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 underdetermined system of linear equations
– setup

– examples
• wavefield reconstruction with A=RSH [Sacchi et al ‘98], [Xu et al ‘05], [ Zwartjes and 

Sacchi, 2007], [Herrmann and Hennenfent, 2007] & talks by J. Johnson and J. Yan

• denoising with A=SH [many references!] & talks by R. Neelamani and V. Kumar

• (deconvolution with A=KSH [Hennenfent et al., 2005] & talk by V. Kumar)

Problem statement

x0

Ay
= +

n
data

coefficients
(sparse vector)

noisemodeling
operator
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Sparse solution via one-norm

3.1 Sparse inversion 35
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Figure 3.2: Constrained minimization for two parameters: the ellipse is a contour of a
function whose minimum, depicted by the star, is sought and the shaded area represents the
area to which our solution is constrained by a model penalty function. (a) For the quadratic
or !2 model penalty the solution lies somewhere on the circle with both x1 and x2 non-zero,
i.e. a smooth solution. For the (b) absolute value or !1 and (c) Cauchy penalty functions
the solution is almost fully dependent on x2, i.e. a sparse solution.

yields the same estimator as Eq. (3.1.4) with a Cauchy model penalty function.
This last model weighting function is similar to the model weighting function used
by Abubakar et al. [2004], although in that paper it is derived from a multiplicative
objective function.

Graphical comparison between minimum norm and sparse inversion

How the functions in Table 3.1 and Fig. 3.1 favor a sparse solution over a smooth
one is shown graphically in Fig. 3.2 for a two parameter problem. Given a convex
function, the objective is to find the minimum, which is depicted by a star. The
model is constrained by a penalty term ρ(x) ≤ K in Eq. (3.1.4), where ρ(x) is a
penalty function as in Table 3.1 and K is some constant. In Fig. 3.2 this means
that the solution must lie within or on the edge of the gray shaded area. The closest
point near the minimum of the convex function, given the constraint on the model,
lies on the contour of the shaded area. With an "2 model constraint the solution
lies on a circle and is most likely to consist of non-zero values for both x1 and x2

(see Fig. 3.2a). With a constraint given by an "1 norm or a Cauchy function, the
solution is more likely to be in terms of either x1 or x2, hence a sparse solution (see
Figs. 3.2b,c).

Robust sparse inversion

So far the data-misfit or noise has been assumed to be normally distributed. In real
data large noise bursts are not uncommon. Estimating a model from data with large
noise burst can be performed with robust regression. When combined with a desire

34 Fourier reconstruction with sparse inversion
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Figure 3.1: The functions ρ(x) listed in Table 3.1, with influence function ψ(x) = ∂ρ
∂x and

weight function C−1
x = ψ(x)

x . The x-coordinate runs along the horizontal axis, the dotted
lines represent the zero axes.

solution using the conjugate gradient scheme is presented in Section 3.3.1.

The vectors p and p̃ are a Fourier transform pair and change in one automatically
involves a change in the other. However, we will refer to p̃ as the parameter vector of
Fourier coefficients that describes the data and is constrained by a prior information
in the inversion. This constitutes an abuse of notation we will accept for the sake of
convenience.

The objective function can also be defined with a quadratic constraint on the
model parameters which are weighted by a model weight matrix such as defined
in Table 3.1. In minimizing this objective function the model weight matrix Cp̃ is
taken as independent of p̃, meaning that its derivative with respect to p̃ is not taken
in the minimization. For instance, Eq. (3.1.1) with the quadratic penalty term and
the model weight matrix

C−1/2
p̃,ii =

1
√

|p̃i|
(3.1.7)

would yield the same estimator as Eq. (3.1.4) with the absolute value function as
model penalty function. And

C−1/2
p̃,ii =

1
√

p̃2
i + 1

(3.1.8)

Figures courtesy P. Zwartjes
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 quadratic programming [many references!]

 basis pursuit denoise [Chen et al., 1995]

 LASSO [Tibshirani, 1996]

Approaches

BPσ : min
x
‖x‖1 s.t. ‖y −Ax‖2 ≤ σ

QPλ : min
x

1
2
‖y −Ax‖2

2 + λ‖x‖1

LSτ : min
x

1
2
‖y −Ax‖2

2 s.t. ‖x‖1 ≤ τ
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 quadratic programming
– iteratively re-weighted least-squares (IRLS) [Gersztenkorn et al., 1986]

– iterative soft thresholding (IST) [Daubechies et al., 2004]

