Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2018 SINBAD consortium - SLIM group @ The University of British Columbia.

SINBAD 2008

February 20-22, 2008

Algorithms for Large-Scale Sparse Reconstruction

Michael P. Friedlander UBC Computer Science

Collaborators: Ewout van den Berg and Michael Saunders

$$\begin{array}{ll} \underset{x}{\text{minimize}} & \|x\|_{1} \\ \text{subject to} & \|Ax - b\|_{2} \leq \sigma \end{array}$$

Example 1: Missing Observations

Example 2: Compressed Sensing

SPARSE SOLUTIONS

Sparse Solutions

Find the **sparsest** solution:

minimize	nonzeros(x)		
subject to	$\ Ax - b\ _2 \le \sigma$		

Drawbacks

- Combinatorial problem
- Tractable for only trivial problems

Alternative

Replace"nonzeros(x)"with $||x||_1$ [Chen et al'98], [Donoho, Elad '03], [Candès et al '04,'05], [Donoho et al, '05],[Donoho, Tanner, '05], [Fuchs '04,'05] [Tropp '04,'06], [many more!]

Sparse Solutions via $\|\mathbf{x}\|_1$

Three regularization approaches, three parameters

GOAL

Seismic Imaging

Recover missing traces via

minimize $||x||_1$ subj to $||RC^Hx - b||_2 \le \sigma$

Smallest 2D images: length(x) $\approx 1/2$ million

Target 3D images: length(x) \approx hundreds of millions

Large-Scale BPDN Solver

 $\mathsf{BP}_{\sigma}: \quad \mathsf{minimize} \quad \|x\|_1 \quad \mathsf{subj to} \quad \|Ax - b\|_2 \leq \sigma$

Solver requirements

• Use A only as operator $Ax \text{ and } A^Ty$ • Very frugal with mat-vec products \sim days CPU time• "warm" startstake advantage of $x_0 \approx x^*$

Approaches

BP_{σ} : minimize $ x _1$ subj to	o $\ Ax - b\ _2 \leq \sigma$
Log-barrier	ℓ_1 -Magic [Candés & Romberg '05]
 Active-set 	Homotopy [Osborne00, Malioutov05]
 Root-finding 	SPGL1 [vandenBerg & F. '07]
QP _{λ} : minimize $ Ax - b _2^2 +$	$\mathbf{\lambda} \ \mathbf{x}\ _{1}$
Log-barrier	PDCO, ℓ_1 -Magic, L1_LS
 Soft thresholding 	FPC [Hale et al '07, Daubechies et al '04]
 Projected gradient 	GPSR [Figuereido et al '07]
 Orthogonal blocks 	BCR [Sarty et al '00]
$ LS_{\tau}:minimize Ax-b _2^2$ s	subj to $\ x\ _1 \leq au$
• Greedy	LARS [Efron'04]
 Projected gradient 	[Daubechies et al '07], SPGL1
Sparse $Ax \approx b$	
Greedy	OMP [Pati'93,Davis'97,Tropp'07]

• Greedy++

Friedlander

StOMP [Donoho...'06]

Outline

A dusty attic treasure

- active-set for quadratic programming
- improves on greedy approaches

Probing the Pareto frontier

- root finding
- large-scale basis pursuit

Orthogonal Matching Pursuit

Greedy approach to sparse Ax = b

- 0.Initialize $r \leftarrow b$, $B \leftarrow []$ 1.Largest correlationfind j st $|a_j^T r| = ||A^T r||_{\infty}$ 2.Add column $B \leftarrow [B \ a_j]$ 3.Least squaresmin $||b Bx||_2$ 4.Update residual $r \leftarrow b Bx$
 - Works most of the time [Tropp & Gilbert '07] • Considered a cheaper alternative to minimize $||Ax - b||^2 + \lambda ||x||_1$

Recovery Rates for OMP

Ax = b where

- A is Gaussian $m \times 256$
- x has k nonzeros

Quadratic Programming

Basis pursuit approach to sparse Ax = b

$$\begin{aligned} & \mathsf{QPp}_{\lambda}: \quad \min_{r,x} \text{ minimize } \quad \frac{1}{2} \|r\|_2^2 + \lambda \|x\|_1 \quad \text{st} \quad r = b - Ax \\ & \mathsf{QPd}_{\lambda}: \quad \max_{r} \text{ minimize } \quad b^T r - \frac{1}{2} \|r\|_2^2 \quad \text{st} \quad \|A^T r\|_{\infty} \leq \lambda \end{aligned}$$

