Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2018 SINBAD consortium - SLIM group @ The University of British Columbia.

CAIMS Annual Meeting

21 May 2007

In Pursuit of a Root

Ewout van den BergMichael P. FriedlanderUBC Computer Science

[Felix Herrmann (UBC), Ozgur Yılmaz (UBC), Michael Saunders (Stanford)]

$$\begin{array}{ll} \underset{x}{\text{minimize}} & \|x\|_1 \\ \text{subject to} & \|Ax - b\|_2 \leq \sigma \end{array}$$

Basis Pursuit	Approach	Pareto Frontier	Gradient Projection	Experiments				
	Sparse Solutions							

 $||x||_0 :=$ **sparsity** := number of nonzeros in x

The **sparsest** solution is given by

$$\begin{array}{ll} \underset{x}{\text{minimize}} & \|x\|_{\mathbf{0}} \\ \text{subject to} & \|Ax - b\|_{2} \leq \sigma \end{array}$$

Drawbacks

- Combinatorial problem: NP hard
- Tractable for only trivial problems

Alternative

Replace
$$||x||_0$$
 with $||x||_1$

[Chen et al'98], [Donoho, Elad '03], [Candés et al '04,'05], [Donoho et al, '05], [Donoho, Tanner, '05], [Fuchs '04,'05] [Tropp '04,'06], [many more!]

Basis Pursuit

GOAL

Felix Herrmann (UBC Earth & Ocean Sciences)

- 2. Compute $\psi'(\lambda)$
 - 3. Apply 1-dim Newton's method

duality

$$\lambda_{k+1} \leftarrow \lambda_k - \frac{\psi(\lambda_k) - \sigma}{\psi'(\lambda_k)}$$

Basis Pursuit	Approach	Pareto Front	lier	Gradient Projection	Experiments
Lasso and its Dual					
	ψ ($\lambda):=\ {\sf A} x_\lambda^-$ -	$-b\ _2$	$= \ r_{\lambda}\ _2$	
Primal					
(LS_{λ})	$\underset{r,x}{\text{minimize}}$	$ r _{2}$	s.t.	$\mathbf{A}\mathbf{x} + \mathbf{r} = \mathbf{b},$	$\ \mathbf{x}\ _{1} \leq \boldsymbol{\lambda}$
Dual					
(LS^D_λ)	$\max_{\substack{\mathbf{y}, \mu}}$	$b^T \mathbf{y} - \boldsymbol{\mu} \lambda$	s.t.	$\ \mathbf{y}\ _2 \leq 1,$	$\ A^{T}\mathbf{y}\ _{\infty} \leq \boldsymbol{\mu}$
Solutions fo	or $\lambda \in (0,\lambda_{\scriptscriptstyle \mathrm{I}})$	_{3P})		lirii -	
$\ x_{\lambda}\ _{1} = \lambda$	\mathbf{y}_{λ} =	$= \frac{r_{\lambda}}{\ r_{\lambda}\ _2}$			
$\psi(\lambda) = \ r_{\lambda}$	$\ _2 \mu_\lambda =$	$= \ A^T y_\lambda\ _\infty$			λ

- 1. ψ is convex and nonincreasing
- 2. For all $\lambda \in (0, \lambda_{BP})$
 - ψ is continuously differentiable
 - $\psi'(\lambda) = -\mu_{\lambda}$ where $\mu_{\lambda} = \|A^{T}y_{\lambda}\|_{\infty}$, $y_{\lambda} = r_{\lambda}/\|r_{\lambda}\|_{2}$

Spectral Projected Gradient

Basis PursuitApproachPareto FrontierGradient ProjectionExperimentsProjected GradientEvaluate
$$\psi(\lambda) \Longrightarrow$$
 minimize $f(x)$ subject to $x \in C$ Projected gradient path• $x_k(\alpha) = P[x_k + \alpha d], \quad d = -g_k$ Each iteration• Project steepest descent onto C • Minimize along piecewise linear pathProperties• Large changes to active set possible• $x_k \to x^*$, but slow (steepest descent)

• $x_k \rightarrow x^*$, but slow (steepest descent)

Basis PursuitApproachPareto FrontierGradient ProjectionExperimentsSpectral Step LengthReduce f(x) along $x_k(\alpha) = P[x_k + \alpha d]$ Classical gradient projection $d = -g_k$ Find $\alpha > 0$ to minimize along $x_k(\alpha)$ (ie, the Cauchy point)

Spectral step length

- $H_k d = -g_k$ with $H_k := \gamma_k I \approx \nabla^2 f(x)$ (!!)
- Find $\alpha \in (0, 1]$ to sufficiently reduce f along $x_k(\alpha)$
- Secant equation: $H_{k+1}s_k = y_k$ $s_k := x_{k+1} x_k$

$$\gamma_{k+1}s_k = y_k \qquad y_k := g_{k+1} - g_k$$

$$\gamma_{k+1} := (y_k^T s_k) / (s_k^T s_k)$$

[Barzilai/Borwein '88], [Birgin,...'00], [Dai/Fletcher '05], [Figueiredo,...'07]

- Reduce all components x_i equally by $\Delta x := \|x\|_{\lambda} \lambda$
- Do not let components x_i change sign

- Reduce all components x_i equally by $\Delta x := \|x\|_{\lambda} \lambda$
- Do not let components x_i change sign

Example: $\lambda = 20$

- Reduce all components x_i equally by $\Delta x := \|x\|_{\lambda} \lambda$
 - Do not let components x_i change sign

Example: $\lambda = 20$

<i>x</i> 0	\overline{x}_0
28	8
-4	16
29	9
-38	-18
21	1
120	52

•
$$n = 5, \ \Delta x_i = 20$$

• n = 5, $\Delta x_i = 20$ • n = 4, $\Delta x_i = 24$

• Do not let components x_i change sign

Example: $\lambda = 20$

<i>x</i> 0	\overline{x}_0		<i>x</i> ₁	\overline{x}_1
28	8		28	4
-4	16			
29	9	\Rightarrow	29	5
-38	-18		-38	-14
21	1		21	-3
120	52		116	26

• n = 5, $\Delta x_i = 20$ • n = 4, $\Delta x_i = 24$

95

21 -3

116 26

21

120

1

52

Algorithm cost

- Maintain elements in min-abs-val heap
- $\mathcal{O}(n \log n)$ iterations

29

28

21

-38

Numerical Experiments

Friedlander

Friedlander

- 30% missing traces
- n = 481K
- nnz(x^*) \approx 70K (15%)

- # mat-vec prod's Ax
 - # mat-vec prod's $A^T y$
 - Total time for Ax or A^Ty 622 secs
- Total time for $P[\cdot]$

60 secs

913

585

Thanks!

Basis Pursuit	Approach	Pareto Frontier	Gradient Projection	Experiments
		Looking Ah	ead	

Accelerate Lasso subproblem

• Newton-type method for subproblem

$$\begin{array}{ll} (\mathsf{LS}_{\lambda}) & \underset{x}{\text{minimize}} & \|Ax - b\|_2 \\ & \text{subject to} & \|x\|_1 \leq \lambda \end{array}$$

Better root-finding

- Reformulation of Pareto curve is piecewise quadratic
- Can we use higher-order Newton approximations?