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seismic data, in order to obtain accurate quantitative results on the number of transitions,
their locations and amplitudes. This problem has recently received increasing interest, and
several methods have been proposed in order to find and locate the predominant reflectors
in the subsurface [13]. Attempts made by Harms and Tackenberg [5] and later by Herrmann
et al. [6, 8], include attributes analysis and multiscale and monoscale analysis of seismic
data.

1.2 Model for seismic transitions

Significant variations in the Earth’s properties over the length-scale of the seismic wavelet
create singularities in the subsurface and make seismic waves reflect. These singularities
occur at transitions between layers, and are typically modeled by zero-order discontinuities
(e.g. step functions). However, multiscale analysis on sedimentary records (vertical profiles
of the broadband fluctuation of the elastic properties) done by Herrmann et al. [6], revealed
the existence of accumulations of varying order singularities in the subsurface, which give
rise to any fractional-order discontinuity. The different types of transitions correspond to
the different materials in the Earth and to the various ways those materials mix together
at the transitions. As an example, the transition between sandstone and red mudstone is
smoother (more materials mix together at the transition) than the limestone-on-sandstone
transition, as limestone is a harder rock.

1.2.1 The seismic reflectivity

The mathematical model

Like Herrmann et al. [9], we extend the usual zero-order transition model to any fractional-
order transition, modeled by the causal and anticausal fractional splines (also called frac-
tional onset functions):

Causal: χα
+(x) =

{
0 if x < 0

xα

Γ(α+1) if x ≥ 0
, (1.1)

Anticausal: χα
−(x) =

{
(−x)α

Γ(α+1) if x ≤ 0
0 if x > 0

. (1.2)

where α ∈ R and Γ is the Gamma function defined as: Γ(x) =
∫∞
0 txe−tdt for x ∈ R. Causal

and anticausal fractional splines are linked together by the following relationship:

∀x ∈ R , χα
−(x) = χα

+(−x),

Mathematically, the fractional numbers α specify the regularity of the fractional splines, as
they coincide with their Lipschitz exponent. Each of these fractional splines is Lipschitz α,
where the Lipschitz regularity is defined as:

Definition 1.2.1 (Lipschitz regularity [14])
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Figure 1.2: Anticausal fractional splines with different fractional-orders

Let N be the length of the the vector χ+
α and define:

B+
α =

{
vi

}

1≤i≤N
, such that ∀1 ≤ n ≤ N , vi(n) = χα

+(n− i+1) , where χα
+(n) = 0 ∀n ≤ 0

It is easy to prove that for any α ≥ 0, B+
α is a basis. See proof in Appendix ??. A similar

argument is used to show that B−α is a basis.

Transitions and reflectivity

Let f be the function that represents the transitions as a superposition of fractional splines:

f(z) =
∑

i

aiχ
αi
± (z − zi), (1.3)

where z corresponds to the depth in the subsurface, and zi the location of the ith transition
in the subsurface. By differentiating f , given by (1.3), we obtain the seismic reflectivity r,
as

r(z) =
∑

i∈ΛC

Kiχ
αi−1
+ (z − zi)−

∑

i∈ΛA

Kiχ
αi−1
− (z − zi), (1.4)

where Ki = αiaiΓ(αi)
Γ(αi+1) , and ΛC and ΛA are the sets of indices for the transitions with causal

and anticausal discontinuities respectively.

1.2.2 The seismic source function

In most geophysical surveys, and especially those using explosive sources, the seismic source
function ψ is unknown, and is typically modeled by the Ricker/Mexican hat wavelet (op-
posite sign of the second derivative of the Gaussian). We relax this model and discuss
assumptions on the seismic source function. In the rest of the paper, we will only use the
name Ricker wavelet. We first introduce some definitions. Following Unser et al. [17], an

6



−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Locations

Am
pl

itu
de

s

(a) Transitions: α between 0 and 1

−1 −0.5 0 0.5 1
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Locations

Am
pl

itu
de

s

(b) Seismic signals with Ricker

order 0

order 1

order 0.1

order 0

order 1

order 0.1

Reflectivity Models

0 0.5 1
0

0.01

0.02

0.03

0.04

0.05
alpha = 0

0 0.5 1
0.02

0.025

0.03

0.035

0.04

0.045
alpha = 0.1

0 0.5 1
0.02

0.025

0.03

0.035

0.04

0.045
alpha = 0.3

0 0.5 1
0.02

0.025

0.03

0.035

0.04

0.045
alpha = 0.5

0 0.5 1
0.025

0.03

0.035

0.04

0.045
alpha = 0.75

0 0.5 1
0.025

0.03

0.035

0.04

0.045
alpha = 1

0 0.5 1
0.03

0.031

0.032

0.033

0.034

0.035
alpha = 2

0 0.5 1
0.0312

0.0312

0.0313

0.0313

0.0313

0.0313

0.0313
alpha = 4.3

Figure 1.2: Anticausal fractional splines with different fractional-orders

Let N be the length of the the vector χ+
α and define:

B+
α =

{
vi

}

1≤i≤N
, such that ∀1 ≤ n ≤ N , vi(n) = χα

+(n− i+1) , where χα
+(n) = 0 ∀n ≤ 0

It is easy to prove that for any α ≥ 0, B+
α is a basis. See proof in Appendix ??. A similar

argument is used to show that B−α is a basis.

Transitions and reflectivity

Let f be the function that represents the transitions as a superposition of fractional splines:

f(z) =
∑

i

aiχ
αi
± (z − zi), (1.3)

where z corresponds to the depth in the subsurface, and zi the location of the ith transition
in the subsurface. By differentiating f , given by (1.3), we obtain the seismic reflectivity r,
as

r(z) =
∑

i∈ΛC

Kiχ
αi−1
+ (z − zi)−

∑

i∈ΛA

Kiχ
αi−1
− (z − zi), (1.4)

where Ki = αiaiΓ(αi)
Γ(αi+1) , and ΛC and ΛA are the sets of indices for the transitions with causal

and anticausal discontinuities respectively.

