Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2018 SINBAD consortium - SLIM group @ The University of British Columbia.

THE UNIVERSITY OF BRITISH COLUMBIA | VANCOUVER

New insights into one-norm solvers from the Pareto curve

Gilles Hennenfent ghennenfent@eos.ubc.ca http://wigner.eos.ubc.ca/~heqilles

Ewout van den Berg Michael P. Friedlander Felix J. Herrmann

Seismic Laboratory for Imaging & Modeling Department of Earth & Ocean Sciences The University of British Columbia

SLIM consortium meeting Background on sparsity-promoting solvers Wednesday, February 20th, 2008 - 10:00 AM

Problem statement

- underdetermined system of linear equations
 - setup

- examples
 - wavefield reconstruction with A=RS^H [Sacchi et al '98], [Xu et al '05], [Zwartjes and Sacchi, 2007], [Herrmann and Hennenfent, 2007] & talks by J. Johnson and J. Yan
 - **denoising with A=S^H** [many references!] & talks by R. Neelamani and V. Kumar
 - (deconvolution with A=KS^H [Hennenfent et al., 2005] & talk by V. Kumar)

Sparse solution via one-norm

• quadratic programming [many references!]

$$\operatorname{QP}_{\lambda}: \quad \min_{\mathbf{x}} \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2}^{2} + \lambda \|\mathbf{x}\|_{1}$$

• basis pursuit denoise [Chen et al., 1995]

$$BP_{\sigma}: \min_{\mathbf{x}} \|\mathbf{x}\|_{1} \quad \text{s.t.} \quad \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2} \le \sigma$$

• LASSO [Tibshirani, 1996]

$$LS_{\tau}: \min_{\mathbf{x}} \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2}^{2} \quad \text{s.t.} \quad \|\mathbf{x}\|_{1} \leq \tau$$

• quadratic programming [many references!]

$$\operatorname{QP}_{\lambda}: \quad \min_{\mathbf{x}} \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2}^{2} + \lambda \|\mathbf{x}\|_{1}$$

• basis pursuit denoise [Chen et al., 1995]

$$BP_{\sigma}: \min_{\mathbf{x}} \|\mathbf{x}\|_{1} \quad \text{s.t.} \quad \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2} \le \sigma$$

• LASSO [Tibshirani, 1996]

$$LS_{\tau}: \min_{\mathbf{x}} \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2}^{2} \quad \text{s.t.} \quad \|\mathbf{x}\|_{1} \leq \tau$$

• quadratic programming [many references!]

$$\operatorname{QP}_{\lambda}: \quad \min_{\mathbf{x}} \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2}^{2} + \lambda \|\mathbf{x}\|_{1}$$

• basis pursuit denoise [Chen et al., 1995]

$$BP_{\sigma}: \min_{\mathbf{x}} \|\mathbf{x}\|_{1} \quad \text{s.t.} \quad \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2} \leq \sigma$$

• LASSO [Tibshirani, 1996]

$$LS_{\tau}: \min_{\mathbf{x}} \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2}^{2} \quad \text{s.t.} \quad \|\mathbf{x}\|_{1} \leq \tau$$

• quadratic programming [many references!]

$$\operatorname{QP}_{\lambda}: \quad \min_{\mathbf{x}} \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2}^{2} + \lambda \|\mathbf{x}\|_{1}$$

• basis pursuit denoise [Chen et al., 1995]

$$BP_{\sigma}: \min_{\mathbf{x}} \|\mathbf{x}\|_{1} \quad \text{s.t.} \quad \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2} \leq \sigma$$

• LASSO [Tibshirani, 1996]

$$\mathrm{LS}_{\tau}: \quad \min_{\mathbf{x}} \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2}^{2} \quad \mathrm{s.t.} \quad \|\mathbf{x}\|_{1} \leq \tau$$

Solvers

- quadratic programming
 - iteratively re-weighted least-squares (IRLS) [Gersztenkorn et al., 1986]
 - iterative soft thresholding (IST) [Daubechies et al., 2004]
 - extensions of IST [Figueiredo and Nowak, 2003], [Herrmann and Hennenfent, 2008]
 - primal-dual interior method for convex objectives (PDCO)
- basis pursuit denoise
 - iterative soft thresholding with cooling (ISTc) [Herrmann and Hennenfent, 2008]
 - spectral projected-gradient for *I*₁-norm (SPG*I*₁) [van den Berg and Friedlander, 2007]
 - log-barrier methods for second-order cone programming
 - homotopy methods [Osborne et al., 2000], [Donoho and Tsaig, 2006]
- LASSO
 - projected gradient [Daubechies et al., 2007], [van den Berg and Friedlander, 2007]

