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Unleash the power of random sampling...

[Hennenfent and Herrmann, 2008]

mailto:ghennenfent@eos.ubc.ca?subject=Pareto%20cuve
mailto:ghennenfent@eos.ubc.ca?subject=Pareto%20cuve
http://wigner.eos.ubc.ca/~hegilles
http://wigner.eos.ubc.ca/~hegilles


Seismic Laboratory for Imaging and Modeling

Model

spatial sampling:  12.5 m
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avg. spatial sampling:  62.5 m

Data
20% traces
remaining
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Interpolated result
using CRSI*

spatial sampling:  12.5 m
SNR = 16.92 dB

* CRSI: Curvelet Reconstruction with Sparsity-promoting Inversion
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Difference
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spatial sampling:  12.5 m
SNR = 9.26 dB

Interpolated result
using CRSI
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Difference

spatial sampling:  12.5 m

SNR = 9.26 dB
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Motivation

 preliminary observations
– 5-fold undersampled data in the time-source-receiver volume

• missing traces at irregular source-receiver locations:
good reconstruction!

• missing traces at irregular receiver locations:
(much) less accurate reconstruction…

 questions
– what makes one case better than the other?
– are acquisition irregularities really harmful to processing and imaging?
– is there something to learn about favorable coarse acquisition 

geometries?
– can the success of an interpolation method be (accurately) predicted 

based on the acquisition geometry?
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Simple example

Fourier
transform

✓

✗

3-fold under-sampling

significant 
coefficients detected

ambiguity

few significant 
coefficients

Fourier
transform

Fourier
transform
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Forward problem

x0

A

A := RFH

y
=

Fourier coefficients
(sparse)

with

Fourier
transform

restriction
operator

signal
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Naive sparsity-promoting recovery

inverse
Fourier

transform

detection +
data-consistent

amplitude recovery
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Observations

 3-fold undersampling
– random: significant coefficients detected!
– regular: ambiguity between significant coefficients and aliases

 random undersampling
– recovery ≈ denoising + amplitudes correction
– (accurate) recovery of the coefficients above the “noise” level

[Donoho et al ‘06]
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 “noise”
– due to AHA ≠ I
– defined by AHAx0-αx0 = AHy-αx0

Undersampling “noise”

less acquired data

3 detectable Fourier modes 2 detectable Fourier modes

1 out of 2 1 out of 4 1 out of 6 1 out of 8
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Further observations & comments

 random undersampling
– size of the undersampling “noise” is a function of the undersampling factor

• the less data acquired, the higher the “noise” level

– for increasing undersampling
• the largest coefficients remain detectable for the longest

– for given undersampling
• fixed number of recoverable coefficients
• the more energy these significant coefficients carry compared to the 

total energy, the better the recovery ⇒ need of an efficient 
representation for seismic data

[Candès et al ‘05]
[Donoho ‘06]
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Sparsity-promoting wavefield reconstruction

x0

Ay
= with

sparsifying transform
for seismic data

restriction operator

A := RS
H

[Sacchi et al ‘98]
[Xu et al ‘05]

[Zwartjes and Sacchi ‘07]
[Herrmann and Hennenfent ‘08]

complete wavefield
 (transform domain)

acquired
data

Interpolated data given by                 withf̃ = S
H
x̃

x̃ = arg min
x

||x||1 s.t. y = Ax
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Nonlinear wavefield sampling
 sparsifying transform

– typically localized in the time-space domain to handle the complexity of 
seismic data

• curvelet transform (dyadic-parabolic partition of the f-k domain)

• [windowed Fourier transform]

 sampling scheme
– generates incoherent random undersampling “noise” in the sparsifying 

domain
– do not create large gaps

• because of the limited spatiotemporal extend of transform elements used 
for the reconstruction

 sparsity-promoting solver
– requires few matrix-vector multiplications
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Discrete random jittered undersampling

receiver
positions

receiver
positions

PDF

receiver
positions

PDF

receiver
positions

PDF

[Hennenfent and Herrmann ‘08]
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 k-sparse signal of length N in the Fourier domain
 n observations in the time domain

– n = N/γ with the undersampling factor γ ranging from 2 to 6

Recovery from random vs. opt.-jittered data

regular discrete random optimally-jittered

[Hennenfent and Herrmann ‘08]
good good badbadbad

x̃ = arg min
x

||x||1 s.t. y = Ax
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Curvelet Recovery w Sparsity-promoting Inversion

 Interpolated data given by                 with

 sparsity-promoting solver
– Iterative Soft Thresholding with cooling (ISTc)

f̃= CH x̃

x̃= argmin
x

‖x‖1 s.t. y= RCHx

[Herrmann and Hennenfent ‘08]
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Model
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Regular 3-fold undersampling
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CRSI from regular 3-fold undersampling

SNR = 20 × log10

(

‖model‖2

‖reconstruction error‖2

)

SNR = 6.92 dB
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Random 3-fold undersampling
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CRSI from random 3-fold undersampling

SNR = 9.72 dB
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Optimally-jittered 3-fold undersampling
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CRSI from opt.-jittered 3-fold undersampling

SNR = 10.42 dB
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Model
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Regular 3-fold undersampling

SNR = 12.98 dB
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SNR = 12.98 dB

Regular 3-fold undersampling
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Optimally-jittered 3-fold undersampling

SNR = 15.22 dB
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Optimally-jittered 3-fold undersampling

SNR = 15.22 dB
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Is jittered undersampling practical?

 field data
– typ. irregularly sampled
– no large gaps when 

possible
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Conclusions

 sparsity is a powerful property that offers striking benefits for 
signal reconstruction BUT it is not enough

 in the sparsifying domain, interpolation is a denoising problem
– regular undersampling:

harmful coherent undersampling “noise”, i.e., aliases
– random & optimally-jittered undersamplings:

harmless incoherent random undersampling “noise”

 nonlinear wavefield sampling
– sparsifying transform: curvelet transform
– coarse sampling scheme: optimally-jittered undersampling
– sparsity-promoting solver: iterative soft thresholding with cooling
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Future work
 translate jittered undersampling into practical acquisition 

geometries
– 2D

• regular receiver positions, jittered source positions?
– 3D

• jittered receiver lines, jittered source positions?

 work on deterministic AND practical undersampling schemes

Receiver positions for one 3D shot
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More future work
 CRSI & regular undersampling

– explore neighbourhood in phase-space to break aliasing

min
x

1
2
‖y −RCHx‖2

2 + λ1‖x‖1 + λ2‖Lx‖2

data misfit sparsity
smooth 
neighbourhood 
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