1.2.2 The seismic source function

In most geophysical surveys, and especially those using explosive sources, the seismic source
function ψ is unknown, and is typically modeled by the Ricker/Mexican hat wavelet (op-
posite sign of the second derivative of the Gaussian). We relax this model and discuss
assumptions on the seismic source function. In the rest of the paper, we will only use the
name Ricker wavelet. We first introduce some definitions. Following Unser et al. [17], an

6

1.2.3 The seismic signal

Medium variations in the subsurface present a distinct directional preference along the
vertical. Subsurface media are therefore described by their vertical slowness q [9]:

q(z) =

√
1

v2(z)
− p(z)2, (1.12)

where z ∈ R+, v is the velocity, and p is the ray parameter defined by p(z) = sin(θ)
v(z) with

angle of incidence θ. To leading order, the seismic signal s measured at the surface can be
formulated as the convolution of the reflectivity r and the seismic source function ψ̃ [9] as

s(z) =
2q̄(p̄)

π
(r ∗ ψ̃)(z). (1.13)

Here q̄ is the slowness for a constant velocity v̄ defined by q̄(p̄) =
√

1
v̄2 − p̄2, p̄ is the ray

parameter for a constant velocity p̄ = sin(θ)
v̄ , and ∗ denotes the convolution operator. The

source function ψ̃ is given by Herrmann [9] to be:

ψ̃(z) = [D2q̄(p̄)ψ](z),

where D2q̄(p̄) is the dilation operator defined by [D2q̄(p̄)ψ](z) = ψ(2q̄(p̄)z), for z ∈ R+.
To a good approximation, we can assume a constant velocity medium with constant ray

parameter. Under these assumptions, s can be written as

s(t) = (r ∗ ψ)(z) (1.14a)

=
∑

i∈ΛC

Kiχ
αi−1
+ (z − zi) ∗ ψ(z)−

∑

i∈ΛA

Kiχ
αi−1
− (z − zi) ∗ ψ(z), (1.14b)

where r is given by equation (1.4). Under some particular assumptions, s can be written
as a superposition of fractional derivatives/integrations of the seismic wavelet ψ, where the
definition of fractional differentiation is given by Liouville in his generalization of differen-
tiation for fractional-orders:

Definition 1.2.2 (Fractional Derivatives) Let f be a tempered distribution in S(R) and
χα−1

+ be the causal fractional spline:
The fractional derivative of f of order α is defined as:

Dαf = χ−α−1
+ ∗ f,

where the convolution has to be taken in the sense of distributions.

Under the condition that the orders αi given in equation (1.14b) are all non integers, and
that the seismic wavelet is either even or odd, we can write:

χαi−1
+ (z − zi) ∗ ψ(z) = CiD

−αiψ(z − zi) (1.15)

and

8



 Detect the events (DD)
 Isolate the events
 Characterize windowed events (DE)

Detection-Estimation method

like Basis Pursuit [2] and translates into

minci

‖ci‖1 subject to si = Φeci. (1.3)

The coefficients in the sparse representation ci correspond to waveforms in De whose parame-

ters α constitute estimates for the fractional-orders of si. The final step collects the different

waveforms and associated fractional-orders pertaining to each signal component si into a global

vector describing the complete seismic signal s. The global vector contains the fractional-orders

of all the reflection events of the total seismic signal s. The following figure shows the main

steps of our detection-estimation method.

1 2 3 4

s

α1 α4α3α2

s1 s2 s3 s4
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4.2 4.24.24.2

4.1

4.1.4

Figure 1.1: Detection-estimation method. The numbers 4.1, 4.1.4 and 4.2 refer to the sections
where the particular topic is explained in detail.

6

δσi for each decay. Both β and δ depend on the data and should be modified accordingly. Our

current choices for these parameters come from numerical experiments, and seem well suited to

our type of data.

By multiplying the signal s by each window Wi, we partition s into its prevailing components

si, where si ∈ Rn. The multiplication between the signal s and the window Wi is done compo-

nentwise, such that

∀ 1 ≤ k ≤ n , si(k) = s(k)Wi(k). (4.14)
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Figure 4.2: The top plot shows the signal and the window applied to one detected event. The
bottom plot shows the windowed event.

Each signal si is now a simple and localized signal assumed to be a superposition of a small

number of atoms. We show an example of a windowing in Figure 4.2. The top plot shows the

signal and the window applied to one detected event. The bottom plot shows the windowed

event.
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Looking for components 
of dictionary that are 
best correlated to data



 Introduced a two-stage detection-estimation 
approach [C.M.Dupuis & F. Herrmann’05]

 Detection ⇔ spiky decon. for non-spiky reflectivity
 detect and isolate the main reflection events

 Estimation ⇔ characterization of reflectors
 scale exponents
 elastic properties end-members binary members
 percolation threshold and exponent

 Worked on new estimation methods to 
characterize the fine-structure of reflectors

Brief  history



Sparse Spike Deconvolution 
[Dossal and Mallat ‘05]

for Detection 
[ChaRM]



 Used as a part of our Detection-Estimation approach
 Need of accurate (not exact) recovery

 Detecting major events (main cluster)
 fractional order of differentiation 

 two wavelet next 
to each other

 one derivative of wavelet

Time sample

Singuarities with order(!) of 0 to 2

α=0

α=0.25

α=2

α=0.5

Utilizing Spike Decon.
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 Widely used in geophysical inversion
 Singularity order of one (α=0)
 Efficiency analysis for seismic data [Dossal-Mallat]

Deconvolution Method

Y = ψ " R + W.

R =
∑

i∈S

aiδi

R = arg min
f

1
2
‖Y − ψ " f‖2

2 + γ‖f‖1.



 Deconvolution without noise
 Similar analysis for noisy data

 Minimum scale

Efficiency Analysis
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∆ = min
(i,j)∈S2

‖i− j‖.

R = arg min ‖f‖1 with ψ " f = Y.



 Dictionary = Matrix whose Columns are:

 Weak Exact Recovery Coefficient (WERC)

Efficiency Analysis (cont’d)

D = [gi = ψ " δi for 1 ! i ! N ].

WERC(S) =
β

1− α
, where S ⊂ {1, ..., N}.

