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Motivation
Migration does not recover the amplitudes.

Least-squares migration is computationally unfeasible.

Lacks robustness w.r.t. noise.

Existing scaling methods
 do not always correct for the order (1 - 2D) of the 

Hessian (see also Symes ‘07)
 assume that there are no conflicting dips (conormal)
 do not invert the scaling robustly

Our approach exploits
 invariance of curvelets under the Hessian
 the smoothness of the symbol of the Hessian
 curvelet-domain sparsity



Existing scaling methods
Methods are based on a  diagonal approximation of   .

 Illumination-based normalization (Rickett ‘02)
 Amplitude preserved migration (Plessix & Mulder ‘04)
 Amplitude corrections (Guitton ‘04)
 Amplitude scaling (Symes ‘07)

We are interested in an ‘Operator and image adaptive’ 
scaling method which

 estimates the action of    from a reference vector 
close to the actual image

 assumes a smooth symbol of     in space and angle
 does not require the reflectors to be conormal <=> 

allows for conflicting dips
 stably inverts the diagonal 

Ψ

Ψ

Ψ



Seismic imaging 
problem



Forward problem

second order hyperbolic PDE
interested in the singularities of

F [c]u :=

(
1

c2(x)
· ∂2

∂t2
−

d∑

i=1

∂2

∂x2
1

)
u(x, t) = f(x, t)

m = c− c̄



Inverse problem
Minimization:

After linearization (Born app.) forward model with noise:

Conventional imaging:

       is prohibitively expensive to invert!

m̃ = arg min
m

‖d− F [m]‖2
2

d(xs, xr, t) =
(
Km

)
(xs, xr, t) + n(xs, xr, t)

(
KT d

)
(x) =

(
KT Km

)
(x) +

(
KT n

)
(x)

y(x) =
(
Ψm

)
(x) + e(x)

Ψ



Normal operator
[Stolk 2002, ten Kroode 1997, de Hoop 2000, 2003]

Alternative to expensive least-squares 
migration.
In high-frequency limit     is a PsDO

 pseudolocal
 singularities are preserved
 High-frequency argument

Corresponds to a spatially-varying dip filter 
after appropriate preconditioning.

Ψ
(
Ψf

)
(x) =

∫

Rd
e−ix·ξa(x, ξ)f̂(ξ)dξ



Our approach
Formulate as a sparsity- and continuity promoting 
optimization problem

Based on a diagonal approximation

with r the reference vector.
Estimate        using smoothness of the symbol. 

P :





x̃ = minx J(x) subject to ‖y −Ax‖2 ≤ ε

m̃ =
(
AT

)†
x̃,

AAT r ! Ψr with A = CT D1/2
Ψ

D1/2
Ψ



Diagonal approximation 
of the Hessian



Existing scaling methods
Methods are based on a  diagonal approximation of   .

 Illumination-based normalization (Rickett ‘02)
 Amplitude preserved migration (Plessix & Mulder ‘04)
 Amplitude corrections (Guitton ‘04)
 Amplitude scaling (Symes ‘07)

We are interested in an ‘Operator and image adaptive’ 
scaling method which

 estimates the action of    from a reference vector 
close to the actual image

 assumes a smooth symbol of     in space and angle
 does not require the reflectors to be conormal <=> 

allows for conflicting dips
 stably inversion of the diagonal 

Ψ

Ψ

Ψ



Math
“Precondition” the linearized (Born) modeling 
operator

with

such that the normal equation is near unitary

with          . 

leading behavior for their composition, the normal operator Ψ, corresponds to that of an

order-one invertible elliptic PsDO .

To make this PsDOamenable to an approximation by curvelets, the following sub-

stitutions are made for the scattering operator and the model: K !→ K (−∆)−1/2 and

m !→ (−∆)1/2 m with ((−∆)αf)∧(ξ) = |ξ|2α · f̂(ξ). Alternatively, these operators can be

made zero-order by composing the data side with a 1/2-order fractional integration along

the time coordinate, i.e., K !→ ∂−1/2
t K (see e.g. 3). After these substitutions, the normal

operator Ψ becomes zero-order. Remark that these subsitutions are similar to the substi-

tution made in the WVD methods, where vaguelettes are introduced according the same

mappings. Before detailing the approximate diagonalization of the normal operator, we

first discuss the properties of continuous curvelets under this operator.