– extensions of IST [Figueiredo and Nowak, 2003], [Herrmann and Hennenfent, 2008]

– primal-dual interior method for convex objectives (PDCO)

 basis pursuit denoise
– iterative soft thresholding with cooling (ISTc) [Herrmann and Hennenfent, 2008]

– spectral projected-gradient for l1-norm (SPGl1) [van den Berg and Friedlander, 2007]

– log-barrier methods for second-order cone programming
– homotopy methods [Osborne et al., 2000], [Donoho and Tsaig, 2006]

 LASSO
– projected gradient [Daubechies et al., 2007], [van den Berg and Friedlander, 2007]

Solvers
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Connection & comparison
 context

– ONE problem
– THREE approaches
– MANY solvers…

 Pareto curve
– defined as the optimal tradeoff between ||y-Ax||2 and ||x||1
– establishes the connection between the three approaches
– exposes the behavior of one-norm solvers
– used to evaluate the performance of one-norm solvers
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Pareto curve
‖y

−
A

x
‖ 2

‖x‖1

τ

σ

Pareto curve
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Pareto curve
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Pareto curve
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‖x‖1

τ
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slope: 0

(τ
BP0

, 0)

1 (τ, σ)
slope: − λ = −

‖AH(y − Ax)‖∞
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Pareto curve
 useful properties [van den Berg and Friedlander, 2007]

– convex & decreasing
– continuously differentiable
– negative slope given by

 consequence
– good approximation to the Pareto curve obtained with VERY few interpolating 

points

λ =
‖AH (y −Ax) ‖∞

‖y −Ax‖2
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key point for large-scale
geophysical applications

Pareto curve
 useful properties [van den Berg and Friedlander, 2007]

– convex & decreasing
– continuously differentiable
– negative slope given by

 consequence
– good approximation to the Pareto curve obtained with VERY few interpolating 

points

λ =
‖AH (y −Ax) ‖∞

‖y −Ax‖2
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Comparison of one-norm solvers
 solution path

– track the evolution of the data misfit versus the one norm of successive solver 
iterates
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Comparison of one-norm solvers
 solution path

– track the evolution of the data misfit versus the one norm of successive solver 
iterates
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Benchmark problem
 setup

 objective
– basis pursuit (BP) solution

x0

Ay
=

data

coefficients
(sparse vector)

Gaussian
matrix

[Candès et al., 2006]
[Donoho, 2006]

x̃ = arg min
x

‖x‖1 s.t. y = Ax
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Basis pursuit

 challenging problem for solvers 
that attack QPλ

– solution only attained in the limit as  
λ→0

 applications
– interpolation of noise-free 

wavefields
– noise-free deconvolution

BP : min
x

‖x‖1 s.t. y = Ax

‖y
−

A
x
‖ 2

‖x‖1

slope: 0
(τBP , 0)

BP solution
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Solution paths: large-enough # of iterations

IST

SPGl1

IRLS

Pareto
curve

ISTc
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Solution paths: (very) limited # of iterations

IST

SPGl1

IRLS

Pareto
curve

ISTc
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Exposing solvers’ weakness
 sensitivity test

– new instance of benchmark problem
– same solvers tuning parameters as previous instance

IST IST

SPGl1 SPGl1

IRLS IRLS

Pareto curve Pareto curve

ISTc
ISTc

Instance I Instance II
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Exposing solvers’ weakness
 sensitivity test

– new instance of benchmark problem
– same solvers tuning parameters as previous instance

IST IST

SPGl1 SPGl1

IRLS IRLS

Pareto curve Pareto curve

ISTc
ISTc

IRLS missed
BP solution

Instance I Instance II
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Conclusions
 Pareto curve

– optimal tradeoff between ||y-Ax||2 and ||x||1
– establishes the connection between QPλ, BPσ, and LSτ
– smooth

• good approximation to the curve obtained with VERY few interpolating 
points

 usage
– explore the nature of a solver’s iterations

• informed decision on how to truncate solution process
• safely trade computational cost against solution accuracy

– evaluate the performance of one-norm solvers
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Future work
 use new insights into one-norm 

solvers to improve them!!!
– make SPGl1 more agressive, yet 

avoiding overshooting beyond the BP 
solution

– keep ISTc closer the Pareto curve 
towards the BP solution

• i.e., better usage of the last few 
iterations

 apply analysis to geophysical 
problems

IST

SPGl1

IRLS

Pareto curve

ISTc
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