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Move-out error
Motivation

Primary-multiple separation step is crucial
® moderate prediction errors
= 3-D complexity & noise
Inadequate separation leads to
= remnant multiple energy
= deterioration primary energy ‘ ]
Introduce a transform-based technique
= stable o o o0 pps o000 s 100
= insensitive to moderate shift, phase rotations peveral (trace £ fateral (trace £

Exploit sparsity and parameterization transformed
domain
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The solution
The weighted norm-one optimization problem:
miny ||X|lw,1 subjectto |[y—Ax|,<e¢
Py $§§=A1X; and § =A%,
given: § and w(y,$;)
with
T
W = [Wl, Wg]
A = [C", C"]
So := predicted multiples
& = S-S,
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The problem

Sparse signal model:

y =Axo+n,
with
T
A= [Al Az] and X)) = [X()l X()2]
= augmented synthesis and sparsity vectors
® index 1 <-> primary
® index 2 <-> multiple
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Solution cont’d

The weights
W := max (0‘- QlogNa Cl|ﬁ1|)
Wy :=max (0 - /2log N, Csliis])
with

ﬁl ~ Cél

ﬁg ~ Cég

= during minimization signal components are driven
apart

® curvelet compression helps

® separates on the basis of position, scale and
direction
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= Non-adaptive Bayesian framework motivated by
results from “Blind source deconvolution”
o sparsity & decorrelation in the curvelet domain
= Adaptive curvelet-domain matched filtering

o smoothness in the phase space <=> curvelet domain

SRME predicted primaries estimated b)SLim D
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Outline

Non-adaptive curvelet domain primary-multiple
separation

= formulation of the primary-multiple separation
problem

= the curvelet transform

= Bayesian formulation, taking inaccurate
predictions into account

= Solution with iterative thresholding algorithm

Adaptive curvelet-domain matched filtering

= formulation of the SRME-base primary-multiple
separation problem

® Phase space formulation taking nonstationary
amplitude variations into account

= Curvelet-base matched filtering by imposing
symbol smoothness in phase space
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domain primary-
multiple separation

Joint work with Eric Verschuur, Deli

Wang, Rayan Saab and Ozgur
Yilmaz.

P & Q

Problem formulation
Consider measurements as the sum of
primaries, multiples and noise

b; =s;+s2+n

Given a possibly erroneous prediction for the
multiples (e.g. via SRME)

by =83 +ny

Required: To estimate and hence separate
primaries and multiples.

L \sSLIm

mmmmmmmmmmmmmmmmm

Curvelet transform

Formulate the separation problem in the curvelet
domain where both the primaries and multiples can
be modeled as sparse vectors.

Curvelets:

= |ittle plain waves, multiscale and multidirectional,
optimal for detecting wavefronts

® sparse on primaries and multiples

® parameterized by position, angle and scale
(frequency band)
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Curvelet transform

100+

200=

Samples

400+

500 =

050 —

W<

Yy

ws

100 2ho 300 ) 500 - : .
Samples 1

Problem formulation
revisited

Let A = CT be the inverse Curvelet
transform.

Let x; and x» be the curvelet coefficients of
the primaries and multiples, respectively.

Write for the forward model

by =8y +ny, — by =Ax9+ny
b;=s1+sc+n — b;=Ax;+n—n,.
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Problem formulation
revisited

Objective:

To estimate the primaries and multiples by
estimating their curvelet coefficients.

Method:

® derive variational problem forx; and xs with a
Bayesian formulation.

B impose sparsity as a prior on the coefficients

® solve for the coefficients to fit the data and the
prior
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Maximum A posteriori estimation

We want to maximize P(x1, x1|b1, ba)

Apply Bayes' rule

P(X]_,XQ‘b]_,bQ) — P(Xl,Xz)P(blg‘EBii))S(bz|b1,X17X2)

P(X;,X2)P(N)P(Ny7)
P(by,by) ’

.... bottom line worry about the numerator:

arg maxx; , x, P(x1,x2|b1,bs) = arg maxx; , x, P(x1,%x2)P(n)P(ny).
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Key assumptions

Curvelet coefficients of seismic data are sparse,
i.e., mostly close to zero with few important non-
zero coefficients,

= reasonable distribution to impose as a prior on
the curvelet coefficients is a Laplacian/Cauchy
distribution < ||x||1

= noise and prediction errors are modeled as
Gaussian noise <= ||b — Ax||»

