Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2018 SINBAD consortium - SLIM group @ The University of British Columbia.

Recent Results on Seismic Deconvolution

Mohammad Maysami

SINBAD 2006 August 28,2006

Outline

- Introduction & Background
 - Motivation
 - Detection-Estimation Algorithm [ChaRM]
- Recent results
 - Spiky Deconvolution
 - Stagewise Orthogonal Matching Pursuit(StOMP)
 - Multiscale Newton Method and Estimation
- Future work
 - Sensitivity analysis
 - Higher Dimensions
 - Well tie via percolation & IAM

Credits

□ Sparse spike Decon.^[Mallat'05]:

- Stéphane Jaffard (Univ. of Paris)
- Béatrice Vedel (Univ. De Picardie)
- Ozgur Yilmaz (Math. Dept.,UBC)
- Percolation model^[H&B'04] & well tie :
 Yves BernabÉ (MIT)

Introduction to Previous works

ChaRM Project

Model for Seismic Transition

Causal:
$$\chi^{\alpha}_{+}(x) = \begin{cases} 0 & \text{if } x < 0\\ \frac{x^{\alpha}}{\Gamma(\alpha+1)} & \text{if } x \ge 0 \end{cases}$$
 An

Anticausal:
$$\chi^{\alpha}_{-}(x) = \begin{cases} \frac{(-x)^{\alpha}}{\Gamma(\alpha+1)} & \text{if } x \leq 0\\ 0 & \text{if } x > 0 \end{cases}$$

Seismic Laboratory for Imaging and Modeling

$$f(z) = \sum_{i} a_{i} \chi^{\alpha_{i}}_{\pm} (z - z_{i}),$$

$$f(z) = -\sum_{i} a_{i} \chi^{\alpha_{i}}_{\pm} (z - z_{i}),$$

$$\phi \longrightarrow \alpha = 1$$

Reflectivity Models

Detection-Estimation method

Brief history

- Introduced a two-stage detection-estimation approach [C.M.Dupuis & F. Herrmann'05]
 - **Detection** ⇔ spiky decon. for non-spiky reflectivity
 - detect and *isolate* the main reflection events
 - Estimation ⇔ characterization of reflectors
 - scale exponents
 - elastic properties end-members binary members
 - percolation threshold and exponent
- Worked on new *estimation* methods to characterize the fine-structure of reflectors

Sparse Spike Deconvolution

[Dossal and Mallat '05]

for Detection [ChaRM]

Utilizing Spike Decon.

Used as a part of our Detection-Estimation approach

Need of accurate (not exact) recovery

- Detecting major events (main cluster)
- fractional order of differentiation
 - two wavelet next to each other
 - one derivative of wavelet

Deconvolution Method

- Widely used in geophysical inversion
- Singularity order of one (α=0)
- Efficiency analysis for seismic data [Dossal-Mallat]

$$Y = \psi \star R + W.$$

$$R = \sum_{i \in S} a_i \delta_i$$

$$R = \arg\min_{f} \frac{1}{2} \|Y - \psi \star f\|_{2}^{2} + \gamma \|f\|_{1}.$$

Efficiency Analysis

Deconvolution without noise

Similar analysis for noisy data

Minimum scale

$$\Delta = \min_{(i,j)\in S^2} \|i-j\|.$$

$$R = \arg\min \|f\|_1 \quad with \quad \psi \star f = Y.$$

Efficiency Analysis (cont'd)

Dictionary = Matrix whose Columns are:

 $\mathbf{D} = [g_i = \psi \star \delta_i \quad for \quad 1 \leq i \leq N].$

Weak Exact Recovery Coefficient (WERC)

$$WERC(S) = \frac{\beta}{1 - \alpha} , where \quad S \subset \{1, ..., N\}.$$

$$\alpha(S) = \sup_{i \in S} \sum_{k \in S, k \neq i} |\langle g_k, g_i \rangle| \leq 2 \sum_k \phi(k\Delta_0)$$

 $\beta(S) = \sup_{j \notin S} \sum_{k \in S} |\langle g_k, g_j \rangle| \leq \max_{j \leq \Delta_0} (\phi(j) + \phi(\Delta_0 - j)) + \alpha(S)$

StOMP: a fast L1 solver

[Donoho et. al. 06]

L0 - L1 Equivalency

Strong equivalence ofPf₀ andPf₁ for given A, ∀x₀ P1(y,A)→Unique sparsest Solution

Weak equivalence ofPf₀ andPf₁

equivalence holds for the typical sparse x₀

$$\|x\|_0 < \frac{1}{2}\sqrt{N}$$

StOMP Solver

- For (under)determined systems of equations
- Assumes additive Gaussian noise for non-zero entries
- Numerous terms enter at each thresholding stage and have fixed number of staged.
- Approximation to the sparsest solution over a region of the sparsity/indeterminacy plane
- Our Case
 - Determined System : A(N×N)
 - Mixing by random spike train
 - Random locations
 - Random amplitudes

Algorithm Flowchart

 $\mathbf{J}_s = \{j : |c_s(j)| > t_s \sigma_s\}$

Recovery Phase Diagram

- Test Settings:
 - A: Convolution with cosine bump
 - Signal length : 512
 - No. of spikes (K) : 20
 - Dynamic range setting
 - Δ values : 13
 - scale values : 30
- L0 norm to show the error
 - L2 could also be used

Sample Phase Diagram

Wavelet : bconv N = 512 K = 29

Sample Phase Diagram Wavelet :bconv N = 512 K = 29 $\Delta = Min. Distance$ -10 s = Bump width in Frequency Domain

1: Accurate Recovery

2 : Partial Recovery

3: Unrecoveralbe

Spike Decon. Analysis Scheme

Analysis w.r.t.

