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Motivation
Migration generally does not correctly recover the 
amplitudes.

Least-squares migration is computationally unfeasible.

Amplitude recovery (e.g. AGC) lacks robustness w.r.t. 
noise.
Existing diagonal amplitude-recovery methods

 do not always correct for the order (1 - 2D) of the 
Hessian [see Symes ‘07]

 do not invert the scaling robustly

Moreover, these (scaling) methods assume that there
 are no conflicting dips (conormal) in the model
 is infinite aperture 
 are infinitely-high frequencies
 etc.



Curvelets & seismology



Wish list
A transform that

 detects the reflectors without prior information 
on the geologic dips

 is sparse, i.e. the magnitude-sorted coefficients 
decay fast

 is relative invariance under the demigration-
migration, i.e. sparse on migrated images

Curvelets 
 were “born” from studying high-frequency 

solution operators for wave propagation*
 diagonalization of migration operators**

*See work by Stein, Smit, Donoho, Candes & Demanet
** Main motivation for Douma & de Hoop and Chauris



Nonlinear approximation
Migrated mobil data set



Nonlinear approximation
Recovery from largest 3 %



Nonlinear approximation
Difference



Nonlinear approximation rates
Imaged Mobil data Reflectivity SEG AA’ 



Curvelets & wave propagation
Theoretical results that claim that curvelets near 
diagoanalize migration operators [Demanet et. al, de 
Hoop]

Encouraging results for constant velocity media 
[Douma & de Hoop; Chauris]

Challenge: discrete curvelets move off the grid
 interpolation
 definition of curvelet molecules [Demanet et. al, 

de Hoop]

In not so smooth media curvelets spread 
significantly ....



Sharp Model
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Major challenge. Limit ourselves to migration amplitude 
recovery!



Sharp Model
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Hessian/Normal operator
[Stolk 2002, ten Kroode 1997, de Hoop 2000, 2003]

Alternative to expensive least-squares 
migration.
In high-frequency limit     is a PsDO

 pseudolocal
 singularities are preserved

Corresponds to a spatially-varying dip filter 
after appropriate preconditioning (=> zero 
order).

Ψ
(
Ψf

)
(x) :=

(
KT Kf

)
(x) =

∫

Rd
e−ix·ξa(x, ξ)f̂(ξ)dξ



• curvelets remain invariant

• approximation improves for higher frequencies

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2: Invariance of curvelets under the discretized normal operator Ψ for a smoothly

varying background model (a so-called lens model see Fig. 4(a)). Three coarse-scale

curvelets in the physical domain before (a) and after application of the normal opera-

tor (b) in the physical (a-b) and Fourier domain (e-f). The results for three fine-scale

curvelets are plotted in (c-d) for the physical domain and in (g-h) for the Fourier domain.

Remark: The curvelets remain close to invariant under the normal operator, a statement

which becomes more accurate for finer scale which is consistent with Theorem 1. The ex-

ample also shows that this statement only holds for curvelets that are in the support of the

imaging operator excluding steeply dipping curvelets.
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Invariance under Hessian matrix



Diagonal approximation 
of the Hessian



Existing scaling methods
Methods are based on a  diagonal approximation of   .

 Illumination-based normalization (Rickett ‘02)
 Amplitude preserved migration (Plessix & Mulder ‘04)
 Amplitude corrections (Guitton ‘04)
 Amplitude scaling (Symes ‘07)

We are interested in an ‘Operator and image adaptive’ 
scaling method which

 estimates the action of    from a reference vector 
close to the actual image

 assumes a smooth symbol of     in space and angle
 does not require the reflectors to be conormal <=> 

allows for conflicting dips
 stably inverts the diagonal 

Ψ

Ψ

Ψ



• Allows for the decomposition

in Rd.

Lemma 1. With C ′ some constant, the following holds

‖(Ψ(x,D)− a(xν , ξν))ϕν‖L2(Rn
) ≤ C ′2−|ν|/2. (14)

To approximate Ψ, we define the sequence u := (uµ)µ∈M = a(xµ, ξµ). Let DΨ be the

diagonal matrix with entries given by u. Next we state our result on the approximation of

Ψ by CTDΨC.

Theorem 1. The following estimate for the error holds

‖(Ψ(x,D)− CTDΨC)ϕµ‖L2(Rn
) ≤ C ′′2−|µ|/2, (15)

where C ′′ is a constant depending on Ψ.

This main result proved in Appendix A shows that the approximation error for the

diagonal approximation goes to zero for increasingly finer scales. The approximation derives

from the property that the symbol is slowly varying over the support of a curvelet, an

approximation that becomes more accurate as the scale increases.

Decomposition of the normal operator

By virtue of Theorem 1, the normal operator can be factorized

(
Ψϕµ

)
(x) $

(
CTDΨCϕµ

)
(x) (16)

=
(
AAT ϕµ

)
(x)

with A :=
√

DΨC and AT := CT
√

DΨ. Because the seismic reflectivity can be written as a

superposition of curvelets, we can replace ϕµ in the above equation with the model m. We

15

(
Ψϕµ

)
(x) !

(
CT DΨCϕµ

)
(x)

=
(
AAT ϕµ

)
(x)

with A :=
√

DΨC and AT := CT
√

DΨ.

Approximation



• Wavelet-vagulette like [Donoho, Candes]

• Amenable to nonlinear recovery

y(x) =
(
Ψm

)
(x) + e(x)

!
(
AAT m

)
(x) + e(x)

= Ax0 + e,

Approximation



Estimation of the 
diagonal scaling 









(a) (b)

(c) (d)

Figure 5: Estimates for the diagonal ũ are plotted in (a-d) for increasing η =

{0.01, 0.1, 1, 10}. The diagonal is estimated according the procedure outlined in Table 1

with the reference and ’data’ vectors, v and b, plotted in Fig. 4(b) and 4(c). As expected

the diagonal becomes more positive for increasing η.

Herrmann et.al. –
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Diagonal estimation





Seismic amplitude 
recovery



• Final form

• Solve

y = Ax0 + ε

Recovery

with x0 = ΓCm and ε = Ae.

P :






minx J(x) subject to ‖y −Ax‖2 ≤ ε

m̃ = (AH)†x̃

with

J(x) =

sparsity︷ ︸︸ ︷
α‖x‖1 +β ‖Λ1/2

(
AH

)†
x‖p

︸ ︷︷ ︸
continuity

.
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Application to the SEG 
AA’ model



Example
SEGAA’ data:

 “broad-band” half-integrated wavelet [5-60 Hz]
 324 shots, 176 receivers, shot at 48 m
 5 s of data

Modeling operator
 Reverse-time migration with optimal check pointing 

(Symes ‘07)
 8000 time steps
 modeling 64, and migration 294 minutes on 68 CPU’s

Scaling requires 1 extra migration-demigration



Seismic Laboratory for Imaging and Modeling
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Seismic Laboratory for Imaging and Modeling

Migrated data Amplitude-corrected & denoised 
migrated data



Seismic Laboratory for Imaging and Modeling

Noise-free data Noisy data
(3 dB)

Data from 
migrated image

Data from 
amplitude-corrected 
& denoised migrated 

image



Nonlinear data



Conclusions
Curvelet-domain scaling

 handles conflicting dips (conormality assumption)
 exploits invariance under the PsDO
 robust w.r.t. noise

Diagonal approximation
 exploits smoothness of the symbol
 uses “neighbor” structure of the curvelet 

transform

Results on the SEG AA’ show
 recovery of amplitudes beneath the Salt
 successful recovery of clutter
 improvement of the continuity 
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