α(S) = sup
i∈S

∑

k∈S,k "=i

|< gk, gi >|! 2
∑

k

φ(k∆0)

β(S) = sup
j /∈S

∑

k∈S

|< gk, gj >|! max
j!∆0

(φ(j) + φ(∆0 − j)) + α(S)



StOMP:
a fast L1 solver

[Donoho et. al. 06]



 Strong equivalence of₰0 and₰1

 for given A, ∀x0  P1(y,A)→Unique sparsest Solution 

 Weak equivalence of₰0 and₰1

 equivalence holds for the typical sparse x0

 L0 - L1 Equivalency

‖x‖0 <
1
2
√

N



StOMP Solver
 For (under)determined systems of equations

 Assumes additive Gaussian noise for non-zero 
entries

 Numerous terms enter at each thresholding stage 
and have fixed number of staged.

 Approximation to the sparsest solution over a 
region of the sparsity/indeterminacy plane

✦ Our Case 
 Determined System : A(N×N)

 Mixing by random spike train
 Random locations
 Random amplitudes



Algorithm Flowchart
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Figure 1: Schematic Representation of the StOMP algorithm.

performance.

3.1 The Procedure

StOMPoperates in S stages, building up a sequence of approximations x0, x1, . . . by removing detected
structure from a sequence of residual vectors r1, r2, . . . . Figure 1 gives a diagrammatic representation.

StOMPstarts with initial ‘solution’ x0 = 0 and initial residual r0 = y. The stage counter s starts at
s = 1. The algorithm also maintains a sequence of estimates I1, . . . , Is of the locations of the nonzeros
in x0.

The s-th stage applies matched filtering to the current residual, getting a vector of residual correlations

cs = ΦT rs−1,

which we think of as containing a small number of significant nonzeros in a vector disturbed by Gaussian
noise in each entry. The procedure next performs hard thresholding to find the significant nonzeros; the
thresholds, are specially chosen based on the assumption of Gaussianity [see below]. Thresholding yields
a small set Js of “large” coordinates:

Js = {j : |cs(j)| > tsσs};

here σs is a formal noise level and ts is a threshold parameter. We merge the subset of newly selected
coordinates with the previous support estimate, thereby updating the estimate:

Is = Is−1 ∪ Js.

We then project the vector y on the columns of Φ belonging to the enlarged support. Letting ΦI denote
the n× |I| matrix with columns chosen using index set I, we have the new approximation xs supported
in Is with coefficients given by

(xs)Is = (ΦT
Is

ΦIs)
−1ΦT

Is
y.

The updated residual is
rs = y − Φxs.

We check a stopping condition and, if it is not yet time to stop, we set s := s + 1 and go to the next
stage of the procedure. If it is time to stop, we set x̂S = xs as the final output of the procedure.

Remarks:

4

Js = {j : |cs(j)| > tsσs}
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 Test Settings:
 A: Convolution with cosine bump
 Signal length : 512
 No. of spikes (K) : 20
 Dynamic range setting
 ∆ values : 13
 scale values : 30

 L0 norm to show the error
 L2 could also be used 

Recovery Phase Diagram
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Cosine Bump Convolution with Spike Train (StOMP), N=512

 

 
Original
Recovered

Length of Signal : 512
Number of Spikes : 30
Min & Max Spacing : 5,74
Bump/Wavelet Scale : 1
Regular , Uniform : 0,0

StOMP Solving Time : 1.6
StOMP Stage : 12
L2 Nrom(x) : 31.13
% L0 Error : 1.867
% L2 Error : 0.07104

1: Accurate Recovery
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Original
Recovered

Length of Signal : 512
Number of Spikes : 30
Min & Max Spacing : 6,57
Bump/Wavelet Scale : 0.85
Regular , Uniform : 0,0

StOMP Solving Time : 1.75
StOMP Stage : 10
L2 Nrom(x) : 30.47
% L0 Error : 2.3
% L2 Error : 0.5451

2 : Partial Recovery
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Original
Recovered

Length of Signal : 512
Number of Spikes : 40
Min & Max Spacing : 8,20
Bump/Wavelet Scale : 0.65
Regular , Uniform : 0,0

StOMP Solving Time : 0.01
StOMP Stage : 2
L2 Nrom(x) : 38.67
% L0 Error : 1
% L2 Error : 1

3: Unrecoveralbe



Analysis w.r.t. 
 wavelet type
 wavelet width/scale
 Minimum distance (∆)
 Solver

 Stagewise Orthogonal Matching Pursuit (StOMP)
 Basis Pursuit (BP)

 Different synthesis and analysis wavelets

Spike Decon. Analysis Scheme

A ∗ x = y
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Cosine Bump Convolution with Spike Train (Scaled BP), N=512
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Length of Signal : 512
Number of Spikes : 30
Min & Max Spacing : 5,74
Bump/Wavelet Scale : 1
Regular , Uniform : 0,0

BP Solving Time : 0.15
L2 Nrom(x) : 31.13
% L0 Error : 16.07
% L2 Error : 0.9992
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Ricker Wavelet Conv. with Spike Train (StOMP), N=512
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Length of Signal : 512
Number of Spikes : 30
Min & Max Spacing : 5,60
Bump/Wavelet Scale : 1
Regular , Uniform : 0,0

StOMP Solving Time : 0.55
StOMP Stage : 5
L2 Nrom(x) : 34.48
% L0 Error : 0.8667
% L2 Error : 4.568e−16
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Ricker wavelet Conv. with Spike Train (Scaled BP), N=512
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Length of Signal : 512
Number of Spikes : 30
Min & Max Spacing : 5,60
Bump/Wavelet Scale : 1
Regular , Uniform : 0,0

BP Solving Time : 0.34
L2 Nrom(x) : 34.48
% L0 Error : 16.07
% L2 Error : 0.9993
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Length of Signal : 512
Number of Spikes : 30
Min & Max Spacing : 7,8
Bump/Wavelet Scale : 1
Regular , Uniform : 1,0

