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SUMMARY

In this presentation, we present a nonlinear curvelet-based sparsity-promoting
formulation for the recovery of seismic amplitudes. We show that the
curvelet’s wavefront detection capability and invariance under wave prop-
agation lead to a formulation of this recovery problem that is stable under
noise and missing data.
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INTRODUCTION

In this paper, a recent application of the discrete curvelet transform (see
e.g. Candes et al., 2006; Hennenfent and Herrmann, 2006) is presented
presented that involves the restoration of migration amplitudes. Our ap-
proach derives from two properties of curvelets, namely

• detection of wavefronts (see e.g. Candès and Donoho, 2005; Can-
des et al., 2006; Hennenfent and Herrmann, 2006), without prior
information on the positions and local dips;

• relative invariance (see e.g. Candès and Demanet, 2005, and the
ancillary electronic material) of curvelets under wave propagation.

These properties render this transform suitable for a robust formulation
of data regularization the migration-amplitude recovery extending ear-
lier work (Herrmann, 2003; Herrmann et al., 2005, and the technical re-
port ”Sparsity- and continuity-promoting seismic image recovery with
curvelet frames”, submitted for publication by the same authors and Chris
Stolk). This method derives from sparsity in the curvelet domain that is a
consequence of the above properties. This sparsity corresponds to a rapid
decay for the magnitude-sorted curvelet coefficients and admits a sepa-
ration of (coherent) ’noise’ and ’signal’. This separation underlies the
successful application of this transform to exploration seismology (see
e.g. Hennenfent and Herrmann, 2006; Herrmann et al., 2007).

Sparsity promoting inversion

To exploit curvelets, (in)complete and noisy measurements are related to
a sparse curvelet coefficient vector, x0, according to

y = Ax0 + n (1)

with y a vector with noisy and possibly incomplete measurements of f ; A
the synthesis matrix that includes the inverse curvelet transform; and n,
zero-centered white Gaussian noise. The A is a wide rectangular matrix,
so the vector x0 can not readily be calculated from the measurements,
because there exist infinitely many vectors that match y.

Recent work in ’compressive sensing’ or ’stable signal recovery’ has
shown that rectangular matrices can stably be inverted by solving a non-
linear sparsity promoting program (Elad et al., 2005; Candès et al., 2006).
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Following this approach, the vector x0 can be recovered from noise-
corrupted and incomplete data. New in this approach is (i) the sparsity
promoting multiscale and multi-angular curvelet transform that obtains
near optimal theoretical (see e.g. Candès and Donoho, 2000) and empir-
ical (Candes et al., 2006; Hennenfent and Herrmann, 2006) compression
rates on seismic data and images; (ii) the theoretical understanding of
the conditions for a successful recovery. This work applies these recent
developments and involves the solution of the norm-one nonlinear pro-
gram:

Pε :

{
x̃ = arg minx ‖x‖1 s.t. ‖Ax− y‖2 ≤ ε

f̃ = ST x̃
(2)

in which ST is the inverse sparsity transform and ε, a noise-dependent tol-
erance level. This constrained optimization problem is solved to within
ε. The arg minx stands for the argument of the minimum, i.e., the value
of the given argument for which the value of the expression attains its
minimum value. The vector m̃ stands for the recovered image with the
symbol ˜ reserved for quantities obtained by optimization.

Curvelet-based seismic image recovery by sparsity and continuity
promoting inversion

Following an extension of earlier work (Herrmann, 2003; Herrmann et al.,
2005) and amplitude scaling (Rickett, 2003) – dating back to ideas by
William Symes and recently reported in the technical report “TR 06-
19: Optimal Scaling for Reverse Time Migration” technical report by
William Symes – issues with remaining unknown clutter and deterio-
rated migration amplitudes are addressed. After preprocessing, seismic
data is given by the linearized Born modeling operator, d = Km + n,
with the nonlinear signal components and measurement errors modeled
by Gaussian noise. In this data representation, K is the demigration op-
erator. By applying the adjoint (matched filter) of the modeling operator
to the data, a migrated image is created. This image, y = KTd, serves
as input to our amplitude recovery scheme, whose task it is to recover
the reflectivity, m, from ’noisy’ measurements y = Ψm+e that include
clutter, e, and the imprint of the discrete normal (demigration-migration)
operator, Ψ := KTK. To solve this problem, the following approximate
identity is used