Optimization problem

Rewrite,

arg maxxy, x, P(X1,%z2|b1, ba) = arg minx, , x, f(x1,X2)

We want to minimize:

flxi,x2) =[xl w, HlIxaell; w, + [Ax2 —ball3
+n||A(x1 + x2) — (b1 + ba)|13,

with the weights:
W1 = Al‘ATbQ‘

Wo = )\Q‘ATbl‘

Optimization problem
properties

Control parameters:
= 77 controls the tradeoff between fitting the total
data and fitting the predicted multiples
n— 0 <= denoise multiples

n— oo <= old formulation

= 7 controls trust in the prediction versus total data

A1 and Ay control the sparsity of the coefficient
vectors of the primaries and multiples

" ratio A\ versus n controls sparsity versus data
mismatch

Separation algorithm

Minimize the objective function with the iterative
algorithm:

G = Sw, (ATby - ATAxE + ATy — ATAX] + )
2n
gt =S w, [ATby — ATAXS + x5 + ;17 (ATby — ATAXY)]
n

where
Sa,, (vu) = sgn(vy,) - max(0, [v,] — |ayl)

is the elementwise soft thresholding operator.

Provably this converges for positive weights.
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250

250

ill curvelet il curvelet
Il thresholded il estimated

2000 O 1000 2000 O 1000 /s

SRME
predicted
primaries

250

2000 O

estimated
primaries

1000 J;

Real example
250

SRME
predicted
primaries

0 2000 0 1000 4)SLim

|
[
|

l
it
f

0 2000

“;"

0

1000




Real example _
Observations

Inclusion of the additional equation for the
predicted multiples prevents zero solutions for
either signal component.

curvelet
estimated

975

Formulation based on a solid Bayesian argument.
The algorithm provably converges.

Method is not adaptive but gives control over

= denoising the multiples versus solving the old
problem

B gparsity versus data fit

® tradeoff trust in prediction versus trust in total

data
0 2000 0 1000 ) 2kAm. ) 2kam.

Motivation

Kinematics are generally well predicted.
Non-adaptive curvelet-domain separation adds

domain matched

5 : robustness.
f| Ite” ng Large errors in the location, dip and amplitude of
NS the predicted multiples remain a problem.

Joint work with Deli Wang, Cody

Present an adaptive curvelet-domain separation
Brown and Peyman Moghaddam p P

based on matched filtering which assumes that
= the “seismic wavelet” has been removed
® the variations in the multiple predictions versus
A B the true multiples vary slowly in phase space
3' & ‘ = kinematics are roughly correct
Design a technique that exploits the invariance of
curvelets under a certain class of operators. L)sLim

V) Seismic Labaratory for




Multiple prediction
SRME

SRME-multiple prediction
Ap — Ih(l)(s,r, t) = (APA Ktz Ap) (s,7,t)

with
Ap = vector with the primaries
m = vector with predicted first-order multiples
AP = Fblock diag{Ap}F
F = temporal Fourier transform
A = inverse wavelet.

In practice,p — Ap, P — AP, with p the total data,
SO

m® ~ PAp

Multiple prediction
SRME

Matched filter

a = argmin |[p — a x mV|,
a

yielding

Ap = p-axm®

A = block diag{a}

for each offset.

Problem

Assumes the filter to be stationary (diagonal in
Fourier space)

Source characteristics may change with offset.
Wavelet changes as a function of (s,r,t).

Windowed matched-filtering techniques have been
proposed

= window sizes arbitrary
® under fit (remnant primary energy)
® over fit (removal of primary energy)

® no control over the variations of the estimated
filters amongst different windows

Propose a curvelet-domain matched filtering
approach.

Curvelet-domain matched
filtering
Naive solution,

u = argmin ||p — P[v]ull2
u

with

u = curvelet coefficients of the matched multiples
P[v] = operator dependent onv

v = curvelet coefficients of th*)

® nonlinear is a problem
® underdetermined
® no control over estimated coefficients




Curvelet-domain matched
filtering

Assume,

m® — Bm®

Operator decomposition

B=Av
with

(U1)@) = [ e alw. ) (€)a

a zero-order Pseudodifferential operator.

Curvelet-domain matched
filtering

Motivated by related work

= “Prediction of internal multiples” by F. ten Kroode
who introduces an obliquity factor.

