Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2018 SINBAD consortium - SLIM group @ The University of British Columbia.

Design and specifications for SLIM's software framework

Road map and progress

SLIM group at UBC EOS

August 2006

About

Typical approaches to do seismic imaging

Our way: Python OOP instead of scripting

SLIM software distribution for SINBAD

What is typically used?

Seismic Tools

RSF, Seismic Unix, SEP, Delphi
Higher-level languages like Matlab
Scripting tools:
Unix shells, Perl, Python, etc.
Matlab, SCons

What is the problem?

Long-learning process – one has to learn a variety of tools and their specific details

© Cumbersome and slow development using inadequate, often low-level programming tools

Implementation details hard-coded into the applications
Low-level of abstraction and reusability
Serial code

Typical developer / user

How to avoid the tragedy? ANAS

An ANA is a numerical algorithm that can be expressed abstractly solely in terms of vectors, vector spaces, and linear operators (i.e. not with direct element access).

Seismic packages

Similarities: sffdct2 < in.rsf > out.rsf (RSF)
out-of-core UNIX command-line operators
operations on UNIX pipes
ability to combine operators using UNIX pipes
serial

Ø Differences:

👁 data formats

Where do we go? Simplicity: $y = A^* x + b$ (Matlab/Mathematica) Abstract Numerical Algorithms (ANA) Ø Vectors / Arrays Operators (Matrices) O Universality In hidden details of abstract objects/algorithms Inden serial-parallel implementation Reusability

How do we get there? OO Abstraction

Python object-oriented interface:

Abstract Data Types for seismic data
Abstract Operators for seismic-tools commands

Abstract Numerical Algorithms

How do we get there? Implementation

- Python wrappers for Python/C++ interfaces to specific seismic-data formats (vectors)
- Python-interface wrapper for specific commands of seismic tools (operators)
- Above implementation details hidden from ANAs and the user
- Choice of serial or parallel algorithm

"Where do we go" Benefits

Faster learning curve
Faster prototyping and development
Easy implementation of new seismic tools
Reusability

Independent of software licenses

Our tools of choice

RSF (for seismic tools development)
Python (for OO ANA/user interface)
NumArray for internal arrays
PyPar for parallel execution
PETSc (for distributed overlapping data)

Software development at SLIM

Command-line operators (SLIM contribution to RSF)
SLIMpy
OO Python interface to seismic packages
parallel algorithms for distributed data
involving data communication
embarrassingly parallel

SLIM for SINBAD Software components

CurveLab extension (CurevLab 2.0)
Extensions to RSF (rev 1808)
SLIMpy suite (OO Python interface to command-line based seismic tools)

SLIMpy components

Core
ANAs (algorithms)
Applications
Demos

SLIMpy core

Out-Off-Core objects with RSF support

👁 serial

@ parallel

ø window decomposition

embarrassingly parallel

SLIMpy core - cont.

Support for other seismic packages
Sparse matrix representation
Differential operators
Link to external solvers like Trylinos

SLIMpy ANAs

- blocksolver.py: Primary-multiple separation through a block relaxation
- Iandweber.py: Generalized Thresholded Landweber
- Conjugate Gradient
- Least SQuares (linear) Regression (LSQR)
- Stage-wise Orthogonal MAtching Pursuit (STOMP)

SLIMpy ANAs

 Ground Roll Prediction and Removal Through Morphological Component Analysis

New detection-estimation Scheme:

O Detection with Sparse spike De-convolution

Setimation with Image Appearance Manifolds (IAM)

Seismic image recovery

© Diagonal approximation of migration operator

Wave-atom transform

SLIMpy applications

Indise.py: 2D de-noising using Landweber method

- Interpolation.py: 2D/3D interpolation using a sparsity constraint in a transform domain
- pm_separation.py: primary-multiple separation
- pm_separation_noise.py: primary-multiple separation with de-noising

All of above are included in SLIMpy demos

Software distribution

https://wave.eos.ubc.ca/Software/SINBAD/

SSL protected data transfer

Access for either:

o users with password

ø designated IPs

WARNING: YOU are the beta tester

SLIMpy is actively developed

released version is only alpha tested

there is a number of SLIMpy features that are under development

only parts of the code that are used in ANAs, apps, and demos are tested

If you ever feel like that:

Software support

Mailing lists:

SLIM2RSF-user:

http://slim.eos.ubc.ca/mailman/listinfo/slim2rsf-user

SLIMpy-user

http://slim.eos.ubc.ca/mailman/listinfo/slimpy-user

Summary

SLIM software development paths:
new algorithms for seismic imaging
command-line based seismic tools
SLIMpy

SLIM software distribution for SINBAD memebers

