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ABSTRACT

An explicit algorithm for the extrapolation of one-way wavefields is proposed which combines

recent developments in information theory and theoretical signal processing with the physics

of wave propagation. Because of excessive memory requirements, explicit formulations for

wave propagation have proven to be a challenge in 3-D. By using ideas from “compressed

sensing”, we are able to formulate the (inverse) wavefield extrapolation problem on small

subsets of the data volume ,thereby reducing the size of the operators. Compressed sensing

entails a new paradigm for signal recovery that provides conditions under which signals

can be recovered from incomplete samplings by nonlinear recovery methods that promote

sparsity of the to-be-recovered signal. According to this theory, signals can successfully be

recovered when the measurement basis is incoherent with the representation in which the

wavefield is sparse. In this new approach, the eigenfunctions of the Helmholtz operator are

recognized as a basis that is incoherent with curvelets that are known to compress seismic

1

Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0).
Copyright (c) 2018 SINBAD consortium - SLIM group @ The University of British Columbia.



wavefields. By casting the wavefield extrapolation problem in this framework, wavefields

can successfully be extrapolated in the modal domain, despite evanescent wave modes.

The degree to which the wavefield can be recovered depends on the number of missing

(evanescent) wave modes and on the complexity of the wavefield. A proof of principle for

the “compressed sensing” method is given for wavefield extrapolation in 2-D, together with

a pathway to 3-D during which the multiscale and multiangular properties of curvelets in

relation to the Helmholz operator are exploited. The results show that our method is stable,

has reduced dip limitations and handles evanescent waves in inverse extrapolation.
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INTRODUCTION

Our motivation

The main result from the relatively new field of “compressed sensing” (Candès et al., 2006b;

Donoho, 2006; Tsaig and Donoho, 2006) states that an arbitrary k non-zero sparse spike

train of length N � k can exactly be recovered from m incoherent measurements with

m ∼ k (∼ means proportional to within logN constants). The term incoherent here refers

to a quality between two bases. Qualitatively speaking, a basis is incoherent with respect

to another basis if a sparse signal in one of the bases generally does not have a sparse

representation in the other basis (see appendix B for a formal definition of this quality). A

classical example of two bases that are incoherent with each other is the identity basis and

the Fourier basis.

This result means that the unknown spike train can, for instance, exactly be recovered

from m random Fourier measurements. These measurements correspond to taking inner

products between random rows, selected from the Fourier matrix, and the vector containing

the sparse spike train. This measurement could explicitly be stated as

y = Ax0 (1)

with A := RMST ∈ Cm×N the synthesis matrix, M the measurement matrix defined in

terms of the Fourier matrix (M := F with F denoting the discrete Fourier transform

matrix), and R a restriction matrix randomly selecting m rows from M. Here , S and ST

are the sparsity analysis and synthesis matrices for a domain that compresses the signal.

The restriction matrix is defined such that the columns of A are 2-norm normalized to

unity. The symbol := is used to denote definition. Simply speaking, Eq. 1 corresponds to
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randomly selecting m Fourier coefficients from the Fourier transform of x0.

Spike trains are sparse in the Dirac/identity basis so we set ST := I . The rows of I

are incoherent with the rows of the Fourier measurement matrix that consists of complex

exponentials. Because x0 has few non zeros, it is sparse and this sparse vector can exactly

be recovered by solving the following nonlinear optimization problem

x̃ = arg min
x

‖x‖1 =
N∑

i=1

|xi| s.t. Ax = y (2)

with the symbol ˜ hereby reserved for quantities obtained by solving an optimization prob-

lem. The arg minx stands for the argument of the minimum, i.e., the value of the given

argument for which the value of the expression attains its minimum value. This recovery is

successful when the measurement and sparsity representations are incoherent and when m is

large enough compared to the number of non-zero entries in x0. Since m� N this recovery

involves the inversion of an underdetermined system. As long as the vector x0 is sparse

enough, recovery according to Eq. 2 is successful. Typically for Fourier measurements 5

coefficients per non-zero entry are sufficient for full recovery (Candès, 2007).

Instead of asking ourselves the question of how to recover x0 from incomplete data

suppose now that we ask ourselves how to apply an integer shift by τ to an arbitrary

but sparse vector x0, without having to shift each single entry. We all know that shifts

translate to phase rotations in the Fourier domain and that the Fourier basis functions

(rows of the Fourier matrix, F) are incoherent with the Dirac basis, I . More formally,

consider the approximate shift operation, defined in terms of the exponentiation of the

discrete difference matrix D ∈ RM×M . In that case, the shift by τ can be written as

u = e−Dτv = LejΩτLHv, (3)

where the decomposition matrix LH , with the symbol H denoting the Hermitian transpose,
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is derived from the eigenvalue problem

D = LΩLH . (4)

In this expression, Ω is a diagonal matrix with the eigenvalues ω = diag(Ω) on its di-

agonal. These eigenvalues correspond to the angular frequencies, while the orthonormal

(de-)composition matrices LH , L correspond, when applying Neumann boundary condi-

tions, to the forward and inverse discrete cosine transforms, respectively. The accuracy

of this discrete approximation of the shift operator depends on the type and order of the

finite-difference approximation in D. Because the eigenvectors of the above shift operation

correspond to the rows of Fourier-like (discrete cosine) measurement matrix of the previ-

ously posed recovery problem, we can define an alternative “compressed” procedure for

applying the shift by solving the following nonlinear optimization program
y′ = RejΩτFv = RM′v

ũ = arg minu ‖u‖1 s.t. Au = y′
(5)

in which we took the liberty to overload the symbol F with the discrete cosine transform.

The input for this nonlinear program is given by the phase-rotated Fourier transform of v,

restricted to a (small) random set of m frequencies. The symbol ′ is hereby reserved for

phase rotated quantities. The shifted spike train is obtained by nonlinear recovery of the

phase-rotated measurement vector y. Instead of applying a full matrix-vector multiplication

involving all temporal frequency components as in Eq. 3, the shift according to the above

program involves the repeated evaluation of the matrix A ∈ Cm×N and its transpose. In

the extreme case of a vector with a single non-zero entry for v, the matrix A will usually

only need to be of size 5×N , leading to a significant reduction for the size of the matrix.

An example of the above procedure is included in Fig. 1, where 5 spikes with random
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positions and amplitudes in a vector of length N = 200 are circular shifted by 20 samples.

Comparison of the results of applying the full shift operator (cf. Eq. 3) and the compressed

shift operator according to Eq. 5 shows that these results are identical. Only 15 random

Fourier measurements were necessary for the recovery of the shifted spike train. Instead of

applying a full 200× 200 operator, application of the compressed operator of size 15× 200

is sufficient. These results were calculated with the `1-solver of Basis Pursuit (Chen et al.,

2001).

The idea of norm-one sparsity based recovery is not exactly new to the seismic imag-

ing community. For instance, there exists a large body of literature on sparsity-promoting

penalty functions. Since the seminal work of Claerbout and Muir (1973), norm-one reg-

ularized inversion problems have been prevalent in the formulation of geophysical inverse

problems with applications ranging from deconvolution (Taylor et al., 1979; Oldenburg

et al., 1981; Ulrych and Walker, 1982; Santosa and Symes, 1986; Levy et al., 1988; Sacchi

et al., 1994) to filtering and seismic data regularization based on high-resolution Fourier

(Sacchi and Ulrych, 1996; Zwartjes and Gisolf, 2006) and curvelet transforms (see e.g. Hen-

nenfent and Herrmann, 2006a) and non-parametric seismic data recovery (F. J. Herrmann

and G. Hennenfent, personal communication, 2007) , adaptive subtraction for multiple at-

tenuation (Guitton and Verschuur, 2004; Herrmann et al., 2007) and Bayesian approaches

with priors consisting of long-tailed Cauchy distributions (Sacchi and Ulrych, 1996).

What is new in compressed sensing is the insight into the criteria of successful recovery.

For example, compressed sensing looks for the existence of a transform that compresses the

(inverse) extrapolated wavefield and which is incoherent with the measurement basis. In

that case, the wavefield can be recovered from a relative small subset of measurements. We

leverage these new insights towards the formulation of the (inverse) wavefield extrapolation
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problem by identifying the eigenfunctions of the modal transform (Grimbergen et al., 1998)

as the measuring basis and curvelet frames (Candès and Donoho, 2004; Candès et al., 2006a)

as the sparsity representation. The modal transform is an orthonormal transform defined by

the eigenfunctions of the Helmholtz operator. Curvelets are known to be sparse on seismic

wavefields and to preserve sparsity∗ after (inverse) extrapolation. Because curvelets are

localized, they are incoherent with the radiating eigenfunctions. This property opens the

way towards the formulation of a compressed version of the inverse wavefield extrapolation

problem that only requires a small subsampling of the wavefield in the modal domain. In

this way, not only could the size of the explicit extrapolation matrices (explicit matrices

refer to actual matrices as opposed to implicit matrix-free extrapolation matrices where the

matrix is not formed explicitly) be reduced but also the “missing” evanescent wave modes

could correctly be handled in inverse extrapolation. However, this latter problem proves

to be more difficult and involves the solution of an ill-posed inverse problem where the

to-be-inverted matrix contains columns that are exponentially decaying, i.e., the matrix no

longer adheres to the conditions imposed by compressed sensing.

Our work is in spirit of recent work by Mulder and Plessix (2004), who describe how

seismic images can be obtained by using only a subset of the temporal frequencies. We

extend their approach by exploiting the nonlinear recovery of compressed sensing in the

context of (inverse) wavefield extrapolation. In this way, we are working towards the for-

mulation of an explicit extrapolation scheme while meeting the computational challenges of
∗Some care should be taken with this statement. For very smooth (constant) media curvelets are more

or less invariant under wave propagation a property exploited by Douma and de Hoop (2006) and Chauris

(2006). For more realistic velocity models curvelets diffuse and loose their strict sparsity. Empirical studies

on seismic data have, however, shown that seismic data remains compressible in the curvelet domain (Candès

et al., 2006a; Hennenfent and Herrmann, 2006b).
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such schemes in 3-D.

