + 2\sqrt{2N}]~$ (Chi-square misfit)

The Curvelet Transform

Representations for seismic data

Transform	Underlying assumption
FK	plane waves
linear/parabolic Radon transform	linear/parabolic events
wavelet transform	point-like events (1D singularities)
curvelet transform	curve-like events (2D singularities)

Properties curvelet transform:

multiscale: tiling of the FK domain into dyadic coronae

multi-directional: coronae sub-partitioned into angular wedges, # of angle doubles every other scale

anisotropic: parabolic scaling principle

Rapid decay space

Strictly localized in Fourier

Frame with moderate redundancy (8 X in 2-D and 24 X in 3-D)

2-D curvelets

Oscillatory in one direction and smooth in the others! Obey parabolic scaling relation $\ \ length \approx width^2$

Curvelet tiling & seismic data

of angles doubles every other scale doubling!

Wavefront detection

3-D curvelets

Curvelets are oscillatory in one direction and smooth in the others.

Application to synthetic data (2D)

Original Data

Original Data

Application on Real post-stack data

Acquisition Parameters

Parameter	Value
Number of vibrators	4 or 5
Number of sweeps	4 or 5
Sweep frequencies	10 - 80 Hz (linear)
Sample rate	4 ms
Sweeplength	20 s
Record length	32 s (uncorrelated)
Number of channels/record	404
Receiver station spacing	60 m
Number of geophones	9 per station
Vibrator point spacing	90 m
Geophone frequency	10 Hz
Nominal	134
Intruments	Sercel 388 (24 bit)

Problems!

- Very low SNR in deep crustal data
- Careful selection of noise level (\mathcal{E}) is required.

• In our case, We choose the maximum noise level for which the difference between data and estimated model looks like incoherent noise.

Difference

Note: The difference looks like incoherent noise !

We didn't remove any coherent feature...Hurrah!

3D Curvelet Denoising

Sort the prestack data into Shot-Receiver-Time Volume

$$\begin{split} \min_{x} & \|\mathbf{x}\|_{1} \\ s.t & \|\mathbf{y} - \mathbf{C}^{\mathsf{T}} \mathbf{x}\|_{2} \le \varepsilon \\ & \stackrel{\wedge}{\mathbf{m}} = \mathbf{C}^{\mathsf{T}} \stackrel{\wedge}{\mathbf{x}} \\ & \mathbf{C}^{\mathsf{T}} \to 3\mathbf{D} - \text{Curvelet Synthesis Operator} \\ & \epsilon^{2} = \sigma^{2} [N + 2\sqrt{2N}] \end{split}$$

Future work

•For the Prestack data we can distribute each shot gather on different CPU's and solve as an embarrassingly parallel problem.

•Create overlaping windows as three dimensional cubes with tapering such that it has partition of unity and solve on parallel CPU's.

•Careful angular and depth weighting would improve the results

Acknowledgments

S. Fomel, P. Sava, and the other developers of Madagascar (rsf.sourceforge.net)

This work was carried out as part of the SINBAD project with financial support, secured through ITF, from the following organizations: BG, BP, Chevron, ExxonMobil, and Shell. SINBAD is part of the collaborative research & development (CRD) grant number 334810-05 funded by the Natural Science and Engineering Research Council (NSERC).

Thank You! (Merci Beaucoup)

