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Motivation
Seismic processing flows often require data-adaptive 
matching

 matched-filtering in primary-multiple separation
 estimation of scaling in migration-amplitude recovery

Inadequate amplitude matching leads to
 remnant multiples & deterioration primary energy

Introduce two-stage approach
 adaptive curvelet-domain matching
 Bayes separation

Combination exploits smoothness and sparsity in phase 
space ...



Motivation cont’d
Kinematics are generally well predicted.
Non-adaptive curvelet-domain separation adds 
robustness.
Large errors in the location, dip and amplitude of the 
predicted multiples remain a problem.

Present an adaptive method assuming
 successful removal of the global “seismic wavelet”
 slowly varying amplitude errors in phase space
 roughly correct kinematics 

Design a technique that exploits the invariance of 
curvelets under a certain class of operators.



Multiple prediction
SRME

SRME-multiple prediction

with

In practice,                            with    the total data, 
so

p !→∆p, P !→∆P, p

∆p !→ m̆(1)(s, r, t) =
(
∆PA ∗t,x ∆p

)
(s, r, t)

m̆(1) ≈ PAp

∆p = vector with the primaries
m̆(1) = vector with predicted first-order multiples
∆P = FHblock diag{∆p}F (Kronecker products)

F = temporal Fourier transform
A = inverse wavelet.



Conventional SRME
Issues:

 multiples are predicted by a multidimensional convolution
 predicted multiples contain the “source-receiver directivity 

& surface reflectivity” twice
 limitation in acquisition and other unknown factors lead to 

unknown mismatch between actual and predicted 
multiples

Remedies:
 windowed matched filtering
 iterative SRME

Problems:
 overfitting => loss of primary energy
 incomplete data => inaccurate high-order predictions



Multiple prediction
SRME

Matched filter

yielding

for each offset.

∆̃p = p− ã ∗t m̆(1)

A = block diag{ã}

ã = arg min
a

‖p− a ∗t m̆(1)‖2



Problems
Assumes the filter to be stationary (diagonal in 
Fourier space)
Wavelet changes as a function of (s,r,t).

Windowed matched-filtering techniques have been 
proposed

 window sizes arbitrary
 under fit (remnant primary energy)
 over fit (removal of primary energy)
 no control over the variations of the estimated 

filters amongst different windows

Propose a curvelet-domain matched filtering 
approach.



Alternative approach
Replace 

 aggressive windowed least-squares matching by global 
matching.

 iterative SRME by single-iteration SRME.

Different steps:
 Single-term prediction with global matching
 Amplitude correction by our adaptive curvelet-domain 

matched filter with phase-space smoothness control
 Curvelet-domain separation with sparsity promotion and 

separation control 



Only global wavelet matching no curvelet matching 

Traditional SRME 



Total data 

Traditional SRME 



SRME windowed amplitude matched multiples

Traditional SRME 



Total data 

Traditional SRME 



SRME windowed amplitude matched multiples

Traditional SRME 



Total data 

Traditional SRME 



Smoothness penalty

γ = 0.5



SRME windowed amplitude matched multiples

Traditional SRME 



Curvelet-domain 
matched filtering

“Sparsity- and continuity-promoting 
seismic imaging with  curvelet frames” by 
Felix J. Herrmann, P. P. Moghaddam and C. 

C. Stolk to appear in the Journal of 
Applied and Computational Harmonic 
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Forward model
Linear model for amplitude mismatch:

 spatially-varying dip filter
 zero-order Pseudo

After discretization:

 linear operator
 f and g known
 matrix B is full and not known ....

f = Bg

(
Bf

)
(x) =

∫

x∈Rd
ejk·xb(x, k)f̂(k)dk

B = Pseudodifferential operator
b(x, k) = the symbol



Forward model
Diagonal approximation in the curvelet domain:

 curvelet domain scaling
 opens the way to an estimation of w

Examples:

f = Bg
≈ CT diag{w}Cg

B f g

migration migrated “image” “reflectivity”

multiple removal obliquity factor total data predicted 
multiples

KT K



Key idea
Problems with estimating w

 inversion of an underdetermined system
 over fitting
 positivity and reasonable scaling by w

Solution:
 use smoothness of the symbol 
 formulate nonlinear estimation problem that minimizes

with

Solve with l-BFGS-B

Jγ(z) =
1
2
‖d− Fγez‖2

2,

gradJ(z) = diag{ez}
[
FT (

Fez − d
)]



Key idea

Impose smoothness via following system of equations

where                 

and with

first-order differences in space and angle directions for each 
scale. 

Assure positivity with nonlinear least-squares ...