Our approach

This paper introduces an explicit algorithm for the compressed evaluation of one-way inverse

wavefield extrapolation. The main challenges in (inverse) extrapolation are

• the size of the eigenvectors in the modal domain (Grimbergen et al., 1998) that

diagonalize the one-way wavefield extrapolation operators;

• the presence of evanescent wave modes that hamper a proper refocusing of the prop-

agated wavefield which leads to poor resolution of steeply dipping events.

We provide a solution strategy that addresses both issues. Our method involves the rapid

evaluation of monochromatic extrapolation operators that are solutions of the one-way wave

equation in d dimensions (Claerbout, 1971; Berkhout, 1982; Hale et al., 1992; Grimbergen

et al., 1998)

∂3W
±(xν , x3;x′ν , x

′
3) = ±jH1W

±(xν , x3;x′ν , x
′
3) (6)

with j =
√
−1, H1 the square-root of the Helmholz operator

H2 = H1H1 (7)

(see appendix A for detail), x3 the vertical coordinate, xν with ν = 1 · · · d−1 the horizontal

coordinate(s) and the initial condition

W±(xν , x3 = x′3;x
′
ν , x

′
3) = δ(xν − x′ν). (8)

In this expression, W+ represents the downward wavefield extrapolation operator that car-

ries the wavefield from depth level x3 and lateral position xν ∈ Rd−1 to x3 > x′3 and
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x′ν ∈ Rd−1. Similarly, W− represents the upward extrapolation operator carrying an upgo-

ing one-way wavefield from depth level x3 to x3 < x′3. The above expressions are monochro-

matic in the angular frequency ω. For notational simplicity, we drop the ω-dependence in

the expressions. The examples in this paper are for two-dimensional (d = 2) wavefields but

the theory also readily extends to d = 3.

After discretization along the space and time axes, the multi-frequency downward wave-

field extrapolation of a downgoing time-domain wavefield vector p+|x3 ∈ RM at depthlevel

x3 can be written in the form of a matrix-vector product (see Appendix A for further

details).

u = ejH1∆x3v = Wv (9)

with u = p+|x′
3
, v = p+|x3 for x3 > x′3. The wavefield vectors contain the reordered entries

of discretized wavefield . The propagation over the interval ∆x3 = x3−x′3 is determined by

the square-root of the block-diagonal multi-frequencyM×M Helmholtz matrix H2 = H1H1

with M = nν × nf the size of the discretized wavefield, nν the number of total spatial

samples and nf the number of angular frequencies. Similar expressions hold for upward

extrapolation of an upgoing wavefield and for the remainder of the paper we will drop the

symbols ± in cases where equivalent expressions hold for down- and upgoing wavefields.

Moreover, we use lowercase symbols for continuous quantities, calligraphic symbols for

operators on continuous functions and bold lower- and uppercase symbols for discretized

matrix operators and vectors, respectively.

The evaluation of the matrix W ∈ CM×M is expensive since it involves the solution of a

sparse eigenvalue problem that diagonalizes the discretized Helmholtz matrix H2. The so-

lution of this eigenproblem leads to the following factorization of the extrapolation operator
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(see Appendix A for a more detailed treatment)

W = FHLejΛ
1/2∆x3LHF (10)

= MTM′ (11)

with LH the orthonormal modal decomposition matrix. The modal transform matrix L

contains the 2-norm normalized eigenfunctions that solve

H2 = LΛLH (12)

with Λ a diagonal matrix with the eigenvalues on the diagonal. From this point on the

system of eigenvectors and eigenvalues pertains to the Helmholtz equation. Commensurate

with the language of compressed sensing, we will call the matrix M := LHF the “mea-

surement” matrix and M′ := ejΛ
1/2∆x3M the phase-rotated measurement matrix. Notice

that the memory imprint is different for the Fourier and modal transforms. The Fourier

transform is calculated implicitly with algorithmns which are trivial to store compared

to the modal transform which consists of a full matrix-vector operator which must be

explicitly constructed and kept in memory .

In practice, solving the above eigenvalue problem is computationally prohibitive. The

common approach to limit the computational complexity of one-way wavefield extrapola-

tion operators is to split the square-root operator (Collino and Joly, 1995). This type of

approximation has led to the so-called paraxial, phase-screen (de Hoop et al., 2000) and

split-step extrapolation operators (Stoffa et al., 1990). These approximations have the dis-

advantage that they are only valid up to certain dips and that they impose smoothness on

the background velocity model defining the Helmholtz equation. See Bednar and Bednar

(2006) and Mulder and Plessix (2004) for a comparison between one- and two-way ’wave

equation’ migration.
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Aside from the above approximation errors, taking the square-root of Λ in Eq. 10 in-

troduces additional difficulties related to the negative eigenvalues that may lead to an

erroneous treatment of the evanescent wavefield associated with these negative eigenvalues.

To negotiate problems related to the evanescent wavefield and possible aperture limita-

tion, Berkhout (1982) proposes to define the inverse extrapolation operators by regularized

least-squares inversion. The result of this inversion depends on a regularization parameter,

which stabilizes the inversion at the expense of smoothing. This smoothing effect leads

to dip limitations as illustrated in Fig. 2. The refocused wavefields according to matched

filtering and regularized least-squares inversion, only recover the initial wavefield up to lim-

ited dips. These dip limitations are clearly visible in the frequency-wavenumber spectrum

and eventually contribute to the dip limitation of migrated images. After 200 iterations of

LSQR (Paige and Saunders, 1982), the spectrum is only partly filled in as can be seen from

Fig. 2 (h). In this paper, a new approach is presented which aims to negate these smoothing

effects while it also attempts to come up with a computationally feasible explicit method

for wavefield extrapolation. A first result of this method is presented in Fig. 3, where the

wavefield is completely refocused. We used the method of Basis Pursuit (BP) (Chen et al.,

2001) to recover the broad-band initial wavefield. This recovery is successful because the

initial wavefield is excited by point sources, thus it is strictly sparse. In practice, however,

wavefields are not sparse in the spike basis, an observation that will be addressed in this

paper.

Outline

First, we present one-way forward wavefield extrapolation in the modal domain based on

the eigenfunction decomposition of the Helmholtz operator. Next, the compressed formula-
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tion for the forward wavefield extrapolation is introduced exploiting the mutual coherence

between the eigenfunctions and curvelets. Inverse wavefield extrapolation, including a dis-

cussion on the behavior of evanescent waves is discussed next, followed by its compressed

formulation that accounts for the evanescent waves. Different restriction strategies that

lead to a size reduction (compression) of the extrapolation operators are reviewed. The

algorithm is tested on examples that range in complexity from a medium with a single

velocity low or high to a physically hard velocity profile from an overthrust velocity model.

The paper is concluded by a complexity analysis aimed to address size issues of wavefield

extrapolation in 3-D. We show that a multiscale and angular formulation of the one-way

wavefield extrapolation problem may lead to a feasible parallel algorithm in 3-D. Details on

the modal transform, including the definition of the Helmholtz operator, its spectrum and

forward and inverse wavefield extrapolation in the modal domain, are included in Appendix

A: One-way wave-propagation in the modal domain while Appendix B: Stable recovery by

curvelet frames details the `1-norm recovery with curvelets.

COMPRESSED WAVEFIELD EXTRAPOLATION IN THE MODAL

DOMAIN

As the examples in the previous section show, the recovery of seismic wavefields is possible

from measurements with large percentages of the data missing. This observation allows us

to address the “incomplete measurement” problem associated with compressed wavefield

extrapolation and the problem of the “missing” evanescent wavemodes in inverse extrapo-

lation. By invoking the appropriate restrictions to the measurement matrices, M and M′

(cf. Eq.10), the propagation operators can be reduced, leading to considerable savings on

the computation time and memory use. First, the forward wavefield extrapolation oper-
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ator is reviewed and the compressed forward wavefield extrapolation problem is discussed

in terms of nonlinear recovery followed by a discussion on different restriction strategies.

Next, the compressed inverse extrapolation problem is formulated. Since inverse extrap-

olation involves mediation of the evanescent waves, we will also focus on that aspect of

wavefield extrapolation.

Forward wavefield extrapolation

In Appendix A it is shown that one-way wavefield extrapolation involves taking the square-

root of the discretized Helmholtz equation. Using the orthonormality of the modal (de)composition

matrices, this square-root can be written as

H1 = LΛ1/2LH . (13)

The square-root in this expression is chosen such that the imaginary part of the square-root

is always negative avoiding exponential blow up for the propagation operator defined earlier.

We choose the signs of the diagonal entries of Λ1/2 as follows

<(λ1/2
i ) ≥ 0 for λ ≥ 0 i = 1 · · ·M (14)

and

=(λ1/2
i ) < 0 for λ < 0 i = 1 · · ·M. (15)

With this choice, the forward extrapolation matrix defined in Eq. 10 is stable. The negative

λ lead to an exponential decay of their corresponding propagated wavemodes. These atten-

uated wavemodes are called evanescent wavemodes.. The forward extrapolated wavefield

can be written as

u = Wv = MHM′v. (16)
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Because of the evanescent wavemodes, M′ is no longer unitary and

WHW 6= I . (17)

Compressed forward extrapolation

Following the discussion in the introduction and in the Appendix: Stable recovery with

curvelet frames, forward wavefield extrapolation can be cast into the following nonlinear

optimization problem

W1 :



y′ = RM′v

A := RMCT

x̃ = arg minx ‖x‖1 s.t. Ax = y′

ũ = CT x̃,

(18)

for an appropriately chosen restriction matrix and for the measurement matrix M, defined

as in Eq. (10), and with its rotation define by

M′ := ejΛ
1/2∆x3M. (19)

In Eq. 18, CT refers to curvelet synthesis by the fast inverse curvelet transform (Candès

et al., 2006a; Ying et al., 2005; Hennenfent and Herrmann, 2006b, and Appendix B). Dur-

ing the compressed extrapolation, the wavefield is extrapolated with a compressed forward

extrapolation operator Ŵ′ = RM′ ∈ Cm×M . The forward extrapolated wavefield is sub-

sequently recovered by the nonlinear inversion, promoting sparsity in the curvelet domain.