APPROXIMATION OF THE NORMAL OPERATOR

In this section, a diagonal approximation of the normal operator in the curvelet domain is

presented. Invariance properties of curvelets under the normal operator (see also Fig. 2)

are used. The approximation leads to a SVD-like decomposition of the normal operator

and makes large-scale seismic image recovery amenable to optimization. To understand our

approximation, we first list the important properties of continuous curvelets. An upper

bound for the L2-error of the diagonal approximation is discussed next, followed by the

diagonal decomposition of the normal operator and a method to numerically estimate the

diagonal from discrete implementations of the normal operator. We conclude this section

by discussing the empirical performance of the approximation on a synthetic data set.
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or
with

d = Km

y = KT Km

= Ψm
Ψ ≈ Id



Math cont’d

Lemma 1 Suppose a is in the symbol class S0
1,0, then, with C ′ some constant,

the following holds

‖(Ψ(x,D)− a(xν , ξν))ϕν‖L2(Rn
) ≤ C ′2−|ν|/2. (1)

In the high-frequency limit Ψ = Ψ(x,D)

• is a pseudodifferential operator of order 0

• has a homogeneous principal symbol a(x, ξ)

• acts as a nonstationary dip filter



Tiling the ξ space

~ 2

~ 2

j

j/2

µ!

In red, the essential frequency support of a curvelet φµ.
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Math cont’d

 accuracy improves for higher frequencies
 amenable for sparsity-promoting inversion

To approximate Ψ, define the sequence u := (uµ)µ∈M = a(xµ, ξµ).
Let DΨ be the diagonal matrix with entries given by u, i.e.,

DΨ := diag
(
u
)
.

Bound for accuracy of the diagonal approximation

Ψ ! CT DΨC.

Theorem 1 The following estimate for the error holds

‖(Ψ(x,D)− CT DΨC)ϕµ‖L2(Rn
) ≤ C ′′2−|µ|/2,

where C ′′ is a constant depending on Ψ.



Math cont’d

Allows for an“eigenfunction like” decomposition

(
Ψϕµ

)
(x) !

(
CT DΨCϕµ

)
(x)

=
(
AAT ϕµ

)
(x)

with A :=
√

DΨC and AT := CT
√

DΨ.



y(x) =
(
Ψm

)
(x) + e(x)

!
(
AAT m

)
(x) + e(x)

= Ax0 + e,

Approximation
normal operator

Wavelet-vagulette like
Amenable to nonlinear recovery
Remains to estimate

 scaling coefficients / matched filter 
coefficients

 use a reference image 



Curvelet-domain 
matched filtering



Matched filtering
Adapt current scaling methodology to phase space.

Exploit smoothness of the symbol valid for smooth 
velocity models.

Use a reference image sufficiently close to the actual 
reflectivity.
Generate ‘data’

with 
b = Ψr

Ψ = KT K
K = discretized linearized Born modeling operator
r = reference vector



Find ‘positive-entry’ scaling vector u such that

by solving the linear least-squares problem

with

ũ = arg minu
1
2
‖b−Pu‖2

2 + η2‖Lu‖2
2

Original formulation
matched filtering

P := CT diag(Cr)

b ≈ CT DΨCr with DΨ = diag(u)



Impose smoothness in phase space

L = [D1 D2 Dθ]

extended to include q different reference vectors by making the following substitutions

b !→ [b1 · · · bq]T and P !→ [P1 · · · Pq]T with the “data” vector and “modeling” matrix

defined by the different reference vectors r1, . . . , rq.

Calculate: b = Ψr and v = Cr.

Set: η = ηmin;

while ∃ (ũµ)µ∈M < 0 do

Solve

ũ = arg minu
1
2‖b−Pu‖22 + η2‖Lu‖22

Increase the Lagrange multiplier

λ = η + ∆η

end while

Table 1: Estimation of the diagonal via regularized least-squares inversion. The Lagrange

multiplier is increased up to the point that all entries in the vector for the diagonal are

positive.

Given an appropriate reference vector r, the diagonal estimation procedure is as follows.

First, calculate the action of the normal operator on the reference vector and the curvelet

transform of this vector. Next we set the Lagrange multiplier to ηmin and solve Eq. (17)

for this η by inverting the system of equations in Eq. (18). The η is increased by ∆η until

all diagonal elements of ũ are nonnegative. Even though we do not have a proof for the

connvergence of this method, in practice increasing the η leads to positive entries.