StOMP Solving Time : 1.45
StOMP Stage : 12
L2 Nrom(x) : 31.83
% L0 Error : 1.467
% L2 Error : 0.05429
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Length of Signal : 512
Number of Spikes : 30
Min & Max Spacing : 7,8
Bump/Wavelet Scale : 1
Regular , Uniform : 1,0

BP Solving Time : 0.1
L2 Nrom(x) : 31.83
% L0 Error : 16.07
% L2 Error : 0.9992
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Length of Signal : 512
Number of Spikes : 30
Min & Max Spacing : 5,46
Bump/Wavelet Scale : 1
Regular , Uniform : 0,1

StOMP Solving Time : 0.01
StOMP Stage : 2
L2 Nrom(x) : 54.77
% L0 Error : 1
% L2 Error : 1
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Length of Signal : 512
Number of Spikes : 30
Min & Max Spacing : 5,46
Bump/Wavelet Scale : 1
Regular , Uniform : 0,1

BP Solving Time : 0.11
L2 Nrom(x) : 54.77
% L0 Error : 16.07
% L2 Error : 0.9992
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Length of Signal : 512
Number of Spikes : 12
Min & Max Spacing : 5,89
Bump/Wavelet Scale : 1
Regular , Uniform : 0,1

StOMP Solving Time : 0.08
StOMP Stage : 3
L2 Nrom(x) : 34.64
% L0 Error : 0.5
% L2 Error : 8.075e−14
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Length of Signal : 512
Number of Spikes : 12
Min & Max Spacing : 5,89
Bump/Wavelet Scale : 1
Regular , Uniform : 0,1

BP Solving Time : 0.11
L2 Nrom(x) : 34.64
% L0 Error : 41.67
% L2 Error : 0.9992
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Length of Signal : 512
Number of Spikes : 25
Min & Max Spacing : 13,37
Bump/Wavelet Scale : 0.667
Regular , Uniform : 0,0

StOMP Solving Time : 1.43
StOMP Stage : 9
L2 Nrom(x) : 28.35
% L0 Error : 3.16
% L2 Error : 0.1873
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Recovered

Length of Signal : 512
Number of Spikes : 25
Min & Max Spacing : 13,37
Bump/Wavelet Scale : 0.667
Regular , Uniform : 0,0

BP Solving Time : 0.13
L2 Nrom(x) : 28.35
% L0 Error : 19.48
% L2 Error : 0.9992



Deconv. Summary
 Signal with length of 512 samples

Wavelet Scale K  ∆ Recovery

Cosine Bump 1 30 5 +

Ricker wavelet 1 30 5 +

Cosine Bump,

Regularly spaced
1 30 7 +

Cosine Bump,
Uniform Amp.

1 30 5 0

Cosine Bump,

Uniform Amp.
1 12 5 +

Cosine Bump 2/3 25 13 0
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 Varying Parameter: θ∈Θ (Dimension: d)
 Image function model:
 IAM :

 1-to-1            Relation
 F is Square integrable:

 Non-Lipschitz relation → manifolds with Φs , s >0

Image Manifolds [Wakin’06]
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Figure 1. Simple image articulation models. (a) Parameterization of translating disk image fθ. (b) Parameterization
of a wedgelet. (c) Parameterization of a polynomial horizon. (d) Simulated photograph of a 3-D icosahedron.

parameter in 3 specifying the location of the object in a scene; an orientation parameter in SO(3) specifying
its pose; or an articulation parameter specifying, for a composite object, the relative placement of mobile
components. We let d denote the dimension of θ.

The image formed with parameter θ is a function fθ : 2 !→ ; the corresponding family is the image
appearance manifold (IAM) F = {fθ : θ ∈ Θ}. The equation I = fθ is our way of saying that the observed
image I is a particular member fθ of the family, with underlying parameter θ. We assume that the relation
θ !→ fθ is one-to-one.

The set F is a collection of functions, and we suppose that all of these functions are square-integrable:
F ⊂ L2( 2 ). Equipping F with the L2 metric, we induce a metric on Θ

µ
(
θ(0), θ(1)

)
= ‖fθ(0) − fθ(1)‖L2 . (1)

Assuming that θ !→ fθ is a continuous mapping for the L2 metric, M = (Θ, µ) is a metric space.

2.2. IAM examples
We will use a range of models to illustrate the structural phenomena of IAMs and highlight the basic
challenges that can arise in image processing. Similar models are discussed in [10, 11]; the most elaborate
such involve combining models to create, for example, articulating cartoon faces.

2.2.1. Articulations in the image plane

The simplest IAMs are formed by articulating cartoon shapes within the image plane. First, consider
translations of an indicator function in the image plane. Let f0 be an indicator function in 2 — a disk,
ellipse, square, or rectangle, for example. Let Θ = 2 act on the indicator function according to fθ(x) =
f0(x − θ); see Fig. 1(a) for an example with the unit disk. Then it is easy to see that µ(θ(0), θ(1)) =
m(‖θ(0) − θ(1)‖) for a monotone increasing function m ≥ 0, m(0) = 0. In fact, if we let By denote the
indicator function centered at y ∈ 2 , then

m(ρ) = Area(B(0,0)(B(ρ,0))
1/2,

where ( denotes the symmetric difference: A(B = (A\B) ∪ (B\A).
In a bounded image domain, a translating indicator function will eventually reach one or both fron-

tiers, where it begins changing shape until it finally disappears completely. We will discuss this occlusion
phenomenon in more detail in Sec. 5.

Wedgelets offer another bounded domain model. Here we consider the unit square and two points p, q on
the boundary of the square. Letting the wedgelet Wp,q denote the indicator of the set on the “right hand
side” of the line from p to q, we obtain a collection of image elements that are useful for modeling edges in
images [12, 13]. To parameterize the wedgelets, let θ = (θ0, θ1) denote the position of p and q by measuring
the arc length from the northeast corner of the square to each point in a clockwise traverse (see Fig. 1(b)).
Thus Θ = [0, 4)2. Generalizing wedgelets to polynomial horizons, let π : [0, 1] !→ be a polynomial of degree
P > 1, and let Hπ(x) = 1{x1≤π(x0), x1∈[0,1]} (see Fig. 1(c)). To parameterize these horizons, fix a basis for
the set of polynomials, say the standard Legendre basis, {Li} and set π =

∑P
i=0 θiLi. Then Θ ⊂ P+1 .
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Figure 1. Simple image articulation models. (a) Parameterization of translating disk image fθ. (b) Parameterization
of a wedgelet. (c) Parameterization of a polynomial horizon. (d) Simulated photograph of a 3-D icosahedron.

parameter in 3 specifying the location of the object in a scene; an orientation parameter in SO(3) specifying
its pose; or an articulation parameter specifying, for a composite object, the relative placement of mobile
components. We let d denote the dimension of θ.