L =
[
DT

1 DT
2 DT

θ

]T

[
p
0

]
=

[
CT diag{Cs̆2}

γL

]
w

d = Fγw



Key idea
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Smoothness penalty

increasing smoothness

 reduces overfitting
 scaling is positive and reasonable



Smoothness penalty
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Smoothness penalty
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Smoothness penalty
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Smoothness penalty
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Smoothness penalty
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Smoothness penalty
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Smoothness penalty

Only global wavelet matching no curvelet matching 



Smoothness penalty

γ = 0.0



Smoothness penalty

γ = 0.1



Smoothness penalty

γ = 0.5



Smoothness penalty

γ = 1.0



Smoothness penalty

γ = 2.0



Smoothness penalty

γ = 5.0



Smoothness penalty

Only global wavelet matching no curvelet matching 



Smoothness penalty

Total data 



Smoothness penalty

Correctly curvelet matched



Smoothness penalty

Total data 



Smoothness penalty

SRME windowed amplitude matched multiples



Synthetic-data example

Figure 1



Data are modeled in a fixed-spread configuration, with sources and
receivers positioned between x = 0 and x = 5400 m, with a step size
of 15 m. This results in a prestack data set of 361 ! 361 traces. For
this example, the data matrix P is far from Toeplitz !see Figure
A-2b"; hence, the least-squares inverse of "P was computed with the
aid of equations 8b and 8c. Note that each column of matrix "P rep-

resents one frequency component of a shot record with 361 traces.
To make the example more realistic, the band-limited version of a
measured air-gun signature with a visible bubble was used for the
source wavelet !see Figure 9". This information is contained in the
source matrix S. Figure 10 displays three shot records. The source
locations are at x = 750 m, x = 1500 m, and x = 2250 m, respec-
tively, the 2250-m value being located close to the top of the salt

Figure 6. Multiple removal for the data in Figure 4a. !a" Input data
with multiples. !b" Focal transform of input data, using the primary
estimate of SRME1. !c" SRME2 output in the focal domain by adap-
tive subtraction in x–t. !d" Input data in #− p. !e" Focal transform of
input data in the #− p domain. !e" SRME2 output in the focal domain
by adaptive subtraction in #− p.

Figure 7. Multiple removal for the data in Figure 4a. !a" Modeled pri-
maries. !b" Primaries obtained using three iterations of SRME1
+ SRME2. !c" Difference between !a" and !b". Note the very small
subtraction leakage compared to Figure 5f.

Figure 8. Subsurface model that contains a high-velocity salt layer
that overlies the target area with a fault structure.

Figure 9. Band-limited version of a measured air-gun signature that
was used in the data simulation. !a" Time-domain representation. !b"
Amplitude spectrum.

Figure 10. Three shot records — including all types of multiples —
that were modeled in the subsurface model of Figure 8 and using the
air-gun wavelet of Figure 9. Note the artificial reflection that comes
from the bubble !see the arrows".

SI214 Berkhout and Verschuur

Velocity model used in the synthetic data examples

Synthetic-data example



Synthetic-data example

Total data Single-term SRME multiples



Synthetic-data example

SRME primaries Real primaries



Synthetic-data example

No matching Bayesian Real primaries



Synthetic-data example

Matching Bayesian Real primaries



Synthetic-data example

SRME primaries Real primaries



Over matched multiples Correctly matched multiples

Synthetic-data example



Difference between SRME and curvelet 
matching 

Estimate for the primaries with over matched 
multiples

Synthetic-data example



Synthetic-data example

Difference between data  and curvelet 
matching 

Difference between data and SRME 



Difference between data (Figure 1 a) and No 
matching (Figure 1 e) SRME Bayesian multiples

Synthetic-data example



SNRs
Comparison with “ground truth”

SRME 9.82

Bayes 7.25

matched 
Bayes

11.22



Real-data example

Figure 2



Total data

Real-data example

Predicted multiples



Real-data example

SRME primaries Predicted multiples



Real-data example

Not scaled Bayesian Predicted multiples



Difference between SRME and 
scaled Bayesian 

Real-data example

Scaled Bayesian



Real-data example

SRME primaries Scaled Bayesian



Predicted multiplesData

Real-data example



SRME scaled-Bayesian Difference Predicted multiples

Real-data example



Conclusions
Adaptive curvelet-domain matched filter 
significantly improves results

 reflected in SNR
 “eye-ball” norm

Results nearly as good as iterative SRME
Appropriate for real data for which iterative SRME is 
often not an option.

Future plans:
 more case studies
 extension to 3-D
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