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Motivation
“Holy grail” has been to find transforms that “near 
diagonalize” wavefield extrapolation operators

For smooth media curvelets “remain” near diagonal.
Efforts are made to correct for curvelet dispersion.

Problems:
 wavefield extrapolation operators difficult to compute 

in transformed domain
 complex media tend to fill the extrapolation matrix
 hampered by large constants

Propose a different approach ....
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Compressive
wavefield computations

Near diagonality corresponds to preservation of 
sparsity (Hart Smit’s original motivation)

Use this property to “smash” wavefield extrapolation & 
imaging operators

 compressively sample the solution & recover by 
 exploiting sparsity &
 “incoherence” between measurement basis & sparsity 

representations

Smashed operators correspond to operators that are
 restricted in angular frequencies
 restricted in eigenvalues
 etc. etc.



Our approach
 Consider a related, but simpler problem: shifting (or 

translating) signal

 operator is 
     is differential operator
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signal in space domain
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Compressive imaging
Seismic data is highly redundant.

Relies on redundancy to reduce SNR.

Based on multidimensional correlations of extrapolated 
wavefields.
Correlations are ‘poor man’s inverses.

Opens the possibility to leverage compressive sampling
 extend the focal  transform to include compressive 

sampling
 reduce the computational burden of computing the 

gradient in adjoint state methods



Tensor extension
of compressive 

sampling



Compressive sampling
Based on linear “forward” model

with

R = flat restriction matrix
M = measurement basis
SH = synthesis matrix

y = RMf0 (measured data)
f0 = original function
x0 = transform-domain representation.

y = RMf0

= RMSH
︸ ︷︷ ︸

A

x0



Tensor CS
“Wavefield deconvolution” at heart of

 focal transform
 imaging (prior to applying imaging conditions)

Can be formulated as a CS problem 

 for the focal transform 
 multiple right-hand sites
 R is a 2-D picking matrix

Special case of more general tensor formulation of CS 
for matrices ...

P = ∆PP0

Y = R∆PSH
︸ ︷︷ ︸

A

x0



Tensor CS
Use Kronecker product and the vector identity

yielding the “forward model” for CS

 so far we used M=Id
 possibility to measure & restrict more generally

Opens possibility to image compressively compute 
wavefields (CCW) .... 

UVW = Z
(WH ⊗U)vec(V) = vec(Z)

y =

A︷ ︸︸ ︷
(R1M1 ⊗R2M2)∆PCH vec(x0)

y = (R1M1 ⊗R2M2)vec(P)



y = RP(:)
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Compressive imaging



Seismic imaging
Current paradigm:

 based on adjoint state methods for the wave equation
 predominantly implemented in finite difference => 

reverse-time wave-equation migration
 most time spend on marching wavefields
 imaging done through multidimensional correlations

New developments
 implicit spectral methods for Helmholtz
 new preconditioners
 compressive sensing

Propose a new nonlinear paradigm ...



Compressive
seismic imaging

New paradigm: compressively
 forward propagate the source wavefield
 backward propagate the residual wavefield
 multidimensionally invert (“deconvolve”) the backward 

propagated wavefield from the forward propagated 
wavefield => image

Benefits from
 current preconditioners for Helmholtz
 reduced system size due to CS
 improved image through inversion
 intuitive divide-and-conquer

 compressive linear wavefield extrapolation
 nonlinear image recovery



Adjoint state
methods

Migration corresponds to the Jacobian of a PDE constraint 
optimization problem.
Forward model:

With observed data

Inverse problem

A[m]u = f

d = Du + n

min
u∈U ,m∈M

1
2
‖Du− d‖2

2 subject to A[m]u = f



Adjoint state
methods

Reformulate in unconstrained nonlinear LS problem

with

and the gradient = migrated image

involving for each shot the solution of

with

min
m∈M

1
2
‖F[m]− d‖2

2

F[m] = DA−1[m]f

r = DH(F[m]− d)

A[m]u = f and AH [m]v = r

∇J(m) = −#
(
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Compressed
adjoint state method

Replace observations by compressed observations:

Change representation forward model:

yielding the inverse problem

Compressed systems for R along source & receiver & omega

with residue

A[SHx]u = f

min
u∈Û ,x∈X

1
2
‖RMDu− y‖2

2 + α‖x‖1 subject to A[SHx]u = f

A[SHx]u = f and AH [SHx]v = r

r = −DHMHRH(RMDA−1[SHx]f︸ ︷︷ ︸
F[SHx]

−y)

y = RMDu



Compressed
adjoint state method

Opens the way to formulate ‘post-stack’ imaging as 

with descent updates on the l_1 ball

Special case of prestack imaging

min
x∈X

‖x‖1 s.t. diag
(
u
)
SHx = v

︸ ︷︷ ︸
Ax=y

xn+1 = Sα

(
xn + AH(

y − Axn
))

min
x∈X

‖x‖1 s.t.
(
RMU

)
SHx = RMV

︸ ︷︷ ︸
Ax=y



Conclusions
CS opens perspectives on compressing operators.

New field in scientific computing.

Next talks will are precursors of what to come ...
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