The image formed with parameter θ is a function fθ : 2 !→ ; the corresponding family is the image
appearance manifold (IAM) F = {fθ : θ ∈ Θ}. The equation I = fθ is our way of saying that the observed
image I is a particular member fθ of the family, with underlying parameter θ. We assume that the relation
θ !→ fθ is one-to-one.

The set F is a collection of functions, and we suppose that all of these functions are square-integrable:
F ⊂ L2( 2 ). Equipping F with the L2 metric, we induce a metric on Θ

µ
(
θ(0), θ(1)

)
= ‖fθ(0) − fθ(1)‖L2 . (1)

Assuming that θ !→ fθ is a continuous mapping for the L2 metric, M = (Θ, µ) is a metric space.

2.2. IAM examples
We will use a range of models to illustrate the structural phenomena of IAMs and highlight the basic
challenges that can arise in image processing. Similar models are discussed in [10, 11]; the most elaborate
such involve combining models to create, for example, articulating cartoon faces.

2.2.1. Articulations in the image plane

The simplest IAMs are formed by articulating cartoon shapes within the image plane. First, consider
translations of an indicator function in the image plane. Let f0 be an indicator function in 2 — a disk,
ellipse, square, or rectangle, for example. Let Θ = 2 act on the indicator function according to fθ(x) =
f0(x − θ); see Fig. 1(a) for an example with the unit disk. Then it is easy to see that µ(θ(0), θ(1)) =
m(‖θ(0) − θ(1)‖) for a monotone increasing function m ≥ 0, m(0) = 0. In fact, if we let By denote the
indicator function centered at y ∈ 2 , then

m(ρ) = Area(B(0,0)(B(ρ,0))
1/2,

where ( denotes the symmetric difference: A(B = (A\B) ∪ (B\A).
In a bounded image domain, a translating indicator function will eventually reach one or both fron-

tiers, where it begins changing shape until it finally disappears completely. We will discuss this occlusion
phenomenon in more detail in Sec. 5.

Wedgelets offer another bounded domain model. Here we consider the unit square and two points p, q on
the boundary of the square. Letting the wedgelet Wp,q denote the indicator of the set on the “right hand
side” of the line from p to q, we obtain a collection of image elements that are useful for modeling edges in
images [12, 13]. To parameterize the wedgelets, let θ = (θ0, θ1) denote the position of p and q by measuring
the arc length from the northeast corner of the square to each point in a clockwise traverse (see Fig. 1(b)).
Thus Θ = [0, 4)2. Generalizing wedgelets to polynomial horizons, let π : [0, 1] !→ be a polynomial of degree
P > 1, and let Hπ(x) = 1{x1≤π(x0), x1∈[0,1]} (see Fig. 1(c)). To parameterize these horizons, fix a basis for
the set of polynomials, say the standard Legendre basis, {Li} and set π =

∑P
i=0 θiLi. Then Θ ⊂ P+1 .
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Figure 1. Simple image articulation models. (a) Parameterization of translating disk image fθ. (b) Parameterization
of a wedgelet. (c) Parameterization of a polynomial horizon. (d) Simulated photograph of a 3-D icosahedron.

parameter in 3 specifying the location of the object in a scene; an orientation parameter in SO(3) specifying
its pose; or an articulation parameter specifying, for a composite object, the relative placement of mobile
components. We let d denote the dimension of θ.

The image formed with parameter θ is a function fθ : 2 !→ ; the corresponding family is the image
appearance manifold (IAM) F = {fθ : θ ∈ Θ}. The equation I = fθ is our way of saying that the observed
image I is a particular member fθ of the family, with underlying parameter θ. We assume that the relation
θ !→ fθ is one-to-one.

The set F is a collection of functions, and we suppose that all of these functions are square-integrable:
F ⊂ L2( 2 ). Equipping F with the L2 metric, we induce a metric on Θ

µ
(
θ(0), θ(1)

)
= ‖fθ(0) − fθ(1)‖L2 . (1)

Assuming that θ !→ fθ is a continuous mapping for the L2 metric, M = (Θ, µ) is a metric space.

2.2. IAM examples
We will use a range of models to illustrate the structural phenomena of IAMs and highlight the basic
challenges that can arise in image processing. Similar models are discussed in [10, 11]; the most elaborate
such involve combining models to create, for example, articulating cartoon faces.

2.2.1. Articulations in the image plane

The simplest IAMs are formed by articulating cartoon shapes within the image plane. First, consider
translations of an indicator function in the image plane. Let f0 be an indicator function in 2 — a disk,
ellipse, square, or rectangle, for example. Let Θ = 2 act on the indicator function according to fθ(x) =
f0(x − θ); see Fig. 1(a) for an example with the unit disk. Then it is easy to see that µ(θ(0), θ(1)) =
m(‖θ(0) − θ(1)‖) for a monotone increasing function m ≥ 0, m(0) = 0. In fact, if we let By denote the
indicator function centered at y ∈ 2 , then

m(ρ) = Area(B(0,0)(B(ρ,0))
1/2,

where ( denotes the symmetric difference: A(B = (A\B) ∪ (B\A).
In a bounded image domain, a translating indicator function will eventually reach one or both fron-

tiers, where it begins changing shape until it finally disappears completely. We will discuss this occlusion
phenomenon in more detail in Sec. 5.