This compressed formulation, which we write in short hand, as

ũ = W1[v], (20)

is designed to yield the same results as for the full forward extrapolation, u = Wv.
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Inverse wavefield extrapolation

A key component of migration is the forward and inverse extrapolation of (one-way) wave-

fields. The purpose of forward extrapolation is to propagate a source wavefield into the

subsurface. Inverse extrapolation aims to revert this process by refocusing the wavefield.

Ideally, inverse extrapolation maps a forward propagated impulsive wavefield back to a

point. In the absence of evanescent waves, the inverse extrapolation operators are simply

given by the adjoint of the forward extrapolation operator, i.e.

F = WH . (21)

In this case, we have

FW = I (22)

by virtue of the Fourier and modal transform matrices being orthonormal. However, as

we have seen in Fig. 2, the presence of the evanescent field causes problems. In that

case, the inverse is no longer equal to the Hermitian transpose of the forward operator,

i.e. F = W−1 6= WT . The common practice of ignoring the evanescent field in the definition

of the inverse extrapolation operator leads to a blurring as discussed earlier.

To show how this inverse extrapolation method may adversely affect results, we create

a forward extrapolated wavefield according to

u = Wv (23)

with an initial wavefield v given by the reflectivity of an overthrust model†. The forward

propagated wavefield is computed with Eq. 23, where the reflectivity of the overthrust
†This model was developed by Sam Gray and is representative for the Canadian overthrust front. Velocity

model courtesy BP.
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model acts as an ’exploding’ reflector. The propagation operator is defined for a medium

that varies in the lateral direction only. The lateral variations are taken from the ’physically

hard’ overthrust model at depth x3 = 4 km and the wavefield is forward propagated over

a distance of 600m. Next, the forward extrapolated wavefield u is inverse extrapolated by

ignoring the evanescent waves with the matched-filter approach. The inverse extrapolated

wavefields are explicitly given by

ṽm = Fu with F := WH (24)

or by As the results in Figs. 2 and 4 indicate, this approach to the inverse extrapolation

problem leads to an unsatisfactory refocusing of the original wavefield given by the ’explod-

ing’ overthrust model. Evanescent wavemodes, the regularization and the finite aperture

all lead to undesirable artifacts.

Compressed inverse extrapolation

In summary, inverse extrapolation differs from forward extrapolation in the way the evanes-

cent wavefield is handled. The choice for the square-root in Eq. 15 guarantees negative

imaginary values that correspond to decaying exponentials for the forward extrapolation.

Defining the inverse extrapolation as the inverse of the forward extrapolation leads to an

exponential growth of the evanescent waves and people either ignore these evanescent modes

(cf. Eq. (24)) or compute the inverse extrapolation operator as the regularized pseudo in-

verse of the forward extrapolation operator (cf. Eq. (24)).

We propose a method which addresses two main challenges of refocusing seismic wave-

fields namely,

• how to recover the initial wavefield from a random sampling of the modal plane
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amongst the propagating wavemodes (λ ≥ 0)?

• how to mediate the dip-limitation due to decaying evanescent wave modes (λ < 0)?

These are distinct questions. The first question concerns the solution of a recovery problem,

involving phase-rotated measurement matrices that are “unitary” before restriction (i.e.,

the exponent of the phase rotations is purely imaginary). In that case, the measurement

basis adheres to the conditions that allow for recovery with compressed sensing as long as

the restriction is carried out intelligently. The second question involves the solution of an

ill-posed inverse problem, where the dip limitation attributed to the exponential decaying

wavemodes is mediated. Both problems are solved using the same nonlinear optimization

program albeit with a much slower convergence for the recovery of the evanescent wavefield.

According to our method the inverse extrapolated wavefield is calculated by solving the

following nonlinear program

F1 :



y = RMu

A′ := RM′CT

x̃ = arg minx ‖x‖1 s.t. A′x = y

ṽ = CT x̃.

(25)

In this formulation, the inverse extrapolated wavefield is calculated by first “measuring”

the wavefield u = Wv, followed by inverting the phase rotated synthesis operator A′. This

definition of the synthesis operator is different from the definition for the forward problem

because this specific choice allows us to curvelet-sparsity regularize the forward extrapo-

lation operator that includes exponentially decaying evanescent waves. The inversion is

stabilized by the `1-norm and involves the inversion of a propagation operator with decay-
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ing exponentials for the evanescent wavemodes. Again we adapt the following short-hand

notation for the nonlinear extrapolation procedure outlined in Eq. 25

ṽ = F1[u]. (26)

Before comparing results of these nonlinear formulations for the forward and inverse ex-

trapolation operators, we first discuss different restriction strategies to reduce the size of

the operators.

Restriction strategies

The compressed formulation for the inverse wavefield extrapolation problem is (i) stable

with respect to the “missing” evanescent wavemodes and (ii) allows for a reduction of

the computational cost to synthesize the propagation matrices as well as of their storage

requirements. While devising a strategy for the restriction ( sampling of the modal plane),

the following issues need to be taken into consideration for the evaluation of the synthesis

matrix A′

• the cost of solving the eigenvalue decomposition for each temporal frequency. For a

wavefield of size M , i.e. u ∈ RM with nf = O(M1/d) angular frequencies and nν =

O(M (d−1)/d) spatial samples, the computation of the eigenfunction decompositions for

the sparse Helmholtz matrix requires O(M (2d−1)/d) operations for the full problem

and O(m2
ν×mf ) for the compressed problem. The reduced number of spatial samples

equals mν = pν · O(M (d−1)/d) and the reduced number of frequencies mf = pf · nf

with pν , pf < 1 the fractions of the size of the restriction over the total size of the

wavefield’s discretization;
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• the cost of applying (repeated) matrix-vector products, which is O(M2(d−1)/d) for the

full problem and pν · pf · O(M2(d−1)/d) for the compressed problem;

• the memory use for each frequency amounting to storing a M (d−1)/d×M (d−1)/d matrix

for the full problem and a mν ×m with m = mν ×mf for the compressed problem;

• an additional O(N logN) for the computation of the curvelet transform;

For d = 3, the size of the wavefield vector grows cubicly (M = nf × n1 × n2), which

illustrates the formidable challenge we are faced with when designing explicit (inverse)

wavefield extrapolation operators in higher dimensions. By formulating the application of

the extrapolation as a “compressed sensing” problem, we can devise different strategies to

limit the size of the wavefield extrapolation problem. The choice for the restriction depends

on following main factors, namely

• the properties of the eigenvectors. Mutual coherency (see Appendix B for the def-

inition of mutual coherency) between curvelets and ’Fourier’ or ’non-Fourier like’

eigenfunctions may differ. Since curvelets are strictly localized in the Fourier domain,

eigenmodes that spread in the Fourier domain lead to a more favorable compressive

sampling;

• the energy distribution of the wavefield in the frequency-modal domain. Recovery

from a compressively sampled wavefield is more favorable for successful recovery if

the random samples are collected from parts of the spectrum where the energy of the

to-be-extrapolated wavefield resides.

• the presence of evanescent wavemodes. These modes decay exponentially and can be

omitted when the purpose is to refocus the wavefield up to the dip of the evanescent
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wave modes;

• the memory imprint. This imprint is directly related to the number of eigenfunctions

that need to be stored to calculate the explicit matrix-vector multiplications. This

storage is not an issue for the temporal frequency that is matrix free.

• the uniformity of the restriction. The more uniformly distributed the random restric-

tion in the band in the frequency-modal domain where the energy is concentrated, the

easier the recovery (D. L. Donoho et al., personal communication, 2006). For a fixed

measurement size, this translates into a more accurate recovery or a faster conver-

gence for the recovery. Alternatively, a more uniform (in both directions) restriction

allows for a recovery from a smaller number of measurements.

Depending on the requirements (memory imprint versus number of flops), the restriction

can be designed to

• select a subset of temporal frequencies that leads to a direct reduction of the number of

“block diagonal” eigenproblems that need be solved and to a reduction of the number

of eigenvectors that need to be stored;

• select a subset of eigenvalues In principle, discrete eigenfunctions can be calculated

at a random subset of discrete eigenvalues by applying the appropriate shifts towards

the eigenvalues. This random selection also leads to a reduction of the number of

eigenfunctions that need to be stored in memory.

• a combination of temporal-frequency and eigenvalue restrictions;

Examples of the different restrictions are included in Fig. 5.
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EXAMPLES

Extrapolation in Gaussian medium profiles

In this section, we apply our proposed method to two different lateral varying medium

profiles, consisting of a single Gaussian shaped low- or high-velocity zone as shown in Fig 6.

The background velocity is 2000ms−1. The minimum and maximum velocities are set to

1200 ms−1 and 3500 ms−1, respectively.

The Helmholtz operator is discretized with ∆x1 = 4m, ∆t = 0.004 s with nt = nν = 256.

During the experiments, a chain of horizontally oriented fine-scale curvelets is extrapolated

(see Fig. 7(a)). In this experiment, the propagation direction is perpendicular to the direc-

tion in which the medium varies.

The recovery of evanescent wave modes in inverse extrapolation is studied by submit-

ting a fan of fine-scale curvelets oriented with different angles (see Fig. 7(b)) to forward

extrapolation in a homogenous medium, followed by non-linear inverse extrapolation.

The spectrum: Before examining the extrapolation results, let us first briefly study the

behavior of the spectrum of the discretized Helmholtz matrix and its eigenvectors.