- wavelet type
- wavelet width/scale
- Minimum distance (Δ)
- Solver
 - Stagewise Orthogonal Matching Pursuit (StOMP)
 - Basis Pursuit (BP)
- Different synthesis and analysis wavelets

SLIM Seismic Laboratory for Imaging and Modeling

Deconv. Summary

Signal with length of 512 samples

Wavelet	Scale	К	Δ	Recovery
Cosine Bump	1	30	5	+
Ricker wavelet	1	30	5	+
Cosine Bump, Regularly spaced	1	30	7	+
Cosine Bump, Uniform Amp.	1	30	5	0
Cosine Bump, Uniform Amp.	1	12	5	+
Cosine Bump	2/3	25	13	0

Multiscale Newton Method

[ChaRM Estimation]

Mohammad Maysami

Image Manifolds [Wakin'06]

- □ Varying Parameter: $\theta \in \Theta$ (Dimension: d)
- □ Image function model: $f_{\theta} : \mathbb{R}^d \mapsto \mathbb{R}$

IAM:
$$\mathbf{F} = \{f_{\theta} : \theta \in \Theta\}$$

- 1-to-1 $\theta \mapsto f_{\theta}$ Relation
- F is Square integrable: $\mathbf{F} \subset L^2(\mathbb{R}^2)$

 $\hfill\square$ Non-Lipschitz relation \rightarrow manifolds with Φ_s , s >0

$$F_s = \{ \Phi_s f_\theta : \theta \in \Theta, s > 0 \}$$

$$\Phi_s f = \phi_s * f$$
, where $\phi_s(x) = \frac{1}{2\pi s^2} \exp\{\frac{-\|x\|^2}{2s^2}\}$

$$T(s,\theta^{(0)};\mathbf{F}) = T_{f_{\theta^{(0)},s}}(\mathbf{F}_s)$$

Multiscale Newton Method

 $\hfill\square$ Local tangent vectors on $\hfill\, {\bf F}_{{\bf s}_{\bf k}}$

$$\tau^{i}_{\theta^{(k)},s_{k}} = \left. \frac{\partial}{\partial \theta_{i}} f_{\theta,s_{k}} \right|_{\theta=\theta^{(k)}}, \quad i=0,1,\ldots,d-1.$$

Project estimation error

$$J_i = 2\langle f_{\theta^{(k)}, s_k} - I_{s_k}, \tau^i_{\theta^{(k)}, s_k} \rangle$$

products of tangent vectors

$$H_{ij} = 2\langle \tau^{i}_{\theta^{(k)}, s_k}, \tau^{j}_{\theta^{(k)}, s_k} \rangle$$
$$\langle \tau^{i}_{s_0}, \tau^{j}_{s_1} \rangle = c_{s_0, s_1} \delta_{i, j}$$

Update estimation

$$\theta^{(k+1)} \leftarrow \theta^{(k)} + H^{-1}J.$$

Form IAM for Gaussians

Result statistics - Case 1

	Actual	Initial Guess	Estimated
Sigma	2	4	2.0142
Tau	0	5	0.0636
Alpha	0.2	0.5	0.1869

Noise Variance	8.01E-06	
Iter. No.	14	
MSE	9.20E-04	
Elapsed Time	0.42	

Result statistics - Case 2

	Actual	Initial Guess	Estimated
Sigma	7	0.5	6.6911
Tau	-15	2	-14.025
Alpha	0.8	0.1	0.8066

Noise Level	3.522E-08
Iter. No.	14
MSE	1.06E-04
Elapsed Time	0.31

Multiscale Newton method

- Replace the *slow* redundant dictionary technique with a multiscale Newton method
- Resolve problem with the **non-differentiability** of the parametrization => stable
- Good initial guess provided by detection step
- Convergence rate
- robust under noise and incomplete data
- Smoothing Sensitivity

Percolation model and Well tie

[Herrmann-Bernabe'05]

Discontinuity modeling

binary mixtures

maging and Modeling

Discontinuity modeling

binary mixtures

maging and Modeling

Upscaling: EM upscaled reflectivity

Upscaling: Perc. upscaled reflectivity

M \leq préserved reflectors -1

Reflectivity for the Percolation model

Upscaling: lithology

- Use the volume fractions, p, to compute
 - density via a linear relation
 - velocity via a nonlinear & singular (switch) relation
- Upscaling by smoothing p and not the velocity
- preserves singularities because of the switch
- singularities from p or switch

Using IAMs for Well tie

- Percolation Model
 - P_c
 - β
- Match well-log (P) to seismic reflectivity
 - Parametrizing by IAM
 - solve for inverse problem
- Model mixtures as binary mixtures

Future plans

ChaRM Detection

- Use recent results on spiky decon (Mallat) to make the detection unique given minor information on the seismic wavelet
 - insensitivity to estimated wavelet and spike assumption
- Extend these results to higher dimensions
 - multidimensional reflector detection
 - solve spike decon. for curvelet
 - Joint work with Yilmaz, Jaffard, Vedel

Characterization depends on an sufficiently accurate event detection

ChaRM Characterization

- Develop the multiscale Newton method
- Extend to higher dimensions
- Make robust under noise and missing data
- Extend the multiscale Newton technique to invert for (given the end members)
 - the percolation threshold and exponent
 - the extend of the lithological transition (the width of a layer in the composition)
- Joint work with Yves Bernabé

ChaRM Upscaling and well tie

- Study well-defined binary mixtures (e.g. Opal, gas-hydrates etc.)
- Develop upscaling techniques that preserve singularities
- Provide new insights in the well-seismic tie
- Joint work with Yves Bernabé

Questions?

Comments ?