Dual is vanilla QP:

- interior-point
- active-set

polynomial complexity exponential complexity better in practice

Active-set for Dual

$$\max_{r} \lim_{r \to \infty} b^{T}r - \frac{1}{2} \|r\|_{2}^{2} \quad \text{st} \quad -\lambda e \leq A^{T}r \leq \lambda e$$

Maintain partition of active & inactive constraints:

$$A = \begin{bmatrix} B & N \end{bmatrix}, \qquad B^{T}r_{k} = \pm \lambda e, \qquad -\lambda e < N^{T}r_{k} < \lambda e$$

Main work per iteration:

- 1. Least squares min $||g Bx||_2$, g = b r
- 2. Ascent direction $\Delta r \leftarrow g Bx$
- 3. Stay feasible

$$-\lambda e \leq A^{T}(r_{k} + \alpha \Delta r) \leq \lambda e$$

4. Add col to $B \qquad B \leftarrow [B \quad a_j]$

Main Work per Iteration

4. $r \leftarrow b - Bx$

 $\Delta r \leftarrow g - Bx$ $-\lambda e \leq \mathbf{A}^{\mathsf{T}}(\mathbf{r}_{\mathsf{k}} + \alpha \Delta \mathbf{r}) \leq \lambda e$ $\mathbf{B} \leftarrow \begin{bmatrix} \mathbf{B} & \mathbf{a}_{\mathsf{i}} \end{bmatrix}$

Active-set vs OMP

PROBING THE PARETO FRONTIER

Pareto Curve

- 1. Evaluate $\phi(\tau)$
- 2. Compute $\phi'(\tau)$
- 3. Root-finding on $\phi(\tau) = \sigma$

projected gradient

duality

Newton's method / Interpolation

Dual Problem

Pareto Curve: Useful Properties

$$\phi(au)$$
 := optimal value of minimize $rac{1}{2}\|Ax-b\|_2^2$ subj to $\|x\|_1 \leq au$

Theorem

- 1. ϕ is convex
- 2. For all $\tau \in (0, \tau_{\scriptscriptstyle \mathrm{BP}})$
 - ϕ is continuously differentiable

•
$$\phi'(\tau) = -\lambda_{\tau}$$
 with $\lambda_{\tau} = \|A^{T}r_{\tau}\|_{\infty}$

Generic regularization

Analogous result holds for the generic problem

minimize
$$\|Ax-b\|_{\mathbf{p}}$$
 subj to $\|x\|_{\mathbf{q}} \leq au$ $(1 \leq \mathbf{p}, \mathbf{q} \leq \infty)$

•
$$\phi'(\tau) = -\lambda_{\tau}$$
 with $\lambda_{\tau} = \|A^T y_{\tau}\|_{\mathbf{\bar{p}}}$, $y_{\tau} = r_{\tau}/\|r_{\tau}\|_{\mathbf{\bar{q}}}$

Root Finding: $\phi(\tau) = \sigma$

Approximately solve

 $\begin{array}{ll} \text{minimize} & \frac{1}{2} \|Ax - b\|_2^2 \\ \text{subj to} & \|x\|_1 \leq \tau_k \end{array}$

Newton update

$$\tau_{k+1} \leftarrow \tau_k - (\phi_k - \sigma)/\phi'_k$$

Early termination Use duality gap to monitor iterations $\delta_k := r^T r - b^T r + \tau_k \lambda$

Convergence

$$\begin{split} |\tau_{k+1} - \tau_{\sigma}| &\leq \gamma \delta_k + \eta_k |\tau_k - \tau_{\sigma}|^2 \\ \text{with } \eta_k &\to 0 \end{split}$$

Root Finding vs Usual Suspects $||x||_1$ subj to $||Ax - b||_2 \le \sigma$ (= 0) minimize 4 Pareto curve SPGL1 ISTc ٠ 3 IST ٠ 2 1 00 50 100 150