The presented method for the estimation for the diagonal can be seen as an extension

to the method of illumination-based normalization (33), dating back to ideas by Symes and

19

Original formulation
matched filtering



Observations
Computation of matched-filter coefficients expensive.

 no ‘real’ positivity constraint while       
            is a positive definite matrix

In addition, our approach does not accommodate 
 precise phase-space smoothness
 flexibility to handle black-box implementations
 migration operator preconditioning
 incomplete data
 seismic source function

KT K



New formulation
matched filtering

Find positive-entry scaling vector u such that

Translates into minimizing

involving the following system of equations 

with the gradient

b ≈ CT DΨCr with DΨ = diag(u)

d = Fγw

Jγ(z) = 1
2‖d− Fγ exp(z)‖2

2 with ũ = exp(z̃)

or

gradJ(z) = diag{ez}
[
FT (

Fez − d
)]

[
b
0

]
=

[
CT diag{Cr}

γL

]
w



Matched filtering
Impose smoothness in phase space through

Positivity of symbol is assured.

L =
[
DT

1 DT
2 DT

θ

]T

East 
quadrant

West 
quadrant

North 
quadrant

South 
quadrant

16 angles/

8 angles/

x1

x2

θ

Fine 

coarse

D1

D2

Dθ



Example



Example



Example



Matched filtering
new parameterization

Problems:
 computation of the matched-filter coefficients expensive 

(# of unknows = length of curvelet vector)
 Limited smoothness

Parameterize phase space
 introduce low-dimensional parameterization phase space
 use B-splines 
 define the scaling vector in terms of a spline synthesis

with for each scale

(x, y, θ)

B = [B1 B2 Bθ]

u = Bα



Matched filtering
new parameterization

Find positive-entry scaling vector u such that

Minimize

 with

 assures positivity (Vogel ’02)
 smoothness depends on # of splines and regularization

With the gradient (Vogel ‘02)

b ≈ CT DΨCr with DΨ = diag(u)

Jγ(α) =
1

2
‖b− F exp(Bα)‖2

2 +
1

2
γ‖α‖2

2

gradJ(α) = diag{exp(Bα)}
[(

FTF + γI
)
exp(Bz)− FTb

]

F = CHdiag(Cr) and ũ = exp(Bα)



Spline
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Spline

Lambda=0  perc=3%
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Spline

Lambda=0  perc=30%
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No spline

Lambda=0.01
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Lambda=0.05

No spline
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Lambda=0.07

No spline
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Observations
Precise smoothness control 

 # of nodes
 size of the regularization parameter

Dimensionality reduction should lead to faster 
convergence.

More work to study the performance.



Extensions



Black-box utility
Approach relied on zero-order operator.

 known when operators are understood exactly
 corrected for in the “migration operator” wavelet

Introduce additional matched filter by ‘generating data’

and minimize

Redefine     

or equivalently replace the source function 

f = KKT d

φ !→ FH diag(h̃)Fφ

K !→ FH diag(h̃)FK and h̃ = exp(z̃)

Jη(z) =
1
2
‖f −FH diag(Fd) exp(2z)‖2

2 +
1
2
η‖Lz‖2

2



Migration
 preconditioning

Forward model:

Ideal right preconditioning

yielding

d = Km + n

K !→ K
(
KT K

)−1/2

m !→
(
KT K

)1/2m

KT K = I



Migration
 preconditioning

Approximate with curvelet preconditioning.
Define

Such that

by virtue of

 calculate the diagonal approximation from reference 
vector and demigrated-migrated reference vector

 estimate the inverse square root directly

AT A ≈ I

A := KCT D− 1
2

Ψ

x := D
1
2
ΨCm

KT K ! CHDΨC



Migration
 preconditioning

Minimize

with

yielding

Jγ(α) =
1

2
‖r− F exp(2 · Bα)‖2

2 +
1

2
γ‖α‖2

2

F = CHdiag(Cb) and ũ = exp(Bα)

D− 1
2

ψ = diag(ũ)



Seismic data recovery
Migration operator is expensive but the ultimate 
interpolator.
Solve

 recovery of data and image from incomplete data
 compression of the operator (e.g. subset of shots 

or temporal frequencies)
 migration will enhance the recovery 

 increased incoherence 
 additional focusing

P :






y = Rd
x̃ = minx ‖x‖1 subject to ‖y −Ax‖2 ≤ ε

A := RKCT

d̃ = KCT x̃
x̃ = CT x̃



Conclusions & future plans
Low-dimensional spline offers more control

Formulation remains to be tested 
 for migration-amplitude recovery
 primary-multiple separation

Extensions
 will be reported on during next meeting

Migration based wavefield recovery seems natural but 
is not the only choice.
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