Wedgelets offer another bounded domain model. Here we consider the unit square and two points p, q on
the boundary of the square. Letting the wedgelet Wp,q denote the indicator of the set on the “right hand
side” of the line from p to q, we obtain a collection of image elements that are useful for modeling edges in
images [12, 13]. To parameterize the wedgelets, let θ = (θ0, θ1) denote the position of p and q by measuring
the arc length from the northeast corner of the square to each point in a clockwise traverse (see Fig. 1(b)).
Thus Θ = [0, 4)2. Generalizing wedgelets to polynomial horizons, let π : [0, 1] !→ be a polynomial of degree
P > 1, and let Hπ(x) = 1{x1≤π(x0), x1∈[0,1]} (see Fig. 1(c)). To parameterize these horizons, fix a basis for
the set of polynomials, say the standard Legendre basis, {Li} and set π =

∑P
i=0 θiLi. Then Θ ⊂ P+1 .

fθ : Rd !→ R

(a) (b) (c) (d)

Figure 2. Tangent plane basis vectors of the translating disk IAM estimated: using local PCA at (a) scale ε = 1/4
and (b) scale ε = 1/8; using image regularization at (c) scale s = 1/8 and (d) scale s = 1/16.

As an example, consider the translating disk model, so that the underlying parametrization is 2-D and
the tangent planes are 2-D as well. Figure 2(a) shows the approximate tangent plane obtained from this
approach at scale ε = 1/4. The tangent plane has a basis consisting of two elements, each of which can
be considered an image. Figure 2(b) shows the tangent plane basis images at the finer scale ε = 1/8. It is
visually evident that the tangent plane bases at these two scales are different; in fact the angle between the
two subspaces is approximately 30◦. Moreover, since the basis elements resemble annuli of shrinking width
and growing amplitude, it is apparent for continuous-domain images that as ε → 0, the tangent plane bases
cannot converge in L2.∗

3.3. Approximate tangent planes via regularization
The lack of IAM differentiability poses an apparent difficulty for image processing: the geometric relationship
among images nearby in articulation space seems to be quite complicated. In addition to illuminating this
challenge, however, the local PCA experiments in Sec. 3.2 also suggest a way out. Namely, the “twisting
off” phenomenon can be understood as the existence of an intrinsic multiscale structure to the manifold.
Tangent planes, instead of being associated with a location only, as in traditional monoscale analysis, are
now associated with a location and a scale.

For a variety of reasons, it is convenient in formalizing this notion to work with a different notion of
approximate tangent plane. We first define the family of regularized manifolds as follows. Associated with a
given IAM, we have a family of regularization operators Φs that act on functions f ∈ F to smooth them; the
parameter s > 0 is a scale parameter. For example, for the translated disk model, we let Φs be the operator
of convolution with a Gaussian of standard deviation s: Φsf = φs ∗ f , where φs(x) = 1

2πs2 exp{−‖x‖2

2s2 }. We
also define fθ,s = Φsfθ. The functions fθ,s are smooth, and the collection of such functions for θ varying
and s > 0 makes a manifold Fs. The operator family (Φs)s>0 has the property that, as we smooth less, we
do less: Φsfθ →L2 fθ, s → 0. It follows that, at least on compact subsets of F,

Fs →L2 F, s → 0. (2)

Because the regularized images contain no sharp edges, it follows that the regularized IAMs are differentiable.
We define the approximate tangent plane at scale s > 0, T (s, θ(0);F), to be the exact tangent plane of the
approximate manifold Fs; that is Tf

θ(0),s
(Fs).

T (s, θ(0)) is the affine span of the functions ∂
∂θi

fθ,s

∣∣
θ=θ(0) , i = 0, 1, . . . , d− 1. This notion of approximate

tangent plane is different from the more intrinsic local PCA approach but is far more amenable to analysis
and computation. In practice, the two notions are similar: regularizing an image averages nearby pixel
values, whereas local PCA analyzes a set of images related approximately by small shifts in space.

As an example, consider again the translating disk model. Figures 2(c),(d) show the tangent planes
obtained from the image regularization process at scales s = 1/8 and s = 1/16. It is again visually evident
that the tangent plane bases at the two scales are different, with behavior analogous to the bases obtained
using the local PCA approach in Figures 2(a),(b). In this case, the angle between the two tangent planes is
26.4◦.

∗In the case of a pixelized image, this phenomenon cannot continue indefinitely. However, the twisting behavior
does continue up until the very finest scale, making our analysis relevant for practical algorithms (e.g., see Sec. 6).

Fs = { Φsfθ : θ ∈ Θ, s > 0}

(a) (b) (c) (d)

Figure 2. Tangent plane basis vectors of the translating disk IAM estimated: using local PCA at (a) scale ε = 1/4
and (b) scale ε = 1/8; using image regularization at (c) scale s = 1/8 and (d) scale s = 1/16.

As an example, consider the translating disk model, so that the underlying parametrization is 2-D and
the tangent planes are 2-D as well. Figure 2(a) shows the approximate tangent plane obtained from this
approach at scale ε = 1/4. The tangent plane has a basis consisting of two elements, each of which can
be considered an image. Figure 2(b) shows the tangent plane basis images at the finer scale ε = 1/8. It is
visually evident that the tangent plane bases at these two scales are different; in fact the angle between the
two subspaces is approximately 30◦. Moreover, since the basis elements resemble annuli of shrinking width
and growing amplitude, it is apparent for continuous-domain images that as ε → 0, the tangent plane bases
cannot converge in L2.∗

3.3. Approximate tangent planes via regularization
The lack of IAM differentiability poses an apparent difficulty for image processing: the geometric relationship
among images nearby in articulation space seems to be quite complicated. In addition to illuminating this
challenge, however, the local PCA experiments in Sec. 3.2 also suggest a way out. Namely, the “twisting
off” phenomenon can be understood as the existence of an intrinsic multiscale structure to the manifold.
Tangent planes, instead of being associated with a location only, as in traditional monoscale analysis, are
now associated with a location and a scale.

