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Motivation

Migration does not recover the amplitudes.
Least-squares migration is computationally unfeasible.
Lacks robustness w.r.t. noise.

Existing scaling methods

®= do not always correct for the order (1 - 2D) of the
Hessian (see also Symes '07)

= assume that there are no conflicting dips (conormal)
® do not invert the scaling robustly

Our approach exploits
" invariance of curvelets under the Hessian
= the smoothness of the symbol of the Hessian
= curvelet-domain sparsity
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Existing scaling methods

Methods are based on a diagonal approximation of .
= [llumination-based normalization (Rickett '02)
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e preserved migration (Plessix & Mulder '04)
e corrections (Guitton '04)
e scaling (Symes '07)

We are interested in an '‘Operator and image adaptive’
scaling method which

= estimates the action of W from a reference vector
close to the actual image

" assumes a smooth symbol of JJ in space and angle

= does not require the reflectors to be conormal <=>
allows for conflicting dips

= stably inverts the diagonal






Forward problem

second order hyperbolic PDE
interested in the singularities of

M — C — C




Inverse problem

Minimization:

m = argmin ||d — F[m]||3

After linearization (Born app.) forward model with noise:

d(zs, xr,t) = (Km)(zs, zp, t) + n(xs, Tr, t)
Conventional imaging:
(K'd)(z) = (K"Km)(z)+ (K" n)(z)
y(z) = (¥m)(z)+e(x)

U is prohibitively expensive to invert!



Normal operator

[Stolk 2002, ten Kroode 1997, de Hoop 2000, 2003]

Alternative to expensive least-squares
migration.

In high-frequency limit W is a PsDO

(Wf)(x) = /R (2, €)f(€)de

= pseudolocal
® singularities are preserved
= High-frequency argument

Corresponds to a spatially-varying dip filter
after appropriate preconditioning.




Our approach

Formulate as a sparsity- and continuity promoting
optimization problem

X = minx J(x) subject to ||y — Ax|ls <e¢
T
fh = (AT) %,

P :
Based on a diagonal approximation
AATr ~ ¥r with A = CTD}/?

with r the reference vector.
Estimate D}I,/Q using smoothness of the symbol.
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Math

"Precondition” the linearized (Born) modeling
operator

d=Km
with

K — K(-A)Y2  or K — 8;1/2K
m— (—A)Y2m  With  (FA)*HMNE) = [€2 - £(©).

such that the normal equation is near unitary
y = K'Km

= Um
with U ~ Jd.




Math cont’d
In the high-frequency limit ¥ = ¥(z, D)

e is a pseudodifferential operator of order O

e has a homogeneous principal symbol a(x, §)

e acts as a nonstationary dip filter

Lemma 1 Suppose a is in the symbol class S(io, then, with C' some constant,
the following holds




Tiling the £ space




Math cont’d

I'o approximate U, define the sequence u := (u,),em = a(z,, &)
Let Dy be the diagonal matrix with entries given by u, i.e.,

D\I; .= dlag( )

Bound for accuracy of the diagonal approximation
U~ CiTDyC.
Theorem 1 The following estimate for the error holds
(¥ (z, D) —
where C" is a constant depending on V.

= accuracy improves for higher frequencies
® amenable for sparsity-promoting inversion




Math cont’d

Allows for an“eigenfunction like” decomposition

(‘Ij@pu) () = (CTD‘PCSOM) ()

— (AATSOM) (z)

with A := v/Dg¢C and Al := C1/Dy.




Approximation

normal operator

y() (Im)(x) + e(x)
~ (AA"m)(z) + e(x)

— ACIZ() —|—6,

Wavelet-vaqgulette like
Amenable to nonlinear recovery

Remains to estimate

= scaling coefficients / matched filter
coefficients

® use a reference image







Matched filtering

Adapt current scaling methodology to phase space.

Exploit smoothness of the symbol valid for smooth
velocity models.

Use a reference image sufficiently close to the actual
reflectivity.

Generate ‘data’

with
K'K

discretized linearized Born modeling operator

reference vector




Original formulation

matched filtering
Find ‘positive-entry’ scaling vector u such that

b~ C'DyCr with Dy = diag(u)

by solving the linear least-squares problem

8 .1
i = argmin - {|b — Pulf; + 7| Lulf;

P := C' diag(Cr)




Original formulation

matched filtering

Impose smoothness in phase space

L=[D; D, Dy

Calculate: b = ¥r and v = Cr.