Connection & comparison

- context
 - ONE problem
 - THREE approaches
 - MANY solvers...
- Pareto curve
 - defined as the optimal tradeoff between $||y-Ax||_2$ and $||x||_1$
 - establishes the connection between the three approaches
 - exposes the behavior of one-norm solvers
 - used to evaluate the performance of one-norm solvers

- **Useful properties** [van den Berg and Friedlander, 2007]
 - convex & decreasing
 - continuously differentiable
 - negative slope given by

$$\lambda = \frac{\|\mathbf{A}^{H}(\mathbf{y} - \mathbf{A}\mathbf{x})\|_{\infty}}{\|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2}}$$

- consequence
 - good approximation to the Pareto curve obtained with VERY few interpolating points

- **Useful properties** [van den Berg and Friedlander, 2007]
 - convex & decreasing
 - continuously differentiable
 - negative slope given by

$$\lambda = \frac{\|\mathbf{A}^{H}(\mathbf{y} - \mathbf{A}\mathbf{x})\|_{\infty}}{\|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2}}$$

consequence

good approximation to the Pareto curve obtained with VERY few interpolating points

Comparison of one-norm solvers

- solution path
 - track the evolution of the data misfit versus the one norm of successive solver iterates

Comparison of one-norm solvers

- solution path
 - track the evolution of the data misfit versus the one norm of successive solver iterates

Benchmark problem

• objective

basis pursuit (BP) solution

$$\tilde{\mathbf{x}} = \arg\min_{\mathbf{x}} \|\mathbf{x}\|_1 \quad \text{s.t.} \quad \mathbf{y} = \mathbf{A}\mathbf{x}$$

[Candès et al., 2006] [Donoho, 2006]

Basis pursuit

$$BP: \min_{\mathbf{x}} \|\mathbf{x}\|_1 \quad \text{s.t.} \quad \mathbf{y} = \mathbf{A}\mathbf{x}$$

 $\|\mathbf{x}\|_1$

Solution paths: large-enough # of iterations

Solution paths: (very) limited # of iterations

Exposing solvers' weakness

- sensitivity test
 - new instance of benchmark problem
 - same solvers tuning parameters as previous instance

Exposing solvers' weakness

- sensitivity test
 - new instance of benchmark problem
 - same solvers tuning parameters as previous instance

Conclusions

- Pareto curve
 - optimal tradeoff between ||y-Ax||₂ and ||x||₁
 - establishes the connection between QP_{λ} , BP_{σ} , and LS_{τ}
 - smooth
 - good approximation to the curve obtained with VERY few interpolating points

- explore the nature of a solver's iterations
 - informed decision on how to truncate solution process
 - safely trade computational cost against solution accuracy
- evaluate the performance of one-norm solvers

Future work

- use new insights into one-norm solvers to improve them!!!
 - make SPGI₁ more agressive, yet avoiding overshooting beyond the BP solution
 - keep ISTc closer the Pareto curve towards the BP solution
 - i.e., better usage of the last few iterations
- apply analysis to geophysical problems

Acknowledgments

- S. Fomel, P. Sava, and the other developers of Madagascar (<u>rsf.sourceforge.net</u>)
- E. van den berg and M. P. Friedlander for SPGI1 (http:// www.cs.ubc.ca/labs/scl/spgl1)
- E. van den Berg, M. P. Friedlander, G. Hennenfent, F. J. Herrmann, R. Saab, and O. Yilmaz for Sparco (<u>www.cs.ubc.ca/labs/scl/</u> <u>sparco/</u>)

This presentation was carried out as part of the SINBAD project with financial support, secured through ITF, from the following organizations: BG, BP, Chevron, ExxonMobil, and Shell. SINBAD is part of the collaborative research & development (CRD) grant number 334810-05 funded by the Natural Science and Engineering Research Council (NSERC).