= “A method for inverse scattering based on the
generalized Bremmer coupling series” by A.
Malcolm and M. de Hoop who introduce introduce
certain weighting factors

= “Amplitude and kinematic corrections of migrated
images for nonunitary imaging operators” by A.
Guitton & “Optimal Scaling for Reverse Time
Migration” by Symes who introduce a diagonal
smooth scaling.

Curvelet-domain matched
filtering

Observe that “classical” matched filter
® absorbs the seismic wavelet

= deals with stationary phase rotations (Hilbert) and
differential operators (derivatives)
® yields an inverse wavelet that is
of compact support in the time domain
smooth in the Fourier domain

Reasonable to assiume

m® — Bm®
= ATm
= vAn®
= om)
with ¥ a zero-order PsDO. ()L

Curvelet-domain matched
filtering

From work on migration amplitude recovery we
have

Theorem 1. The following estimate for the error holds
I(¥(2, D) = CTDyC)pyl| oy < C"27 /2,

where C" is a constant depending on V.

Allows for a curvelet domain diagonalization of ¥,

m® = C"diag{a}Cm"




Curvelet-domain matched
filtering

Solve
u = arg min [|p — P[v]ul|2
with "
u curvelet coefficients of the matched multiples
Plv] = C'diag{v}
v = curvelet coefficients of rhél)
remains

® underdetermined system
® no control on the smoothness of the coefficients

Assume symbol «(z,() to be smooth!
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Curvelet-domain matched
filtering
Solve
1
@ = argmin o||b — Pull3 + n*|[Lull3
with

L=[D; D; Dy]

equivalent to

Curvelet-domain matched
filtering

Procedure

Calculate: v = Crh(()l).

Set: 17 = Nmin;

while 3 (4,),em < 0 do
Solve
@ = arg miny 3 [p — Pul3 + 77| Lul3
Increase the Lagrange multiplier
A=n+An

end while

New estimate for the primaries

Ap = p-TAmY
~ p-Pu

L \sSLIm
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or
Au=>b
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Curvelet-domain matched
filtering
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Curvelet-domain matched
filtering

Estimated diagonal (Lambda=0.25)
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Curvelet-domain matched
filtering

Estimated diagonal (Lambda=0.75)
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filtering

Estimated diagonal (Lambda=0.5)
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Curvelet-domain matched
filtering

Estimated diagonal (Lambda=0.9)
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Curvelet-domain matched
filtering

Estimated diagonal (Lambda=1.0)
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Receiver Location(m)
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Synthetic example
conventional matched filter
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Synthetic example
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Synthetic example
conventional matched filter
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Synthetic example
curvelet-based estimate for primaries
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Synthetic example _
curvelet-based estimate for primaries Observations

Receiver Location(m) .
0 1000 2000 3000 . 4000 5000 Smoothness penalty on the curvelet coefficients

= behaves as expected (becomes positive)

Alternative to Bayesian-based separation.
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Curvelet-based Multi-term Multiple
subtraction

Most of the application of surface-related multiple attenuation are 2D

D iff r a Ct i O n Most of 3D effects come from diffractive structures

Split the data into a specular and a diffraction part can handle 3D effects

Multiple prediction scheme can be rewritten as:

M = [APT + APd] [Pr + Pd]
and we get four terms multiples: Where:

M,, = AP,P,
M,q = AP, Py
M, = AP,P,
My = APPy I\sLim

mmmmmmmmmmmmm

T . represent reflection part

d : represent diffraction part




Curvelet-based multi-term multiple
separation

Offset (m) Offset (m) Offset (m)
1000 2000 3000 4000 1000 2000 3000 4000 1000 2000 3000 4000

SLIM
g vooeing

a) Total data b) Specular reflections ¢) Diffractions

Curvelet-based multi-term multiple
separation

CMP number
600

sSLImM
g ooy

Curvelet-based multi-term multiple
separation
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Curvelet-based multi-term multiple
separation
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Curvelet-based multi-term multiple
separation

CMP number
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) ' My, = PP,

Stack section of the third-term multiples

Curvelet-based multi-term multiple
separation
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Stack section of the fourth-term multiples

Curvelet-based multi-term multiple
separation
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Curvelet-based multi-term multiple
separation

Curveletl—4 lambda=1.25

Multi-term
subtraction
estimated
primaries
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Observations
Single-threshold based separation with multiterm
prediction

Each term is handled separately

Improved multiple separation compared to the “all
in one separation”

Increased flexibility to handle 3-D diffractions
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Curvelet-based multi-term multiple
separation
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