Set: 11 = Nmin;

while 3 (u,),em < 0 do
Solve
i = arg miny 3(/b — Pul|3 + »*|[Lu|j3
Increase the Lagrange multiplier

A=n+ An

end while




Observations

Computation of matched-filter coefficients expensive.
®" no ‘real’ positivity constraint while
» KIK isa positive definite matrix

In addition, our approach does not accommodate
precise phase-space smoothness
flexibility to handle black-box implementations
migration operator preconditioning
incomplete data
seismic source function




New formulation

matched filtering
Find positive-entry scaling vector u such that

b~ C'DyCr with Dy = diag(u)

Translates into minimizing

J,(z) = 1|d — F,exp(z)|2 with @ = exp()

involving the following system of equations
b| _ [C'diag{Cr}

— d=F
_O _ L A or v W

with the gradient
eradJ(z) = diag{e?} [FT (Fe* —d)]




Matched filteri

Impose smoothness in phase space t

L — [DlT D] Dj

Positivity of symbol is assured.
D,

X1 North
—_— quadrant

ng
nrough
T

D> x, l coarse

West
quadrant

East
quadrant

South
quadrant




Example

Offset (m)
500 1000 1500 Offset (m)

1000 1500

—~
g o
— O
'_C:LQ
-
Q,
)
A

Reflectivity




Example

Offset (m) Offset (m)
1000 1500 800 1000 1200 1400 1600

o
o
a
(@)
(]
~<t
E
(@)
28
(o
[0}
Ao
o
Q
(@]
o
(@)
~

Depth (m)
1000 800 600 400 200

Reflectivity Migrated Image

Offset (m) Offset (m)
600 800 1000 1200 1400 1600 800 1000 1200 1400 1600

Depth (m)

1000 800 600 400 200
Depth (m)

1000 800 600 400 200

g—
' 4
B

Remigrated Approximate Remigrated ®SLI M

Seismic Laboratory for
Imaging and Modeling




Example

Offset (m) Offset (m)
800 1000 1200 1400 1600 600 800 1000 1200 1400 1860

o
o
a2
o
o
B
N—
)
23
Q,
O
Ao
o
o0)
o
)
o
~—

Migrated Image Enhanced Image

Fl\sLIm

Seismic Laboratory for
Imaging and Modeling




Matched filtering

new parameterization

Problems:

= computation of the matched-filter coefficients expensive
(# of unknows = length of curvelet vector)

® Limited smoothness

Parameterize phase space (z,vy,0)
" introduce low-dimensional parameterization phase space
® use B-splines
= define the scaling vector in terms of a spline synthesis

u = B«
with for each scale

B=|B: B:; By]




Matched filtering

new parameterization

Find positive-entry scaling vector u such that
b~ C'DyCr with Dy = diag(u)

Minimize

1 1
T,(@) = 5 b~ FexpBa) + 5 7er

= with
F = C"”diag(Cr) and & = exp(Ba)
® assures positivity (Vogel '02)
= smoothness depends on # of splines and regularization
With the gradient (Vogel '02)

grad.J(a) = diag{exp(Ba)} | (F'F 4 ~I) exp(Bz) — F' b]
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Observations

Precise smoothness control
= # of nodes
= sjze of the regularization parameter

Dimensionality reduction should lead to faster
convergence.

More work to study the performance.







Black-box utility

Approach relied on zero-order operator.
= known when operators are understood exactly
= corrected for in the "migration operator” wavelet

Introduce additional matched filter by ‘generating data’

f=—KK'd
and minimize

1 , 1
To(z) = - |f — F* diag(Fd) exp(22) 3 + 5[ L

Redefine
K — F7 diag(h)FK and h = exp(z)
or equivalently replace the source function
¢ — F diag(h)F ¢




Migration
preconditioning

Forward model:

d=Km-+n

Ideal right preconditioning

—1/2

K — K(KTK)
m (KTK)l/Qm

yielding
K'K=1I




Migration
preconditioning

Approximate with curvelet preconditioning.
Define

Ty~ 32
A = KC' Dy

X = D\%Cm

Such that
ATA =1
by virtue of

KTK ~ CHD\I;C

= calculate the diagonal approximation from reference
vector and demigrated-migrated reference vector

= estimate the inverse square root directly




Migration
preconditioning
Minimize
1 2, 1 2
Jy(@) = 5l = Fexp(2- Ba)|l; + S7llel

with
F = C"diag(Cb) and & = exp(Ba)
yielding

1
2

D 2 = diag(u)

Y




Seismic data recovery

Migration operator is expensive but the ultimate
interpolator.

Solve
subject to [y — Ax|2 <€

®= recovery of data and image from incomplete data
= compression of the operator (e.g. subset of shots
or temporal frequencies)

" migration will enhance the recovery

increased incoherence
additional focusing




Conclusions & future plans

Low-dimensional spline offers more control

Formulation remains to be tested
®= for migration-amplitude recovery
" primary-multiple separation

Extensions
= will be reported on during next meeting

Migration based wavefield recovery seems natural but
is not the only choice.
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