Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2018 SINBAD consortium - SLIM group @ The University of British Columbia.

Recent Results on Seismic

Deconvolution

Mohammad Maysami

SINBAD 2006
August 28,2006

\square Introduction \& Background

- Motivation
- Detection-Estimation Algorithm [ChaRM]
\square Recent results
- Spiky Deconvolution
- Stagewise Orthogonal Matching Pursuit(StOMP)
- Multiscale Newton Method and Estimation
\square Future work
- Sensitivity analysis
- Higher Dimensions
- Well tie via percolation \& IAM

Imaging and Modeling

Credits

\square Sparse spike Decon. ${ }^{[\text {Mallat'05] }}$:

- Stéphane Jaffard (Univ. of Paris)
- Béatrice Vedel (Univ. De Picardie)
- Ozgur Yilmaz (Math. Dept.,UBC)
\square Percolation model ${ }^{\left[H \& B^{\prime} 04\right]}$ \& well tie :
- Yves BernabÉ (MIT)

Introduction to
Previous works
ChaRM Project

Model for Seismic Transition

Causal: $\chi_{+}^{\alpha}(x)=\left\{\begin{array}{ll}0 & \text { if } x<0 \\ \frac{x^{\alpha}}{\Gamma(\alpha+1)} & \text { if } x \geq 0\end{array}\right.$, Anticausal: $\chi_{-}^{\alpha}(x)= \begin{cases}\frac{(-x)^{\alpha}}{\Gamma(\alpha+1)} & \text { if } x \leq 0 \\ 0 & \text { if } x>0\end{cases}$

$$
\begin{aligned}
& \longrightarrow \alpha=0 \\
& \longrightarrow \alpha=0.5 \\
f(z) & =\sum_{i} a_{i} \chi_{ \pm}^{\alpha_{i}}\left(z-z_{i}\right),
\end{aligned}
$$

$\bigcirc \longrightarrow \alpha=1$

Reflectivity Models

$$
r(z)=\sum_{i \in \Lambda_{C}} K_{i} \chi_{+}^{\alpha_{i}-1}\left(z-z_{i}\right)-\sum_{i \in \Lambda_{A}} K_{i} \chi_{-}^{\alpha_{i}-1}\left(z-z_{i}\right)
$$

$$
s(t)=(r * \psi)(z)
$$

Seismic Laboratory for Imaging and Modeling

Detection-Estimation method

\square Characterize windowed events (D_{E})

Seismic Laboratory for
Imaging and Modeling

Brief history

\square Introduced a two-stage detection-estimation approach [c.м. Dupuis \& . Herrmann'05]

Detection \Leftrightarrow spiky decon. for non-spiky reflectivity
\square detect and isolate the main reflection events

- Estimation \Leftrightarrow characterization of reflectors
\square scale exponents
- elastic properties end-members binary members
\square percolation threshold and exponent
\square Worked on new estimation methods to characterize the fine-structure of reflectors

Seismic Laboratory for
Imaging and Modeling Imaging and Modeling

Sparse Spike Deconvolution
 [Dossal and Mallat ${ }^{\text {2 }} 05$]

for Detection

[ChaRM]

Utilizing Spike Decon.

\square Used as a part of our Detection-Estimation approach
\square Need of accurate (not exact) recovery

- Detecting major events (main cluster)
\square fractional order of differentiation
- two wavelet next to each other
- one derivative of wavelet

Singuarities with order (α) of 0 to 2

Time sample

Deconvolution Method

\square Widely used in geophysical inversion
\square Singularity order of one ($\alpha=0$)
\square Efficiency analysis for seismic data [Dossal-Mallat]

$$
\begin{gathered}
Y=\psi \star R+W . \\
R=\sum_{i \in S} a_{i} \delta_{i}
\end{gathered}
$$

$$
R=\arg \min _{f} \frac{1}{2}\|Y-\psi \star f\|_{2}^{2}+\gamma\|f\|_{1} .
$$

Seismic Laboratory for
Imaging and Modeling

Efficiency Analysis

\square Deconvolution without noise

- Similar analysis for noisy data
\square Minimum scale

$$
\begin{gathered}
\Delta=\min _{(i, j) \in S^{2}}\|i-j\| . \\
R=\arg \min \|f\|_{1} \quad \text { with } \quad \psi \star f=Y .
\end{gathered}
$$

Efficiency Analysis

\square Dictionary $=$ Matrix whose Columns are:

$$
\mathbf{D}=\left[g_{i}=\psi \star \delta_{i} \quad \text { for } \quad 1 \leqslant i \leqslant N\right] .
$$