As described by Grimbergen et al. (1998), the eigenvalue spectrum for a medium with

a low-velocity zone contains “continuous” and “discrete” parts, while the spectrum for the

profile with the high-velocity zone is strictly continuous. The eigenfunctions corresponding

to the continuous part of the spectrum are radiating. For the low-velocity profile, the

eigenfunctions for the discrete part of the spectrum correspond to the guided wavemodes.

These guided waves are evanescent outside the waveguide. For the high-velocity profile

the situation is reversed. In that case, all wavemodes are radiating, but in the region of
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the high-velocity perturbation they become evanescent. As Fig. 8 illustrates, there is

little difference in the ’frequency spread’ between radiating and non-radiation wave modes.

This observation suggests that the restriction should not be preferential to either of these

wavemodes based on the coherency argument.

Forward extrapolation: To demonstrate the performance of the compressed extrapo-

lation algorithm, a chain of horizontally-oriented curvelets are vertically propagated over

a distance of ∆x3 = 600m in a laterally varying medium. The results for the forward

extrapolation are plotted in Figs 9 and 10, for the profiles depicted in Fig. 6(a) and 6(b).

Both figures include the results with the full modal-domain forward extrapolation operator,

u = Wv, and with the nonlinear compressed operator, ũ = W1[v] (cf. Eq. (18)). The initial

wavefield v is plotted in Fig. 7(a). The discretized wavefields consist of M = 216 samples.

The compressed extrapolation results are obtained with the cooling method outlined in Ta-

ble 1 for restrictions with increasing numbers of uniform measurements. The examples show

that a fraction p = 0.16 is sufficient to recover the forward propagated wavefields for the

Gaussian low and high (with p denoting the total fractional reduction of the measurement

matrix, calculated as the product of pf and pν). The compressed formulation leads to a gain

of in memory usage and more importantly a gain in the cost for computing the operators.

For a given number of measurements, the compressed extrapolation is more accurate for

the medium profile with the velocity high, which can be understood because the complexity

of the extrapolated wavefield is simpler since there are no guided modes in that case.

Inverse extrapolation: Again horizontally-aligned curvelets (Fig. 7(a)) are used that are

first forward extrapolated according u = Wv. This extrapolated wavefield is subsequently
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inverse extrapolated according ṽ = F1u (cf. (25)). The results of this procedure for the two

medium profiles of Fig. 6 are included in Fig. 11. As the number of measurements increases,

the wavefield is better recovered. For p = 0.16, the recovery is satisfactory. Again the results

for the medium with the velocity high are slightly better, which can be explained by the

absence of guided modes for this profile. Compared to compressed forward extrapolation,

the inverse extrapolation requires less measurements leading to an improved compression

of the operator. This behavior can be understood because the initial wavefield is sparser

than the propagated wavefield and hence requires less measurements.

Inverse extrapolation of evanescent waves: Results for the more challenging inverse

wavefield extrapolation for steep and hence evanescent wave modes are included in Fig. 12 for

a constant velocity medium set to 2000 ms−1 with ∆x1 = 40m and a propagation distance

of ∆x3 = 50m. Comparisons are made between the original wavefield and the results after

refocusing with the matched filter ṽ = Fmu and inverse extrapolation ṽ = F1[u] according

Eq. (25). As shown in Fig. 12(c) the evanescent curvelets are fully recovered.

Inverse extrapolation in the overthrust model

In this section, the proposed extrapolation methodology is applied to a model representative

for the Canadian foothills. The lateral velocity profile used for the computation of the

extrapolation operators is plotted in Fig. 13. To maintain the validity of the velocity profile

while keeping our examples to a reproducible size, we chose ∆x1 = 40m, with all other

parameters the same as the previous examples in a Gaussian medium. This experiment

involves compressed inverse extrapolation which aims to refocus a wavefield that propagated

over a distance of ∆x3 = 400m.
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Aside from the mutual coherence, compressive sampling that emphasizes the regions of

the frequency-modal domain where the to-be-recovered wavefield resides will lead to a more

favorable recovery. Fig. 14 shows that most of the information of the wavefields resides at

the large eigenvalues that correspond to the guided wavemodes. The spectra in Fig. 14 also

confirm the loss of steep dipping events due to the evanescent waves.

The results for the compressed recovery are summarized in Fig. 15. First, the exploding

reflector given by the reflectivity of the overthrust model is forward extrapolated. There are

artifacts due to wrap around in the time axis. The results after applying the ’full’ matched

filter and ignoring the evanescent wave contribution are given in Fig. 4. Notice the slight

reduction in bandwidth and dominant artifacts. The result obtained by computing the

pseudo inverse, ṽLS = W†u, leads to an improved result. However, some of the artifacts

remain while steep events seem to suffer some deterioration which can be explained from

the missing evanescent waves. The restricted matched filter does not recover the initial

wavefield as we can see from Fig. 15(b). The compressed recovery result for pf = 0.35 and

pν = 0.7, on the other hand recaptures most of the initial wavefield as can be observed

Fig. 15(c).

COMPLEXITY ANALYSIS

The examples of the previous section gave us a proof of concept that compressed extrapola-

tion is feasible. The question is whether compressed extrapolation yields benefits compared

to full extrapolation in the modal domain. Since modal-domain extrapolation is consid-

ered expensive, we include in our discussion the computational costs associated with other

“wave-equation” extrapolation schemes. We will also discuss additional measures that can

be taken to gain computational efficiency by exploring the multiscale and angle decompo-
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sition of the curvelet transform.

Computational cost of wavefield extrapolation

Wave-equation migration codes spend most of their time in (forward/inverse) wavefield

extrapolation. There are two main categories of extrapolation operators. There are the

implicit methods such as time-domain reversed-time migration (Bednar and Bednar, 2006)

or spectral methods (Riyanti et al., 2006), both depending on right-hand sides, and explicit

methods such as one-way extrapolation in the modal domain (Grimbergen et al., 1998)

and frequency-domain direct solvers (Plessix and Mulder, 2004). Compared to the implicit

methods, which require a recalculation of the operator for each “shot”, explicit methods have

the advantage that the forward and inverse extrapolation operators can be applied to each

shot without the need of resynthesizing the operator. For the two-way frequency-domain

methods, this step entails a LU factorization, whereas for the one-way wave extrapolation

one needs to solve an eigenproblem (Grimbergen et al., 1998). When there are many

shots, these explicit methods lead to a method that is an order of magnitude faster than

the implicit methods. In addition, spectral methods have the advantage that only one

(monochromatic) forward and one inverse extrapolated wavefield needs to be stored as

opposed to time-domain techniques that require storage over time intervals (W. Symes,

personal communication, 2006).

Following the analysis by Riyanti et al. (2006), the time-domain complexity is nsntO(nd)

with ns the number of shots, nt the number of time steps and M = nd the size of a snapshot

of the discretized wavefield for each shot. Since we are interested in obtaining the correct

amplitudes, we have to take into account the cost of computing the regularized pseudo
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inverse of inverse wavefield extrapolation. This brings the total computational complexity

to nLSnsntO(nd) with nLS = O(1), the number of iterations for the LSQR solver (Paige

and Saunders, 1982). This computational complexity is approximately the same for the

explicit spectral method, amounting to a total complexity of nLSO(nd+2), when assuming

ns = nt = nf = O(n) (Riyanti et al., 2006). The compressed modal transform requires

p·nsol ·O(n2(d−1)+1) with p = pν ·pf the fraction of the restriction and nsol the computational

cost of the `1 solver. These estimates show that as long as nsol is of the same order as nLS ,

we gain a factor of p. As the inverse extrapolation examples with the strictly sparse curvelets

have shown, compressed operators can lead to a small p and hence to a substantial reduction

of the computational cost for wavefields with low complexity.

Unfortunately, the memory requirements for 3-D more or less preclude explicit meth-

ods. The size of the full monochromatic modal decomposition matrix equals n2(d−1), which

is clearly prohibitive and has been the major bottleneck for the construction of explicit

methods for complex wavefields in 3-D. In the next section, we propose a new method that

exploits multiscale and angular properties of the curvelet transform that allow us to further

compress explicit propagation operators.

Multiscale and angular compressed extrapolation

Following the work by Tsaig and Donoho (2006), the unconstrained optimization problem

for the recovery in F1 (cf. Eq. (25)) can be replaced by a sequence of smaller subproblems,
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i.e.

Fj
1 :



yj = RjMju

A′
j := RjM′

jC
T
j

x̃j = arg minxj
‖xj‖1 s.t. A′

jxj = yj

ṽ =
∑

j C
T
j x̃j,

(27)

where j = {j, l} is the index set for the scale j and the angle l (remark that there are two

angles for curvelets in d = 3). The j subscripted symbols refer to quantities at a particular

scale and angle. For instance, CT
j refers to the inverse curvelet transform of the coefficients

at scale 2j and angle θj = 2πl2bj/2c. Since this inverse only reconstructs contributions

to the total wavefield at this scale and angle, the modal (de)composition matrices can be

constructed accordingly. The algorithm consists of the following steps

1. Discretize the Helmholtz operator with scale-dependent sample intervals ∆x1 ∼ 2−j

and ∆t ∼ 2−j . This requires a definition for the “measurement” matrices Mj and M′
j

that includes a coarsening (smoothing to scale 2−j and downsampling to 2j samples)

operator Bj. So explicitly, Mj = LH
j F jBj and M′

j = ejΛ
1/2
j ∆x3Mj where Lj is the

modal decomposition and phase-rotation matrices adapted to the scale-angle pair j;

2. Define a restriction operator Rj such that the angular frequencies and eigenfunctions

are selected pertinent to the wedge defined by j. Use the size of the wedge and the

empirical histogram of the curvelet coefficients of the to-be-propagated wavefield to

select the appropriate number of measurements mj at each scale and angle.