AATr ' Ψr (3)
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with r a reference vector given by the migrated image, corrected for
spherical spreading. Above expression, is derived from an eigen-function
like decomposition of the normal operator, Ψr ' CTDΨCr in terms of
’eigenfunctions’, the rows of the curvelet transform matrix (individual
curvelets), and ’eigenvalues’, collected in the diagonal matrix DΨ. This
diagonal can be estimated from numerical implementations of the migra-
tion/modeling operators by solving a regularized least-squares problem
that uses the reference and demigrated-migrated reference vector as input
(refer to technical reports by William Symes and Herrmann). The factor-
ization in Eq. 3 is accomplished by defining the synthesis matrix in terms
of a diagonally-weighted inverse curvelet transform, i.e., A := CTΓ with
Γ :=

√
DΨ. This factorization leads to y ' Ax0 + e as the approximate

image representation that is amenable to a nonlinear solution by sparse
inversion. After solving for x0, the reflectivity is obtained by applying
the synthesis operator, ST :=

(
AT

)†, with † the pseudo inverse.

The diagonal approximation serves two purposes. It approximately
corrects the amplitudes and it whitens the colored clutter. As the results
in Fig. 1(b) indicate, a recovery with Pε, leads to a stable recovery of
the imaged reflectivity. These improvements are obtained by choosing
a penalty functional that jointly promotes the curvelet sparsity and the
continuity along the imaged reflectors, i.e., the penalty functional reads
J(x) = Js(x)+Jc(x) with Js(x) = ‖x‖1 and Jc(m) = ‖Λ1/2∇m‖2

2, an
anisotropic diffusion (see e.g. Fehmers and Höcker, 2003). This second
term penalizes fluctuations along the imaged reflectors and in regions
where the length of the gradient vector of the reference vector is small.
The rotation/weighting matrix is calculated with

Λ[r] =
1

‖∇r‖2
2 + 2υ

{(
+D2r
−D1r

) (
+D2r −D1r

)
+ υId

}
, (4)

where D1,2 are the discrete first-order derivative operators in the x1,2-
directions and υ a control parameter (see Black et al., 1998, for details).

Results for the SEG AA’ dataset are summarized in Fig. 1 and 2.
These results were obtained for data modeled with a linearized Born ap-
proximation and a two-way reverse-time migration operator, described
in the technical report ”TR 06-18: Reverse time migration with opti-
mal checkpointing” by William Symes. The recovered images show a
nice amplitude recovery and clutter removal for data with a signal-to-
noise ratio of 3 dB. Data generated from the estimated image, d̃ = Km̃
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shows a significant improvement compared to the demigrated data from
the noisy data (cf. Fig. 2(b)-2(c)). This visual improvements leads to an
improvement for the SNR.

(a)

(b)

Figure 1: Image amplitude recovery for a migrated image calculated from noisy data
(SNR 3 dB, see Fig. 2(a)). (a) Image with clutter. (b) Image after nonlinear recovery
with Pε. The clearly visible non stationary noise in (a) is mostly removed during the
recovery while the amplitudes are also restored.

DISCUSSION AND CONCLUSIONS

The presented methodology banks on two favorable properties of curve-
lets, namely their ability to detect wavefronts (the ’wavefront set’) and
their approximate invariance under wave propagation. By compounding
the curvelet transform with certain matrices, each of the recovery and
separation problems was cast into one and the same optimization prob-
lem.
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(a) (b) (c) (d)

Figure 2: Seismic ’denoising’. (a) Noisy data with SNR 3 dB. (a) Image with clutter.
(b) Data after demigrating the image with clutter (Fig. 1(a)). (c) Demigrated data data
after amplitude recovery (Fig. 1(b)). (d) The original noise-free data. Observe the
significant improvement in the data quality, reflected in an increase for the SNR.

The successful application of the curvelet transform, juxtaposed by
sparsity-promoting inversion, opens a range of new perspectives on non-
linear solution strategies for seismic data processing, wave propagation
and imaging. Because of their singular wavefront detection capability,
the curvelet transform represents in our vision the ideal domain for fu-
ture seismic exploration.
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