For a variety of reasons, it is convenient in formalizing this notion to work with a different notion of
approximate tangent plane. We first define the family of regularized manifolds as follows. Associated with a
given IAM, we have a family of regularization operators Φs that act on functions f ∈ F to smooth them; the
parameter s > 0 is a scale parameter. For example, for the translated disk model, we let Φs be the operator
of convolution with a Gaussian of standard deviation s: Φsf = φs ∗ f , where φs(x) = 1

2πs2 exp{−‖x‖2

2s2 }. We
also define fθ,s = Φsfθ. The functions fθ,s are smooth, and the collection of such functions for θ varying
and s > 0 makes a manifold Fs. The operator family (Φs)s>0 has the property that, as we smooth less, we
do less: Φsfθ →L2 fθ, s → 0. It follows that, at least on compact subsets of F,

Fs →L2 F, s → 0. (2)

Because the regularized images contain no sharp edges, it follows that the regularized IAMs are differentiable.
We define the approximate tangent plane at scale s > 0, T (s, θ(0);F), to be the exact tangent plane of the
approximate manifold Fs; that is Tf

θ(0),s
(Fs).

T (s, θ(0)) is the affine span of the functions ∂
∂θi
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θ=θ(0) , i = 0, 1, . . . , d− 1. This notion of approximate

tangent plane is different from the more intrinsic local PCA approach but is far more amenable to analysis
and computation. In practice, the two notions are similar: regularizing an image averages nearby pixel
values, whereas local PCA analyzes a set of images related approximately by small shifts in space.

As an example, consider again the translating disk model. Figures 2(c),(d) show the tangent planes
obtained from the image regularization process at scales s = 1/8 and s = 1/16. It is again visually evident
that the tangent plane bases at the two scales are different, with behavior analogous to the bases obtained
using the local PCA approach in Figures 2(a),(b). In this case, the angle between the two tangent planes is
26.4◦.

∗In the case of a pixelized image, this phenomenon cannot continue indefinitely. However, the twisting behavior
does continue up until the very finest scale, making our analysis relevant for practical algorithms (e.g., see Sec. 6).
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Figure 2. Tangent plane basis vectors of the translating disk IAM estimated: using local PCA at (a) scale ε = 1/4
and (b) scale ε = 1/8; using image regularization at (c) scale s = 1/8 and (d) scale s = 1/16.

As an example, consider the translating disk model, so that the underlying parametrization is 2-D and
the tangent planes are 2-D as well. Figure 2(a) shows the approximate tangent plane obtained from this
approach at scale ε = 1/4. The tangent plane has a basis consisting of two elements, each of which can
be considered an image. Figure 2(b) shows the tangent plane basis images at the finer scale ε = 1/8. It is
visually evident that the tangent plane bases at these two scales are different; in fact the angle between the
two subspaces is approximately 30◦. Moreover, since the basis elements resemble annuli of shrinking width
and growing amplitude, it is apparent for continuous-domain images that as ε → 0, the tangent plane bases
cannot converge in L2.∗

3.3. Approximate tangent planes via regularization
The lack of IAM differentiability poses an apparent difficulty for image processing: the geometric relationship
among images nearby in articulation space seems to be quite complicated. In addition to illuminating this
challenge, however, the local PCA experiments in Sec. 3.2 also suggest a way out. Namely, the “twisting
off” phenomenon can be understood as the existence of an intrinsic multiscale structure to the manifold.
Tangent planes, instead of being associated with a location only, as in traditional monoscale analysis, are
now associated with a location and a scale.

For a variety of reasons, it is convenient in formalizing this notion to work with a different notion of
approximate tangent plane. We first define the family of regularized manifolds as follows. Associated with a
given IAM, we have a family of regularization operators Φs that act on functions f ∈ F to smooth them; the
parameter s > 0 is a scale parameter. For example, for the translated disk model, we let Φs be the operator
of convolution with a Gaussian of standard deviation s: Φsf = φs ∗ f , where φs(x) = 1

2πs2 exp{−‖x‖2

2s2 }. We
also define fθ,s = Φsfθ. The functions fθ,s are smooth, and the collection of such functions for θ varying
and s > 0 makes a manifold Fs. The operator family (Φs)s>0 has the property that, as we smooth less, we
do less: Φsfθ →L2 fθ, s → 0. It follows that, at least on compact subsets of F,

Fs →L2 F, s → 0. (2)

Because the regularized images contain no sharp edges, it follows that the regularized IAMs are differentiable.
We define the approximate tangent plane at scale s > 0, T (s, θ(0);F), to be the exact tangent plane of the
approximate manifold Fs; that is Tf

θ(0),s
(Fs).

T (s, θ(0)) is the affine span of the functions ∂
∂θi

fθ,s

∣∣
θ=θ(0) , i = 0, 1, . . . , d− 1. This notion of approximate

tangent plane is different from the more intrinsic local PCA approach but is far more amenable to analysis
and computation. In practice, the two notions are similar: regularizing an image averages nearby pixel
values, whereas local PCA analyzes a set of images related approximately by small shifts in space.

As an example, consider again the translating disk model. Figures 2(c),(d) show the tangent planes
obtained from the image regularization process at scales s = 1/8 and s = 1/16. It is again visually evident
that the tangent plane bases at the two scales are different, with behavior analogous to the bases obtained
using the local PCA approach in Figures 2(a),(b). In this case, the angle between the two tangent planes is
26.4◦.

∗In the case of a pixelized image, this phenomenon cannot continue indefinitely. However, the twisting behavior
does continue up until the very finest scale, making our analysis relevant for practical algorithms (e.g., see Sec. 6).
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The L2( 2 ) inner product between these tangent images is given by
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The last step follows because the convolution of two Gaussians yields another Gaussian; a similar derivation
appears in Lemma A.3 of [11]. Considering the case where i %= j, we have
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which implies that 〈τ0
s , τ1

s 〉 = 0. Thus we have that 〈τ i
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s 〉 = cs,sδi,j , where, for generality useful below, we
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Hence, the {τ i
s} form an orthogonal basis for the approximate tangent plane T (s, θ(0)) for every s > 0.

Consider now the bases {τ i
s0
}1

i=0, {τ i
s1
}1

i=0 at two different scales s0 and s1. Then by a similar calculation

〈τ i
s0

, τ j
s1
〉 = cs0,s1δi,j . (4)

Hence, a basis element at one scale correlates with only one basis element at another scale.

