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Motivation

Seismic processing flows often require data-adaptive
matching

= matched-filtering in primary-multiple separation

= estimation of scaling in migration-amplitude recovery
Inadequate amplitude matching leads to

" remnant multiples & deterioration primary energy

Introduce two-stage approach
= adaptive curvelet-domain matching
= Bayes separation

Combination exploits smoothness and sparsity in phase
space ...




Motivation cont’d

Kinematics are generally well predicted.

Non-adaptive curvelet-domain separation adds
robustness.

Large errors in the location, dip and amplitude of the
predicted multiples remain a problem.

Present an adaptive method assuming
= successful removal of the global “seismic wavelet”
= slowly varying amplitude errors in phase space
" roughly correct kinematics

Design a technique that exploits the invariance of
curvelets under a certain class of operators.




Multiple prediction
SRME

SRME-multiple prediction
Ap — m'! )(s rt) = (APA ¥t o Ap)(s, r,t)

vector with the primaries
vector with predicted first-order multiples
F“block diag{ Ap}F (Kronecker products)

temporal Fourier transform

inverse wavelet.

In practlce,p — Ap, P — AP, with p the total data,
SO

m'Y) ~ PAp




Conventional SRME

Issues:
" multiples are predicted by a multidimensional convolution

= predicted multiples contain the “source-receiver directivity
& surface reflectivity” twice

® [imitation in acquisition and other unknown factors lead to
unknown mismatch between actual and predicted
multiples

Remedies:
= windowed matched filtering
" jiterative SRME
Problems:
= overfitting => loss of primary energy
" incomplete data => inaccurate high-order predictions




Multiple prediction
SRME

Matched filter

a = argmin ||[p — ax m'|;
a

vielding

P — é-*t fi’l(l)

block diag{a}

for each offset.




Problems

Assumes the filter to be stationary (diagonal in
Fourier space)

Wavelet changes as a function of (s,r,t).

Windowed matched-filtering techniques have been
proposed

= window sizes arbitrary
= under fit (remnant primary energy)
= over fit (removal of primary energy)

B no control over the variations of the estimated
filters amongst different windows

Propose a curvelet-domain matched filtering
approach.




Alternative approach

Replace

® aggressive windowed least-squares matching by global
matching.

" jterative SRME by single-iteration SRME.

Different steps:
= Single-term prediction with global matching

= Amplitude correction by our adaptive curvelet-domain
matched filter with phase-space smoothness control

® Curvelet-domain separation with sparsity promotion and
separation control




Traditional SRME

Global wavelet matched multiples

2

)
T
=
—
B,
s
<

Aol

0 0.2 014 0.6 0.8 1 1.2 14 16 1.8
Time (s)

-8 -6 -4 -2 O

Only global wavelet matching no curvelet matching

Imaging and Modeling



Traditional SRME
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Traditional SRME

SRME multiples
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Traditional SRME

SRME multiples
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Traditional SRME
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Smoothness penalty

Gamma=0.5
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Traditional SRME

SRME multiples
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Forward model

Linear model for amplitude mismatch:

B = [ e @b ) f(R)

B Pseudodifferential operator
b(x, k) the symbol

= gpatially-varying dip filter
® zero-order Pseudo
After discretization:

f = Bg

" linear operator
= f and g known
®" matrix B is full and not known ....




Forward model

Diagonal approximation in the curvelet domain:
f = Bg
~ Cldiag{w}Cg

= curvelet domain scaling
® opens the way to an estimation of w

Examples:

9

migration migrated “"image” “reflectivity”

K'K

multiple removal obliquity factor total data predicted
multiples

| Seismic Laboratory for
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Key idea

Problems with estimating w
" inversion of an underdetermined system
= over fitting
= positivity and reasonable scaling by w

Solution:
= use smoothness of the symbol
" formulate nonlinear estimation problem that minimizes

1
J,(2) = - [ld — Fo e,

eradJ(z) = diag{e?} [FT (Fe* —d)]

Solve with |-BFGS-B




Key idea

Impose smoothness via following system of equations

Cldiag{Cs,}
vLL

d=F,w

and with
T

L — [DlT D! DY

first-order differences in space and angle directions for each
scale.

Assure positivity with nonlinear least-squares ...




Key Idea
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Smoothness penalty

Increasing smoothness
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Smoothness penalty
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Smoothness penalty
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Smoothness penalty
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Smoothness penalty
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Smoothness penalty
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Smoothness penalty

Global wavelet matched multiples
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Smoothness penalty

Gamma=0.0
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Smoothness penalty

Gamma=0.1
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Smoothness penalty

Gamma=0.5
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Smoothness penalty

Gamma=1.0
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Smoothness penalty

Gamma=2.0
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Smoothness penalty

Gamma=5.0
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Smoothness penalty

Global wavelet matched multiples
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Smoothness penalty
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Smoothness penalty

Gamma=0.5
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Smoothness penalty
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Smoothness penalty

SRME multiples
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Synthetic-data example
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Velocity model used in the synthetic data examples




Synthetic-data example
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Synthetic-data example
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Synthetic-data example
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Synthetic-data example
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Synthetic-data example
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Synthetic-data example
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Synthetic-data example
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Synthetic-data example
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Synthetic-data example
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SNRs

Comparison with “ground truth”

SRME 9.82

matched
Bayes







Real-data example
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Real-data example
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Real-data example
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Real-data example
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Real-data example
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Real-data example
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Conclusions

Adaptive curvelet-domain matched filter
significantly improves results

= reflected in SNR
= "eye-ball” norm

Results nearly as good as iterative SRME

Appropriate for real data for which iterative SRME is
often not an option.

Future plans:

B more case studies
m extension to 3-D




Acknowledgments

SLIM team:Gilles Hennenfent,Sean Ross Ross,Cody

Eric Versc
Chris Stol

E. J. Canc
CurvelLab

Brown,Henryk Modzelewski for SLIMpy

nuur, input in primary-multiple separation
K for his input in phase space regularization

es, L. Demanet, D. L. Donoho, and L. Ying for

S.Fomel,P.Sava,and other developers of Madagascar

This presentation was carried out as part of the SINBAD project
with financial support, secured through ITF, from the following
organizations: BG, BP, Chevron, ExxonMobil, and Shell. SINBAD

is part of the collaborative research & development (C
number 334810-05 funded by the Natural Science and

Engineering Research Council (NSERC).