The first step is an automatic consequence of the lack of high temporal and spatial frequen-

cies at the coarse scales of the wavefield uj = Bju. Clearly, the adaptation in discretization

leads to a dramatic reduction of the computational cost and size of the (de)composition

27



matrices at the coarser scales. The second step depends on the fact that we can limit our-

selves to eigenfunctions that correspond to angles and temporal frequencies that pertain to

a specific j. Since the square-root of the eigenvalues λ1/2 = diag(Λ1/2) can be associated

with the vertical wave numbers ξ3, we can establish a relationship between the angle θ and

the eigenvalues,

λ1/2 = ξ0 cos θ and hence θ = arccos
(
ξ−1
0 λ1/2

)
λ ≥ 0. (28)

In this expression, the negative angles were omitted for convenience. Curvelets at j are

localized near the symmetric wedge

Wj,l = {±ξ, 2j ≤ |ξ| ≤ 2j+1, |θ − θj| ≤ π.2−bj/2c},

with |ξ| = ωc−1
0 . Combining these two equations leads to a multiscale and angular restric-

tion, limiting the angular frequencies and angles to

2jc0|ξ0| ≤ ω ≤ 2j+1c0|ξ0| and λ1/2 ≤ ξ0 cos(θ) with |θ − θj| ≤ π.2−bj/2c. (29)

The ’random’ restriction is done such that the regions of the modal plane are adaptively

sampled according to where most of the information of the to-be-extrapolated wavefield re-

sides. To accomplish this adaptive sampling, the forward curvelet transform of the wavefield

u is calculated from which the fractions

pj :=
∑

µ∈Mj

hist{cµ∈Mj
} (30)

are obtained, with c = Cu the vector with curvelet coefficients, and hist{cj} the normalized

(by the total number of curvelet coefficients) histogram of the curvelet coefficients in the

jth wedge. The sum runs over the index set Mj for the curvelets in each wedge. According

to this definition,
∑

j pj = 1 and the number of measurements for each subproblem can
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be defined as mj = pj ·m with m the total number of measurements. With this sampling

adaptation, the number of measurements taken in each wedge is proportional with the

number of significant coefficients in each wedge.

The above procedure sketches a truly multiscale and angular compressed extrapolation

method that (i) significantly reduces the size of the compressed explicit operators; (ii)

is adapted to where the information of the to-be-extrapolated wavefield resides; (iii) is

amenable for parallel implementation. During the parallel implementation, the wavefield in

each wedge can be extrapolated independently while the orthonormality of the Fourier and

modal transforms also allows for straightforward parallelization.

The proposed multiscale method goes at the expense of a moderate overhead of no more

than a factor of two, since logMµ eigenproblems are solved at scales 2−j for j = 0 · · · logMµ.

It is beyond the scope of this paper to prove whether the solution of F1 is equivalent to the

solution of Fj
1.

DISCUSSION

Initial findings

It was shown that compressed extrapolation can lead to a substantial reduction for the

size of the compressive one-way extrapolation operators with extrapolation results that are

equivalent to results obtained with “full” extrapolation in the modal domain. The perfor-

mance of compressive extrapolation depends on three factors, namely the mutual coherence

between curvelets and the monochromatic eigenfunctions; the shape of the frequency-modal

amplitude spectrum and the complexity of the wavefield. Because curvelets are strictly lo-

calized in the Fourier domain, the mutual coherence decreases for eigenmodes that are
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more spread in the Fourier domain. Comparison between the spectra of radiating and

guided modes showed no distinctive difference in the amount of spreading. The amplitude

spectrum in the Fourier-modal domain, however, showed large amplitudes for guided wave-

modes with the largest eigenvalues and with temporal frequencies localized in the band

of the extrapolated wavefield. The complexity of the forward extrapolated wavefield also

has a noticeable effect. For complicated (physically “hard”) velocity models, the forward

extrapolated wavefield loses some of its sparsity in the curvelet domain and this means that

more entries of the unknown curvelet coefficient vector need to be recovered. The larger

the number of significant entries in the curvelet vector, the more compressive sampling of

the wavefield is necessary in the modal domain.

For inverse extrapolation, our findings indicate a successful recovery from compressively

sampled wavefields, where the evanescent wavefield is ignored and where the sampling is

restricted to a small subset of the modal domain. For compressible initial wavefields, this

approach can lead to a significant reduction for the size of the inverse extrapolation operator,

which leads to a leaner explicit scheme. For example, inverse extrapolation towards a strictly

sparse initial wavefield consisting of spikes only, leads to a dramatic reduction for the size

of the extrapolation operators. The examples also showed that recovery is possible for more

complicated wavefields that compress in the curvelet domain. For moderate propagation

distances, our formalism also allowed for the recovery of the evanescent wavefield increasing

the resolution of steep dips.

Of course the proposed method for the compressed evaluation of operators stands or

fails with the compressibility of the signal after applying the extrapolation operators. As

long as the initial wavefield is compressible, we are all set for inverse extrapolation. As we

have seen, this is not necessary the case for forward extrapolation. Fortunately, this is not
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really an issue for seismic applications where inversely extrapolated data are correlated with

forward extrapolated sources during imaging. As long as the image is sparse, the inverse

extrapolated wavefield will be sparse.

The computational cost of explicit (inverse) wavefield extrapolation consists of two parts

namely the solution of the eigenproblem and the application of the matrix products of the

explicit and full modal transform matrices. By reducing the number of rows both these costs

are reduced. The cost for the solution of the eigenproblem scales quadratically with the size

of the discretization so any reduction of the number will translate in reduced computation

time. The restriction also reduces the size of the explicit matrices which is a prerequisite

for a large-scale deployment of this explicit algorithm.

The potential benefits of our algorithm depend on the ability to (approximately) solve

very large-scale `1 problems. As long as the cost of these solvers in conjunction with the

gain in solving the eigenproblem are on the order of the cost of computing the least-squares

inversion for the full problem our approach will be feasible. Additional benefits are the

speedup due to the explicit nature of the operators and the reduction in memory imprint.

Multiscale and angular extensions

As with any three-dimensional explicit formulation of the extrapolation problem, the size of

the matrices becomes prohibitively large. By casting the problem in terms of a multiscale

and angular “compressed sensing” problem, it is possible to significantly reduce the size of

the matrices involved. This size reduction can be accomplished by (i) adapting the spatio-

temporal discretization of the Helmholz operator; (ii) adapting the restriction to temporal

frequencies and eigenvalues pertinent to the curvelet partitioning (per curvelet wedge) and
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finally (iii) by adapting the size of the restriction to the information content of the to-be-

propagated wavefield. In particular, the reduced size for the coarse-scale discretization leads

to a drastic reduction of the computational cost involved with the solution of the Helmholtz

eigenproblem.

Future research

This paper is based on a new idea where the eigenfunctions that diagonalize a certain

operator are used as a “measurement” basis in the formulation of a compressed sensing

problem. This insight allows for a significant reduction for the cost of composing and

applying large-scale explicit operators. The following issues need to be resolved before

applying the presented methodology to large-scale migration:

Fast calculation of curvelet transforms: The recovery from compressed extrapola-

tion requires multiple evaluations of the Fast Discrete Curvelet Transform. This

transform is O(M logM) with a constant that can be reduced by implementation in

programmable gate arrays (He et al., 2004);

Fast `1 solvers: The success of all compressed sensing techniques depend on the ability

to quickly solve `1 optimization problems. Currently, there is a surge in research activ-

ity addressing this important issue (see e.g. D. L. Donoho et al., personal communication, 2006

and Tibshirani (1996); Candès and Romberg (2005); Donoho et al. (2005); Figueiredo et al. (2007); Koh et al. (2007) for recent `1-solver software releases);

Restricted modal-domain imaging conditions: In this paper, we focused on the ex-

trapolation of wavefields. During migration, imaging conditions (and their adjoints)

are used. For compressive imaging to be successful, restricted modal domain imaging

conditions will have to be derived;
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Smart sampling: The success of compressive sampling depends for a large part on

sampling strategies. In our case, this means that an adaptive sampling strategy needs

to be devised.

Fast computation of compressive sampled eigenvalues: The algorithm derives its re-

duction for the size of the operators from selecting a subset of eigenproblems. This

means that fast eigenproblem solvers need to be developed that can efficiently compute

random subsets of eigenvectors;

Construction of multiscale Helmholtz operators: The multiscale and angular extension

opens the way to compute the eigenfunctions of the Helmholtz operator by smoothing

the velocity model to a scale commensurate to the scale of the wavefield;

Theoretical compression criteria: The theory of compressed sensing provides results

for measurement and sparsity matrices that are orthonormal. Theoretical performance

estimates for extensions towards redundant frames (curvelets) is still an open problem.

Since the idea of applying compressed sensing techniques to the evaluation of operators

is new, theory is still mostly lacking on this exciting topic.

Other compressive approaches

Compression of imaging and hence extrapolation operators has been the “holy grail” of seis-

mic imaging. So far, most of the attempts have been directed towards the diagonalization

of the operators. Indeed recently reported results by Candès and Demanet (2005); Douma

and de Hoop (2006); Chauris (2006) on curvelets and by other researchers on other generic

expansions have shown promise. However, the difficulty with these approaches is that it

is difficult to diagonalize extrapolation operators for “non-smooth” velocity models. Our
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approach differs from these attempts in the sense that we do not try to replace the imaging

operators by a transformed-domain diagonally dominant matrix. Instead, we use a veloc-

ity model-adaptive transform, the modal transform, which yields eigenfunctions that are

incoherent with curvelets. So, we do not use the curvelets to diagonalize. Instead, we use

this signal representation to compress the to-be-extrapolated wavefields. For complicated

velocity models, our approach also loses its efficiency since the wavefield will lose some of

its sparsity properties. However, since seismic imaging entails the collapse of seismic energy

onto reflectors, we will continue to benefit from compression as long as the image permits

curvelets as a sparse representation.