[Hennenfent, van den Berg, F., Herrmann '08]

Sparse Reconstruction

Friedlander

Inter/Extra-polating the Pareto Curve

Sparco problem: srcsep1

EVALUATING ϕ and ϕ'

Projected Gradient

Evaluate
$$\phi(\tau) \Longrightarrow |$$
minimize $f(x)$ subj to $x \in C$

Projected gradient path

•
$$x_k(\alpha) = P[x_k + \alpha \Delta x], \qquad \Delta x = -g_k$$

Each iteration

- Project steepest descent onto $\ensuremath{\mathcal{C}}$
- Minimize along piecewise linear path

Properties

- $x_k \rightarrow x^*$
- Large changes to active set possible
- Finite active-set identification

Projection onto One-Norm Ball

$$P_{\tau}[c] \iff \min_{x} \|c - x\|_2 \text{ subj to } \|x\|_1 \leq \tau$$

Stages

Example

- Reduce all components c_i equally by $\Delta c := \|c\|_1 au$
- Do not let components c_i change sign

 $\tau = 20$

LAUI	pic.	<i>i</i> — <i>i</i>	20				
С	X		<i>c</i> 1	<i>x</i> ₁		<i>c</i> ₂	<i>x</i> *
28	8		28	4		28	3
29	9		29	5		29	4
-38	-18	\Longrightarrow	-38	-14	\Longrightarrow	-38	-13
21	1		21	-3			
-4	16						
120	52		116	26		95	20

• n = 5, $\Delta c = 20$ • n = 4, $\Delta c = 24$ • n = 3, $\Delta c = 25$ • Done!

Algorithm cost

- Maintain elements in min-abs-val heap
- $\mathcal{O}(n \log n)$ operations worst case

Projection onto Complex One-Norm Ball

$$\mathcal{P}_{\tau}[c] \iff \boxed{\min_{z \in \mathbb{C}^n} \|c - z\|_2 \text{ subj to } \|z\|_1 \leq \tau}$$

1. Compute vector of moduli:

$$r \leftarrow (\|c_1\|_2 \ldots \|c_n\|_2)^T$$

- 2. (Real) one-norm projection:
- 3. Scale components of c by \bar{r} :

$$ar{r} \leftarrow \mathcal{P}_{ au}[r]$$
 $\mathcal{P}_{ au}[c] \leftarrow egin{cases} c_i(ar{r}_i/r_i) & ext{if } r_i > 0 \ 0 & ext{otherwise} \end{cases}$

You Can't Fake It

$$||z||_1 = \sum_j \sqrt{x_j^2 + y_j^2} \le \sum_j |x_j| + |y_j| = ||x||_1 + ||y||_1$$

SPARCO: Sparse Reconstruction Test Suite

LOOKING AHEAD

Looking Ahead

Nonlinear misfit measures

• minimize $||x||_1$ subj to $f(x) \leq \sigma$

Decomposition algorithms

- $A = [A_1 \ A_2 \ \dots \ A_k]$ and $x = (x_1, x_2, \dots, x_k)$
- Optimize over x_1, \ldots, x_k seperately

Dantzig Selector

[Candes & Tao '07]

• minimize $||x||_1$ subject to $||A^T(Ax - b)||_{\infty} \le \lambda$

Thanks!

References

- E. van den Berg and M. P. Friedlander, Probing the Pareto frontier for basis pursuit solutions, UBC CS TR-2008-01, January 2008
- M. P. Friedlander and M. A. Saunders, *Discussion: The Dantzig selector: Statistical estimation when p is much larger than n* Annals of Statistics, 35(6):2385-2391, December 2007
- SPGL1: A solver for large-scale sparse reconstruction Available at www.cs.ubc.ca/labs/scl/spgl1
- SPARCO: A testing environment for sparse reconstruction Available at www.cs.ubc.ca/labs/scl/sparco

Research support

This presentation was carried out as part of the SINBAD project with financial support, secured through ITF, from the following organizations: BG, BP, Chevron, ExxonMobil, and Shell. SINBAD is part of the collaborative research & development (CRD) grant number 334810-05 funded by the Natural Science and Engineering Research Council (NSERC).