4.2. Inter-scale twist angle
We can give (4) a geometric interpretation based on angles between subspaces. At each scale, define the new
basis

ψi
s = c−1/2

s,s τ i
s, i = 0, 1,

which is an orthonormal basis for the approximate tangent space T (s, θ(0)). These bases are canonical for
measuring the angles between any two tangent spaces. Formally, if we let Ps denote the linear orthogonal
projection operator from L2( 2 ) onto T (s, θ(0)), then the subspace correlation operator Γs0,s1 = Ps0Ps1 has
a singular value decomposition using the two bases as left and right singular systems, respectively:

Γs0,s1 =
1∑

i=0

ψi
s0

λi〈ψi
s1

, ·〉;

or, in an informal but obvious notation,
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; ψ1
s1

]T .

The diagonal entries are given by
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=
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c1/2
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1/2
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.

Multiscale Newton Method

6.3. Multiscale Newton algorithm
As discussed in Sec. 3, the lack of differentiability can be alleviated by regularizing the images fθ. Thus,
navigation is possible on any of the regularized manifolds Fs using Newton’s method as described above.
This fact, in conjunction with the convergence property (2), suggests a multiscale technique for parameter
estimation. Note that we focus on dealing with “migration-based” non-differentiability from Sec. 3. In cases
where we have occasional occlusion-based non-differentiability as in Sec. 5, it may be necessary to project
onto additional tangent images; this adaptation is not difficult, but it does require an awareness of the
parameters at which occlusion-based non-differentiability occurs.

The idea is to select a sequence of scales s0 > s1 > · · · > sK , and to start with an initial guess θ(0).
At each scale we take a Newton-like step on the corresponding smoothed manifold. We find it helpful in
practice to ignore the second derivative term from equation (7). This is in the typical spirit of making slight
changes to Newton’s Method; in fact it is similar to the Gauss-Newton method for minimizing D.

To be specific, iteration k + 1 of the Multiscale Newton algorithm proceeds as follows:

1. Compute the local tangent vectors on the smoothed manifold Fsk at the point fθ(k),sk
:

τ i
θ(k),sk

=
∂

∂θi
fθ,sk

∣∣∣∣
θ=θ(k)

, i = 0, 1, . . . , d − 1.

2. Project the estimation error fθ(k),sk
− Isk (relative to the regularized image Isk = φsk ∗ I) onto the

tangent space T (sk, θ(k)), setting

Ji = 2〈fθ(k),sk
− Isk , τ i

θ(k),sk
〉.

3. Compute the pairwise inner products between tangent vectors

Hij = 2〈τ i
θ(k),sk

, τ j
θ(k),sk

〉.

4. Use the projection coefficients to update the estimate

θ(k+1) ← θ(k) + H−1J.

We note that when the tangent vectors are orthogonal to one another, H is diagonal, and so the update for
component θ(k)

i is simply determined by the inner product of the estimation error vector and the tangent
vector τ i

θ(k),sk
. Moreover, when the regularized manifold Fsk is linear in the range of interest, the update in

Step 4 immediately achieves the minimizer to D at that scale.

Under certain conditions on the accuracy of the initial guess and the sequence {sk} it can be shown
that this algorithm provides estimation accuracy ‖θ − θ(k)‖ < cs2

k. Ideally, we would be able to square the
scale between successive iterations, sk+1 = s2

k. The exact sequence of steps, and the accuracy required of
the initial guess θ(0), will depend on the specific multiscale structure of the IAM under consideration. We
omit the convergence analysis in this paper, instead providing several examples to demonstrate the basic
effectiveness of the algorithm.

6.4. Examples
6.4.1. Translating disk

As a basic exercise of the proposed algorithm, we attempt to estimate the articulation parameters for a
translated disk. The process is illustrated in Fig. 6. The observed image I is shown on the far left; the
top-left image in the grid is the initial guess fθ(0) . For this experiment, we create 256 × 256 images with
“subpixel” accuracy (each pixel is assigned a value based on the proportion of its support that overlaps the
disk). Regularized tangent images are estimated using a local difference of synthesized (and regularized)
images.
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Multiscale Newton method
 Replace the slow redundant dictionary technique 

with a multiscale Newton method

 Resolve problem with the non-differentiability of 
the parametrization => stable

 Good initial guess provided by detection step
 Convergence rate
 robust under noise and incomplete data
 Smoothing Sensitivity



Percolation model and 
Well tie

[Herrmann-Bernabe’05] 
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Upscaling: EM upscaled reflectivity
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Upscaling: Perc. upscaled reflectivity
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 Use the volume fractions, p, to compute
 density via a linear relation
 velocity via a nonlinear & singular (switch) relation 

 Upscaling by smoothing p and not the velocity

 preserves singularities because of the switch

 singularities from p or switch

Upscaling: lithology



Using IAMs for Well tie
 Percolation Model

 Pc

 β
 Match well-log (P) to seismic reflectivity

 Parametrizing by IAM
 solve for inverse problem

 Model mixtures as binary mixtures



Future plans

[ChaRM]



ChaRM Detection
 Use recent results on spiky decon (Mallat) to 

make the detection unique given minor 
information on the seismic wavelet
 insensitivity to estimated wavelet and spike 

assumption
 Extend these results to higher dimensions

 multidimensional reflector detection
 solve spike decon. for curvelet 

 Joint work with Yilmaz, Jaffard, Vedel

 Characterization depends on an sufficiently 
accurate event detection



ChaRM Characterization
 Develop the multiscale Newton method

 Extend to higher dimensions

 Make robust under noise and missing data

 Extend the multiscale Newton technique to invert 
for (given the end members)
 the percolation threshold and exponent

 the extend of the lithological transition (the width 
of a layer in the composition)

 Joint work with Yves Bernabé



ChaRM Upscaling and well tie
 Study well-defined binary mixtures (e.g. Opal, 

gas-hydrates etc.)

 Develop upscaling techniques that preserve 
singularities

 Provide new insights in the well-seismic tie

 Joint work with Yves Bernabé



Questions ?

Comments ?