CONCLUSIONS

In this paper, we proposed a compressed (inverse) extrapolation algorithm that combines

the diagonalization of the Helmholtz operator by the modal transform with recent insights

from the field of compressed sensing. In our approach, the eigenfunctions spanning the

modal transform are recognized as a suitable measurement basis that is incoherent with the

curvelet frames that are known to compress seismic wavefields. This observation allows for

a compression of operators by casting the action of the operator into a compressed sampling

and subsequent recovery problem. The data is compressively sampled in the modal domain,

where the operator is diagonalized, and subsequently recovered with the nonlinear sparsity

promoting techniques from compressed sensing. This procedure leads to a reduction of the

size of the operators with an overall computational gain that is contingent upon the cost

for the recovery.
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APPENDIX A

ONE-WAY PROPAGATION IN THE MODAL DOMAIN

The one-way wave-extrapolation algorithm presented in this paper derives from the work

of Grimbergen et al. (1998). In this appendix, we provide the basic equations for the

Helmholtz operator, its discretization and diagonalization, leading to the definition of the

one-way extrapolation operators that serve as the point of departure for our compressed

extrapolation algorithm. For further details on the derivation of the one-wave field extrap-

olation operators in the modal domain, the reader is referred to Grimbergen et al. (1998);

Dessing (1997).

Consider a medium with a constant velocity in the vertical direction over the interval

(x3, x
′
3] and variations in the lateral direction(s).
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Introduce a kernel associated with the Helmholtz operator

H2(xν , x3;x′ν) =
(

ω

c(xν , x3)2

)2

δ(xν − x′ν) + ∂ν∂νδ(xν − x′ν). (A-1)

After discretization over the continuous variables (x1, x
′
1) for d = 2‡, we have at angular

frequency ω = n∆ω, n = 1 · · ·nf

H2 = C + D2 (A-2)

with

C =



(
ω
c1

)2
0 · · · 0

0
(

ω
c2

)2
· · · 0

...
...

. . .
...

0 0 · · ·
(

ω
cn1

)2


, (A-3)

where ci = c(i∆x1, x3), i = 1 · · ·n1 represent the discretized velocity in the x1 direction with

n1 the number of discretization points. The matrix D2 is a band Toeplitz matrix with Neu-

mann boundary conditions, representing the second-order derivative D2 = ∆x−2
1 Toep{dl

2}

with the row vector dl
2 the l-point stencil approximation of the second derivative operator

and ∆x1 the spatial sample interval in the x1 direction. In this paper, a 11-point stencil is

used (l = 11), yielding 21 non-zero entries per row.

Spectrum of the discretized Helmholtz operator

Even though the setting of this paper is discrete, our insight in the behavior will benefit if

we study the behavior of the spectrum of the continuous Helmholtz operator

H2 =
(

ω

c(xν , x3)

)2

+∇2
ν = ξ2(xν , x3) + ∂ν∂ν , ν = 1 · · · d− 1 (A-4)

‡The discretization for d = 3 runs along similar lines and has been omitted.
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with ∂ν∂ν the Laplacian in the horizontal coordinate(s). Notice that we use the convention

of Einstein’s subscript notation. The eigenfunctions of H2 for each temporal frequency

satisfy

H2φ(xν) = λφ(xν) (A-5)

with φ(xν) the eigenfunctions and λ the eigenvalues. The eigenvalues of the self-adjoint

operator H2 are real. For a medium that only varies laterally over a finite range and has

constant velocity c0 outside, the spectrum σ of H2 consists of a continuous and discrete

part:

σ(H2) = σ0(H2) ∪ σ1(H2), (A-6)

where σ0 refers to the continuous part of the spectrum and σ1 to the discrete part. The

transition from the continuous to the discrete part occurs at the wavenumber ξ0 = ω/c0.

The eigenfunctions of the continuous part to the left of ξ0 are global and are called radiating

while the eigenfunctions to the left of ξ0 pertaining to the discrete spectrum are localized

and correspond to so-called “bound states”. These bound eigenfunctions are also known as

non-radiating or guided modes. The eigenvalues λ can be interpreted as the square of the

vertical wavenumber ξ3 suggesting the following relationship

λ(ξ) = ξ20 − ξνξν (A-7)

with ξ0 the background wavenumber and ξν the horizontal wavenumber(s).

For the discrete Helmholtz matrix, the eigenvalue spectrum is discrete. However, as

the examples in Grimbergen et al.’s paper (their Fig. 4(d)) show the spectrum for lateral

velocity profiles with a low-velocity well give rise to localized and radiating eigenfunctions.

The corresponding eigenvalues look discrete for the latter and “continuous” for the former.

The transition from the radiating to non-radiation eigenvalues occurs at ξ20 .
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The modal transform

The eigenfunctions for the decomposition of the Helmholtz operator are complete and can

be used to define a transform, the so-called modal transform, which decomposes a function

with respect to the eigenfunctions. The forward transform of an arbitrary finite energy

function f reads

f̂(ξν) = 〈f, ψλ(ξν)〉 =
∫

xν∈Rd
f(xν)ψλ(ξν)(xν)dxν . (A-8)

The symbol ̂ is hereby reserved for transformed domain quantities. In this expression, the

hat symbol refers to functions in the temporal frequency-eigenvalue domain. The above

modal transform corresponds to taking inner products with respect to the eigenfunctions

of the H2 operator. The inverse modal transform composes the function f from the modal

domain

f(xν) =
∫

ξν∈Rd
f̂(ξν)ψλ(ξν)(xν)dξν . (A-9)

For simplicity, we ignore degeneracy and the existence of the discrete spectrum that would

give rise to an additional summation over the discrete eigenvalues for the integral in Eq. A-9.

The results in the continuous setting largely carry over to the discrete setting in which we

are primarily interested in this paper. These monochromatic expressions readily translate

into a multi-frequency matrix-vector framework. The multi-frequency modal transform has

a block-diagonal structure

L =


L1

. . .

Lnf

 (A-10)

with L1 · · ·Lnf
the nν×nν monochromatic modal composition matrices with the eigenfunc-

tions for each of the nf temporal frequencies. The size of the discretization in the horizontal
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coordinate direction(s) is nν . After the discretization, we have

LLH = I (A-11)

with I the discrete identity matrix. This identity holds because L is orthornormal.

One-way extrapolation operator

As previously described, for each temporal frequency ω = n∆ω, the matrix H2 is self-

adjoint, yielding the following decompositions

H2,n = LnΛnLH
n , n = 1 · · ·nf (A-12)

with real eigenvalues, i.e., diag(Λn) is real. This equation is defines the discrete modal

transform pair (cf. Eq. A-8)

f̂ = LH
n f and f = Lnf̂ . (A-13)

After the appropriate choices for the square-root of the eigenvalues (cf. Eq.15), the one-way

extrapolation operator, carrying the wavefield from x3 to x′3, can be written as

Ŵ±
n = Ln exp{∓j(x3 − x′3)Λ

1/2
n }LH

n . (A-14)

This operator propagates a monochromatic wavefield at angular frequency ω = n∆ω by

modal transformation it, followed by applying a diagonal phase rotation and the inverse

modal transform. By combining the different monochromatic extrapolations, we arrive at

the final expression for one-way wavefield extrapolation (cf. Eq. (10))

W± = FHLe∓jΛ1/2(x3−x′
3)LHF (A-15)
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with F the discrete temporal Fourier transform and

L =


L1

. . .

Lnf

 , Λ =


Λ1

. . .

Λnf

 (A-16)

the block diagonal modal composition and eigenvalue matrices, respectively. The extrapo-

lation of a wavefield in the x1 − t domain now entails taking a temporal Fourier transform,

followed by application of the block-diagonal decomposition and phase rotation matrices.

The propagated wavefield is recovered by applying the block-diagonal modal composition

and the inverse temporal Fourier transform. The measurement and phase-rotated measure-

ment matrices, which form the basis for our compressed extrapolation algorithm, can now

be defined as

M := LHF and M′ := exp{jΛ1/2(x3 − x′3)}LHF . (A-17)

APPENDIX B

STABLE RECOVERY WITH CURVELET FRAMES

In this section, we will briefly introduce the framework of compressed sensing (Candès

et al., 2006b; Donoho, 2006; Tsaig and Donoho, 2006). First, we introduce recovery by

nonlinear optimization, followed by a discussion of curvelet frames as sparsity promoting

representations for seismic wavefields.

Recovery by norm-one nonlinear optimization

The principle of compressed sensing is derived from the fact that an arbitrary discretized

function, residing in the vector f , can exactly be recovered from incomplete measurements
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y given by

y = Ax0 (B-1)

and with A a wide m×N matrix with m� N .

Nonlinear recovery: When the matrix A obeys certain conditions, this recovery is ac-

complished by solving the following nonlinear optimization problem

P1 :


x̃ = arg minx ‖x‖1 subject to Ax = y

f̃ = ST x̃

(B-2)

with the synthesis matrix defined as A := RMST . The success of the recovery depends on

three main factors

• the mutual coherence between the rows of the measurement matrix M and sparsity

synthesis matrix ST . This mutual coherence is given by

µ(M,S) =
√
N max

(i,j)∈[1···N ]×[1···N ]
|〈mi, sj〉| (B-3)

with mi and sj the rows of M and S, respectively. The mutual coherence between

the Dirac-Fourier pair is minimal (µ = 1). The smaller the coherence the fewer

observations are required for successful recovery (Candès et al., 2006b; Tsaig and

Donoho, 2006; Hennenfent and Herrmann, 2006a).

• the compression rate of the to-be-recovered function f in the sparsity representation.

This compression rate is quantified by a power-law decay rate for the magnitude sorted

coefficients (c = Sf)

|ci∈I | ≤ Cri
−r with r ≥ 1, (B-4)
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with I the indices such that cI(1) ≥ cI(2) ≥ · · · ≥ cI(N) and r the compression rate

with Cr a constant depending on the signal’s energy. The faster the decay the larger

r.

• the randomness of the restriction that is optimal for cases where R selects rows

according to a uniform distribution.