\square Weak Exact Recovery Coefficient (WERC)

$$
\begin{aligned}
& W E R C(S)=\frac{\beta}{1-\alpha}, \text { where } \quad S \subset\{1, \ldots, N\} . \\
& \alpha(S)=\sup _{i \in S} \sum_{k \in S, k \neq i}\left|<g_{k}, g_{i}>\right| \leqslant 2 \sum_{k} \phi\left(k \Delta_{0}\right) \\
& \beta(S)=\sup _{j \notin S} \sum_{k \in S}\left|<g_{k}, g_{j}>\right| \leqslant \max _{j \leqslant \Delta_{0}}\left(\phi(j)+\phi\left(\Delta_{0}-j\right)\right)+\alpha(S)
\end{aligned}
$$

StOMP:
 a fast L1 solver

[Donoho et. al. 06]

L0 - L1 Equivalency

\square Strong equivalence ofPfo ${ }_{0}$ andPf ${ }_{1}$

- for given $\mathbf{A}, \forall \mathrm{X}_{0} \mathrm{P} 1(\mathrm{y}, \mathbf{A}) \rightarrow$ Unique sparsest Solution
\square Weak equivalence ofPfo andPf $_{1}$
- equivalence holds for the typical sparse xo

$$
\|x\|_{0}<\frac{1}{2} \sqrt{N}
$$

StOMP Solver

\square For (under)determined systems of equations
\square Assumes additive Gaussian noise for non-zero entries
\square Numerous terms enter at each thresholding stage and have fixed number of staged.
\square Approximation to the sparsest solution over a region of the sparsity/indeterminacy plane

* Our Case
- Determined System : $\mathrm{A}_{(\mathrm{N} \times \mathrm{N})}$
- Mixing by random spike train
- Random locations
- Random amplitudes

Algorithm Flowchart

$$
\mathbf{J}_{s}=\left\{j:\left|c_{s}(j)\right|>t_{s} \sigma_{s}\right\}
$$

SLIM
Seismic Laboratory for Imaging and Modeling

Recovery Phase Diagram

\square Test Settings:

- A: Convolution with cosine bump
- Signal length : 512
- No. of spikes (K) : 20
- Dynamic range setting
- Δ values : 13
- scale values : 30
\square L0 norm to show the error
- L2 could also be used

1: Accurate Recovery

Cosine Bump Convolution with Spike Train (StOMP), N=512


```
Length of Signal : 512
Number of Spikes : 30
Min & Max Spacing : 5,74
Bump/Wavelet Scale : 1
Regular , Uniform : 0,0
```

StOMP Solving Time : 1.6
StOMP Stage : 12
L2 Nrom(x) : 31.13
\% LO Error : 1.867
\% L2 Error : 0.07104

2 : Partial Recovery

Cosine Bump Convolution with Spike Train (StOMP), N=512


```
Length of Signal : 512
Number of Spikes : 30
Min & Max Spacing : 6,57
Bump/Wavelet Scale : 0.85
Regular , Uniform : 0,0
StOMP Solving Time : 1.75
StOMP Stage : 10
L2 Nrom(x) : 30.47
% LO Error : 2.3
% L2 Error : 0.5451
```

Cosine Bump Convolution with Spike Train (StOMP), N=512


```
Length of Signal : 512
Number of Spikes : 40
Min & Max Spacing : 8,20
Bump/Wavelet Scale : 0.65
Regular , Uniform : 0,0
StOMP Solving Time : 0.01
StOMP Stage : 2
L2 Nrom(x) : 38.67
% LO Error : 1
% L2 Error : 1
```


Spike Decon. Analysis Scheme

Analysis w.r.t.

- wavelet type
- wavelet width/scale
- Minimum distance (Δ)
- Solver
- Stagewise Orthogonal Matching Pursuit (StOMP)
- Basis Pursuit (BP)
- Different synthesis and analysis wavelets

Cosine Bump Convolution with Spike Train (StOMP), N=512


```
Length of Signal : 512
Number of Spikes : 30
Min & Max Spacing : 5,74
Bump/Wavelet Scale : 1
Regular , Uniform : 0,0
```

StOMP Solving Time : 1.6
StOMP Stage : 12
L2 Nrom(x) : 31.13
\% LO Error : 1.867
\% L2 Error : 0.07104

Ricker Wavelet Conv. with Spike Train (StOMP), N=512


```
Length of Signal : 512
Number of Spikes : 30
Min & Max Spacing : 5,60
Bump/Wavelet Scale : 1
Regular , Uniform : 0,0
```

```
StOMP Solving Time : 0.55
StOMP Stage : 5
L2 Nrom(x) : 34.48
% LO Error : 0.8667
% L2 Error : 4.568e-16
```