Depending on the mutual coherence and the compression rate obtained by the sparsity

representation, the program P1 is able to recover f for data y with large percentages (up

to 80% in 2-D) missing. This nonlinear recovery depends on the appropriate choice of the

sparsity representation for seismic data.

Recovery by the cooling method: Following Daubechies et al. (2005) and Elad et al.

(2005) and ideas dating back to Figueiredo and Nowak (2003), Eq. (B-2) is solved by

an iterative thresholding technique that is derived from the Landweber descent method.

Following Elad et al. (2005), the optimization problem P1 is replaced by a series of simpler

optimization problems

Pη :


x̃ = minx ‖y −Ax‖2

2 + η‖x‖1

f̃ = Ax̃.

(B-5)

These optimization problems depend on a coupling parameter η > 0 that controls the

emphasis on the `1 norm versus the `2 norm misfit. This parameter η is lowered during an

outer loop.
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Iterative soft thresholding: After m iterations of this outer cooling loop, estimations

for the coefficient vector are computed for fixed η by the following inner loop

xm+1 = Tη

(
xm + AT (y −Axm)

)
, (B-6)

with η = ηm and the soft thresholding defined by

Tη(x) := sgn(x) ·max(0, |x| − η). (B-7)

As shown by Daubechies et al. (2005), this iteration for fixed η converges to the solution of

the subproblem in Eq. (B-5) for m large enough and ‖A‖ < 1. The cost of each iteration is

a synthesis and subsequent analysis. The details of the cooling algorithm are presented in

Table. 1.

Initialize:

m = 0; x0 = 0;

Choose: L, ‖ATy‖∞ > η1 > η2 > · · ·

while ‖y −Axm‖2 > ε do

for l = 1 to L do

xm+1 = Tηm

(
xm + AT (y −Axm)

)
{Iterative thresholding}

end for

m = m + 1;

end while

f̃ = Axm.

Table 1: The cooling method with η1 > η2 > · · · the series of decreasing thresholds. The

inner loop is repeated L times.
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Curvelet frames

The conditions for successful nonlinear recovery place constraints on the choice for the spar-

sity analysis and synthesis matrices. As described in the previous section, the analysis matri-

ces must achieve a high compression rate for the wavefield while simultaneously possessing a

sufficiently low mutual coherence with the measurement matrix. Taking these requirements

as well as our goal of compressing seismic extrapolation operators into consideration, we

will argue that the recently introduced curvelet transform provides the appropriate signal

representation (Candès and Donoho, 2000a, 2004; Candès et al., 2006a; Ying et al., 2005).

Compression of seismic wavefields by curvelet frames

Curvelets achieve a rapid decay of magnitude-sorted coefficients (and hence compression)

by expanding the wavefield in terms of localized, multiscale and multidirectional proto-

type waveforms that are anisotropically shaped. Without prior information, the location

and direction of wavefronts are found though the process of alignment that leads to large

inner products between curvelets (rows of the curvelet transform matrix) and wavefronts

that locally have the same direction and frequency content. This principle of alignment

is illustrated in Fig. B-1, where curvelets aligned with curved events are shown to have

large coefficients, while curvelets that make an angle have small coefficients. As such

curvelets are capable of representing seismic images with vectors that show a rapid decay

for the magnitude-sorted coefficients. By comparison, the wavelet and Fourier transforms

decay more slowly (Candès et al., 2006a; Hennenfent and Herrmann, 2006b). Refer to

Candès and Donoho (2000b), for a discussion on the near optimal asymptotic decay rate

for the nonlinear approximation error of curvelets.
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The curvelet transform (see e.g. Candès and Donoho, 2004; Candès et al., 2006a) com-

poses signals in terms of waveforms that are multiscale and multidirectional. Because the

rows of the transform contain prototype waveforms that behave locally like ’little waves’,

the curvelet transform obtains near optimal sparsity on bandwidth-limited seismic data

(Candès et al., 2006a; Hennenfent and Herrmann, 2006b). Because the number of rows

with waveforms exceeds the number of samples in the image, the curvelet transform is

overcomplete.

By using the fast discrete curvelet transform (FDCT by wrapping, see e.g. Candès

et al., 2006a; Ying et al., 2005; Candes et al., 2005), data is perfectly reconstructed after

decomposition by applying the adjoint of the curvelet transform, i.e., we have f = CTCf for

an arbitrary finite-energy vector f . In this expression, C ∈ RN×M represents the curvelet

decomposition, transforming a column vector f ∈ RM into the curvelet domain, c = Cf

with c ∈ RN . The CT represents the transpose of the curvelet transform. For the above

choice of curvelet transform, the pseudo inverse equals the transpose, i.e., CTc = C†c. The

transform is a tight frame that preserves energy, i.e., ‖f‖ = ‖Cf‖, so we have CTCf = I f .

Since the discrete curvelet representation is overcomplete, with a moderate redundancy (a

factor of roughly 8 for d = 2), the converse is not the identity, i.e., CCT 6= I , which makes

it difficult to recover the sparsity vector x0 from f = CTx0.

Curvelet frames were originally developed for studying high-frequency asymptotic solu-

tions to the wave equation (Smith, 1997; Candès and Demanet, 2005). As such curvelets

are known to display certain invariance properties under wave propagation. In our con-

text, these invariance properties translate to a compression of wavefields by curvelets. This

property is essential for the formulation of our compressed extrapolation algorithm.
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Curvelet properties

Curvelets are redundant directional frames that represent a tiling of the two-dimensional

frequency plane into multiscale and multi-angular wedges (see Fig. B-2). Because the di-

rectional sampling increases every-other scale doubling, curvelets become more and more

anisotropic for finer and finer scales. They become ’needle-like’ as illustrated in Fig. B-

2. Curvelets are localized in both domains and are oscillatory in one and smooth in the

other direction. Even though curvelets are not of compact support (non-zero over a finite

interval) in the physical domain, they are of rapid decay with an effective support given

by ellipsoids parameterized by a width ∝ 2j/2, length ∝ 2j and angle θ = 2πl2bj/2c with

j the scale and l the angular index with the number of angles doubling every other scale

doubling (see Fig. B-2). Curvelets are indexed by the multi-index µ := (j, l, k) ∈ M with

M the multi-index set running over all scales, j, angles, l, and positions k (see for details

Candès et al., 2006a; Ying et al., 2005). At each scale j the curvelet transform consists of

a decomposition with respect to curvelets at each grid point and for 2bj/2c different angles.

Therefore, conflicting angles are possible.
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LIST OF FIGURES

1 Example of compressed shifting of length 200 with 5 arbitrary spikes. Top: the 5

spikes; Middle: shifted spikes by 20 samples according to Eq. 3. Bottom: the same but

according to the compressed program of Eq. 5. Notice that there is virtually no difference.

2 Illustration of the dip limitation during inverse extrapolation. (a) a bandwidth-

limited impulsive source. (b) the forward extrapolated wavefield (cf. Eq. (16)). (c) The

refocused pulse through inverse extrapolation with matched filtering (cf. Eq. (24)). (d)

the same but with regularized least-squares inverse extrapolation; (e-h) The time-spatial

spectra of (a-d). Notice the lack of spatial frequencies corresponding to steep dips in (f-

h). The wrap-around effects in (b-d) are due to the periodicity of the temporal Fourier

transform.

3 Compressed recovery from the forward extrapolated wavefield with a 100-fold re-

duction for the size of the extrapolation operators. (a) some broad-band spikes; (b) The

forward extrapolated wavefield; (c) compressive nonlinear recovery of the initial wavefield.

4 Inverse extraplation based on the matched filter (cf. Eq. (24)). (a) Exploding

bandwidth-limited reflectivity representative of a Canadian overthrust front; (b) inverse

extrapolation through matched filtering. Notice the smoothing, missing steep events and

finite-aperture artifacts.

5 Different restriction strategies. Top: angular-frequency restriction with uniformly

random-selected frequencies; Middle: Wavemode restriction with uniformly random se-

lected wavemodes per frequency. Since the wavemodes for each frequency are obtained by

individual eigenfunction problems, restriction of the wavemodes can be made independent

across the frequency spectrum. Bottom: Mixed uniform restriction. The black areas cor-

respond to individually selected angular frequencies and wave numbers. The grey area on
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the top left corner corresponds to negative eigenvalues with eigenmodes that are evanescent.

6 Lateral velocity profiles with background velocity 2000 ms−1. (a) Profile with ve-

locity low of 1200 ms−1. (b) Profile with velocity high of 3500 ms−1. Spatial sampling

interval of the profiles is set to 4m with 256 samples, while the sigma of both Gaussian

functions (which roughly correspond to its width at half maximum amplitude) are set to

80 m.

7 Initial wavefields used for the extrapolation examples. (a) A chain of horizontally-

oriented fine-scale curvelets playing the role of a “plane wave”. (b) A fan of fine-scale

curvelets with different angle.

8 Radiating and non-radiating wave modes for the velocity model with the Gaussian

low (Fig. 6(a)) at 30Hz. (a) The non-radiating or guided wave mode. (b) the radiating

wave mode. (c), (d) the corresponding (f-k) spectra. The ’frequency spread’ of these two

wavemodes is not significantly different.

9 Compressed forward extrapolation according to W1 (cf. Eq. (18)) for different re-

strictions. The velocity model corresponds to the velocity low and is plotted in Fig. 6(a).

The initial source wavefield v is plotted in Fig. 7(a). (a) The full extrapolated wavefield

u = Wv is included for reference; (b) The compressed forward propagated wavefield with

pf = 0.2 and pν = 0.0.2; (c) The same as (b) but with pf = 0.4 and pν = 0.4; (d) The same

as (b) but with pf = 0.6 and pν = 0.4. Observe that the forward propagated wavefield is

largely recovered for the restriction in (c).

10 Compressed forward extrapolation according to W1 (cf. Eq. (18)) for different re-

strictions. The velocity model corresponds to the velocity high and is plotted in Fig. 6(b).

The initial source wavefield v is plotted in Fig. 7(a). (a) The full extrapolated wavefield

u = Wv is included for reference; (b) The compressed forward propagated wavefield with
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pf = 0.2 and pν = 0.2; (c) The same as (b) but with pf = 0.4 and pν = 0.4; (d) The same

as (b) but with pf = 0.6 and pν = 0.4. Observe that the forward propagated wavefield is

largely recovered for the restriction in (c).

11 Compressed inverse extrapolation according F1 (cf. Eq. (25)) for different restric-

tions. For (a-c) the velocity model is given by the Gaussian low (Fig. 6(a)) and in (d-f)

by the Gaussian high (Fig. 6(b)). The initial source wavefield v is plotted in Fig. 7(a). (a)

Inverse extrapolated wavefield for pf = 0.2 and pν = 0.2; (b) The same as (a) but with

pf = 0.4 and pν = 0.4;(c) The same as (a) but with pf = 0.6 and pν = 0.4; (d-f) the same

as (a-c) but for the velocity high. Observe that the recovery for the velocity high is slightly

better.

12 Inversion of the evanescent wavemodes according ṽm = WTu or ṽ = F1[u]

(cf. Eq. 25). The velocity model is constant at 2000ms−1. The initial source wavefield,

v, is defined in terms of a the curvelet fan plotted in Fig. 7(b). (a) The full forward prop-

agated wavefield u = Wv; (b) The matched filter; (c) The `1 recovery. Observe that the

steep evanescent angles are fully recovered.

13 Lateral velocity profile for the overthrust examples.

14 Frequency-modal spectra for the exploding reflector model. (a) spectrum of the

exploding reflector. (b) spectrum of the forward extrapolated exploding reflector. Notice

the missing evanescent waves for (b) and the concentration of amplitudes in the area of the

guided modes at the large eigenvalues.

15 Compressed inverse extrapolation according to F1 (cf. Eq. (25)). The data u is

given by the exploding reflector data plotted in Fig. 4(a). (a) The full forward propagated

wavefield u = Wv; (b) the inverse extrapolated wavefield obtained through matched fil-

tering; (c) the compressed inverse extrapolated wavefield ṽ = F1[u] with pf = 0.35 and
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pν = 0.7. Compared to the matched filter , our approach recovers most of the initial wave-

field.

B-1 Example of the alignment of curvelets with curved events.

B-2 Spatial and frequency representation of curvelets. (a) Four different curvelets in

the spatial domain at three different scales. (b) Dyadic partitioning in the frequency do-

main, where each wedge corresponds to the frequency support of a curvelet in the spatial

domain. The position of its wedge in k-space dictates the scale and angle of a curvelet, while

the phase information in k-space corresponds to its physical translation. This figure illus-

trates the micro-local correspondence between curvelets in the physical and Fourier domain.

Curvelets are characterized by rapid decay in the physical space and of compact support

in the Fourier space. Notice the correspondence between the orientation of curvelets in the

two domains. The 90◦ rotation is a property of the Fourier transform.
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Figure 1: Example of compressed shifting of length 200 with 5 arbitrary spikes. Top: the

5 spikes; Middle: shifted spikes by 20 samples according to Eq. 3. Bottom: the same but

according to the compressed program of Eq. 5. Notice that there is virtually no difference.

Herrmann et.al. –
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2: Illustration of the dip limitation during inverse extrapolation. (a) a bandwidth-

limited impulsive source. (b) the forward extrapolated wavefield (cf. Eq. (16)). (c) The

refocused pulse through inverse extrapolation with matched filtering (cf. Eq. (24)). (d)

the same but with regularized least-squares inverse extrapolation; (e-h) The time-spatial

spectra of (a-d). Notice the lack of spatial frequencies corresponding to steep dips in (f-

h). The wrap-around effects in (b-d) are due to the periodicity of the temporal Fourier

transform.
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(a) (b)

(c)

Figure 3: Compressed recovery from the forward extrapolated wavefield with a 100-fold

reduction for the size of the extrapolation operators. (a) some broad-band spikes; (b) The

forward extrapolated wavefield; (c) compressive nonlinear recovery of the initial wavefield.
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(a) (b)

(c)

Figure 4: Inverse extraplation based on the matched filter (cf. Eq. (24)). (a) Exploding

bandwidth-limited reflectivity representative of a Canadian overthrust front; (b) inverse

extrapolation through matched filtering. Notice the smoothing, missing steep events and

finite-aperture artifacts.
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Figure 5: Different restriction strategies. Top: angular-frequency restriction with uniformly

random-selected frequencies; Middle: Wavemode restriction with uniformly random se-

lected wavemodes per frequency. Since the wavemodes for each frequency are obtained by

individual eigenfunction problems, restriction of the wavemodes can be made independent

across the frequency spectrum. Bottom: Mixed uniform restriction. The black areas cor-

respond to individually selected angular frequencies and wave numbers. The grey area on

the top left corner corresponds to negative eigenvalues with eigenmodes that are evanescent.
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(a)

(b)

Figure 6: Lateral velocity profiles with background velocity 2000 ms−1. (a) Profile with

velocity low of 1200ms−1. (b) Profile with velocity high of 3500ms−1. Spatial sampling

interval of the profiles is set to 4m with 256 samples, while the sigma of both Gaussian

functions (which roughly correspond to its width at half maximum amplitude) are set to

80 m.
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(a)

(b)

Figure 7: Initial wavefields used for the extrapolation examples. (a) A chain of horizontally-

oriented fine-scale curvelets playing the role of a “plane wave”. (b) A fan of fine-scale

curvelets with different angle.
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(a) (b)

(c) (d)

Figure 8: Radiating and non-radiating wave modes for the velocity model with the Gaussian

low (Fig. 6(a)) at 30Hz. (a) The non-radiating or guided wave mode. (b) the radiating

wave mode. (c), (d) the corresponding (f-k) spectra. The ’frequency spread’ of these two

wavemodes is not significantly different.
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(a) (b)

(c) (d)

Figure 9: Compressed forward extrapolation according to W1 (cf. Eq. (18)) for different

restrictions. The velocity model corresponds to the velocity low and is plotted in Fig. 6(a).

The initial source wavefield v is plotted in Fig. 7(a). (a) The full extrapolated wavefield

u = Wv is included for reference; (b) The compressed forward propagated wavefield with

pf = 0.2 and pν = 0.0.2; (c) The same as (b) but with pf = 0.4 and pν = 0.4; (d) The same

as (b) but with pf = 0.6 and pν = 0.4. Observe that the forward propagated wavefield is

largely recovered for the restriction in (c).
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(a) (b)

(c) (d)

Figure 10: Compressed forward extrapolation according to W1 (cf. Eq. (18)) for different

restrictions. The velocity model corresponds to the velocity high and is plotted in Fig. 6(b).

The initial source wavefield v is plotted in Fig. 7(a). (a) The full extrapolated wavefield

u = Wv is included for reference; (b) The compressed forward propagated wavefield with

pf = 0.2 and pν = 0.2; (c) The same as (b) but with pf = 0.4 and pν = 0.4; (d) The same

as (b) but with pf = 0.6 and pν = 0.4. Observe that the forward propagated wavefield is

largely recovered for the restriction in (c).
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(a) (b)

(c) (d)

(e) (f)

Figure 11: Compressed inverse extrapolation according F1 (cf. Eq. (25)) for different re-

strictions. For (a-c) the velocity model is given by the Gaussian low (Fig. 6(a)) and in (d-f)

by the Gaussian high (Fig. 6(b)). The initial source wavefield v is plotted in Fig. 7(a). (a)

Inverse extrapolated wavefield for pf = 0.2 and pν = 0.2; (b) The same as (a) but with

pf = 0.4 and pν = 0.4;(c) The same as (a) but with pf = 0.6 and pν = 0.4; (d-f) the same

as (a-c) but for the velocity high. Observe that the recovery for the velocity high is slightly

better.
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(a) (b)

(c)

Figure 12: Inversion of the evanescent wavemodes according ṽm = WTu or ṽ = F1[u]

(cf. Eq. 25). The velocity model is constant at 2000ms−1. The initial source wavefield, v, is

defined in terms of a the curvelet fan plotted in Fig. 7(b). (a) The full forward propagated

wavefield u = Wv; (b) The matched filter; (c) The `1 recovery. Observe that the steep

evanescent angles are fully recovered.
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Figure 13: Lateral velocity profile for the overthrust examples.Herrmann et.al. –
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(a) (b)

Figure 14: Frequency-modal spectra for the exploding reflector model. (a) spectrum of the

exploding reflector. (b) spectrum of the forward extrapolated exploding reflector. Notice

the missing evanescent waves for (b) and the concentration of amplitudes in the area of the

guided modes at the large eigenvalues.
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(a) (b)

(c)

Figure 15: Compressed inverse extrapolation according to F1 (cf. Eq. (25)). The data u

is given by the exploding reflector data plotted in Fig. 4(a). (a) The full forward propa-

gated wavefield u = Wv; (b) the inverse extrapolated wavefield obtained through matched

filtering; (c) the compressed inverse extrapolated wavefield ṽ = F1[u] with pf = 0.35 and

pν = 0.7. Compared to the matched filter , our approach recovers most of the initial wave-

field.
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Figure B-1: Example of the alignment of curvelets with curved events.
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Figure B-2: Spatial and frequency representation of curvelets. (a) Four different curvelets

in the spatial domain at three different scales. (b) Dyadic partitioning in the frequency

domain, where each wedge corresponds to the frequency support of a curvelet in the spatial

domain. The position of its wedge in k-space dictates the scale and angle of a curvelet,

while the phase information in k-space corresponds to its physical translation. This figure

illustrates the micro-local correspondence between curvelets in the physical and Fourier

domain. Curvelets are characterized by rapid decay in the physical space and of compact

support in the Fourier space. Notice the correspondence between the orientation of curvelets

in the two domains. The 90◦ rotation is a property of the Fourier transform.

Herrmann et.al. –

72