Ricker wavelet Conv. with Spike Train (Scaled BP), N=512

Length of Signal : 512	BP Solving Time : 0.34
Number of Spikes : 30	L2 Nrom(x) : 34.48
Min \& Max Spacing : 5,60	$\%$ LO Error : 16.07
Bump/Wavelet Scale : 1	$\%$ L2 Error : 0.9993
Regular , Uniform : 0,0	

Cosine Bump Convolution with Spike Train (StOMP), N=512

Length of Signal : 512 Number of Spikes : 30	StOMP Solving Time : 1.45 StOMP Stage : 12
Min \& Max Spacing : 7, 8	L2 Nrom(x) : 31.83
Bump/Wavelet Scale : 1	\% L0 Error : 1.467
Regular , Uniform : 1,0	\% L2 Error : 0.05429

Cosine Bump Convolution with Spike Train (StOMP), N=512


```
Length of Signal : 512
Number of Spikes : 30
Min & Max Spacing : 5,46
Bump/Wavelet Scale : 1
Regular , Uniform : 0,1
StOMP Solving Time : 0.01
StOMP Stage : 2
L2 Nrom(x) : 54.77
% LO Error : 1
% L2 Error : 1
```


Cosine Bump Convolution with Spike Train (StOMP), N=512


```
Length of Signal : 512
Number of Spikes : 12
Min & Max Spacing : 5, 89
Bump/Wavelet Scale : 1
Regular , Uniform : 0,1
```

```
StOMP Solving Time : 0.08
StOMP Stage : 3
L2 Nrom(x) : 34.64
% LO Error : 0.5
% L2 Error : 8.075e-14
```


Length of Signal : 512 Number of Spikes : 12 Min \& Max Spacing : 5, 89 Bump/Wavelet Scale : 1 Regular , Uniform : 0, 1	BP Solving Time : 0.11 L2 Nrom(x) : 34.64 \% LO Error : 41.67 \% L2 Error : 0.9992

Cosine Bump Convolution with Spike Train (StOMP), N=512


```
Length of Signal : 512 StOMP Solving Time : 1.43
Number of Spikes : 25 StOMP Stage : 9
Min & Max Spacing : 13,37 L2 Nrom(x) : 28.35
Bump/Wavelet Scale : 0.667% LO Error : 3.16
Regular , Uniform : 0,0 % L2 Error : 0.1873
```


Length of Signal : 512 BP Solving Time : 0.13
Length of Signal : 512 BP Solving Time : 0.13
Number of Spikes : 25
Number of Spikes : 25
Min \& Max Spacing : 13,37 % LO Error : 19.48
Min \& Max Spacing : 13,37 % LO Error : 19.48
Bump/Wavelet Scale : 0.667% L2 Error : 0.9992
Bump/Wavelet Scale : 0.667% L2 Error : 0.9992
Regular , Uniform : 0,0
Regular , Uniform : 0,0

Deconv. Summary

\square Signal with length of 512 samples

Wavelet	Scale	K	Δ	Recovery
Cosine Bump	1	30	5	+
Ricker wavelet	1	30	5	+
Cosine Bump, Regularly spaced	1	30	7	+
Cosine Bump, Uniform Amp.	1	30	5	0
Cosine Bump, Uniform Amp.	1	12	5	+
Cosine Bump	$2 / 3$	25	13	0

Seismic Laboratory for
Imaging and Modeling

Multiscale Newton Method

GhaRM Estimation

Mohammad Maysami

Image Manifolds [Wakin'06]

\square Varying Parameter: $\theta \in \Theta$ (Dimension: d)
\square Image function model: $f_{\theta}: \mathbb{R}^{d} \mapsto \mathbb{R}$
\square IAM : $\mathbf{F}=\left\{f_{\theta}: \theta \in \Theta\right\}$

- 1-to-1 $\theta \mapsto f_{\theta}$ Relation
- F is Square integrable: $\mathrm{F} \subset L^{2}\left(\mathbb{R}^{2}\right)$
\square Non-Lipschitz relation \rightarrow manifolds with $\Phi_{\mathrm{s}}, \mathrm{s}>0$

$$
\begin{aligned}
& F_{s}=\left\{\Phi_{s} f_{\theta}: \theta \in \Theta, s>0\right\} \\
& \Phi_{s} f=\phi_{s} * f, \text { where } \phi_{s}(x)=\frac{1}{2 \pi s^{2}} \exp \left\{\frac{-\|x\|^{2}}{2 s^{2}}\right\}
\end{aligned}
$$

$$
T\left(s, \theta^{(0)} ; \mathbf{F}\right)=T_{f_{\theta^{(0)}, s}}\left(\mathbf{F}_{s}\right)
$$

Multiscale Newton Method

\square Local tangent vectors on $\mathbf{F}_{\mathbf{s}_{\mathbf{k}}}$

$$
\tau_{\theta^{(k)}, s_{k}}^{i}=\left.\frac{\partial}{\partial \theta_{i}} f_{\theta, s_{k}}\right|_{\theta=\theta^{(k)}}, \quad i=0,1, \ldots, d-1
$$

\square Project estimation error

$$
J_{i}=2\left\langle f_{\theta^{(k)}, s_{k}}-I_{s_{k}}, \tau_{\theta^{(k)}, s_{k}}^{i}\right\rangle
$$

\square products of tangent vectors

$$
\begin{gathered}
H_{i j}=2\left\langle\tau_{\theta^{(k)}, s_{k}}^{i}, \tau_{\theta(k), s_{k}}^{j}\right\rangle \\
\left\langle\tau_{s_{0}}^{i}, \tau_{s_{1}}^{j}\right\rangle=c_{s_{0}, s_{1}} \delta_{i, j}
\end{gathered}
$$

\square Update estimation

$$
\theta^{(k+1)} \longleftarrow \theta^{(k)}+H^{-1} J
$$

Form IAM for Gaussians

Result statistics - Case 1

	Actual	Initial Guess	Estimated
Sigma	2	4	2.0142
Tau	0	5	0.0636
Alpha	0.2	0.5	0.1869

Noise Variance	$8.01 \mathrm{E}-06$
Iter. No.	14
MSE	$9.20 \mathrm{E}-04$
Elapsed Time	0.42

Result statistics - Case 2

	Actual	Initial Guess	Estimated
Sigma	7	0.5	6.6911
Tau	-15	2	-14.025
Alpha	0.8	0.1	0.8066

Noise Level	$3.522 \mathrm{E}-08$
Iter. No.	14
MSE	$1.06 \mathrm{E}-04$
Elapsed Time	0.31

Multiscale Newton method

\square Replace the slow redundant dictionary technique with a multiscale Newton method
\square Resolve problem with the non-differentiability of the parametrization => stable
\square Good initial guess provided by detection step
\square Convergence rate
\square robust under noise and incomplete data
\square Smoothing Sensitivity

Percolation model and

 Well tieHermann-Bernabe051

Imaging and Modeling

Discontinuity modeling

 binary mixtures

HP: high porosity
volume fraction
LP: low porosity

Discontinuity modeling

 binary mixtures

HP: high porosity
volume fraction
LP: low porosity

Upscaling: EM upscaled reflectivity

Reflectivity for the Equivalen medium model

1
SLIM
Seismic Laboratory for

Upscaling: Perc. upscaled reflectivity

Reflectivity for the Percolation model

SLIM
Seismic Laboratory for

Upscaling: lithology

\square Use the volume fractions, p, to compute

- density via a linear relation
- velocity via a nonlinear \& singular (switch) relation
\square Upscaling by smoothing p and not the velocity
\square preserves singularities because of the switch
\square singularities from \boldsymbol{p} or switch

Using IAMs for Well tie

\square Percolation Model

- P_{c}
- β
\square Match well-log (P) to seismic reflectivity
- Parametrizing by IAM
- solve for inverse problem
\square Model mixtures as binary mixtures

ChaRM Detection

\square Use recent results on spiky decon (Mallat) to make the detection unique given minor information on the seismic wavelet

- insensitivity to estimated wavelet and spike assumption
\square Extend these results to higher dimensions
- multidimensional reflector detection
- solve spike decon. for curvelet
\square Joint work with Yilmaz, Jaffard, Vedel
\square Characterization depends on an sufficiently accurate event detection

Imaging and Modeling

ChaRM Characterization

\square Develop the multiscale Newton method
\square Extend to higher dimensions
\square Make robust under noise and missing data
\square Extend the multiscale Newton technique to invert for (given the end members)

- the percolation threshold and exponent
- the extend of the lithological transition (the width of a layer in the composition)
\square Joint work with Yves Bernabé

ChaRM Upscaling and well tie

\square Study well-defined binary mixtures (e.g. Opal, gas-hydrates etc.)
\square Develop upscaling techniques that preserve singularities
\square Provide new insights in the well-seismic tie
\square Joint work with Yves Bernabé

Questions?

Comments ?

