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Problem Description

Very large-scale imaging problems

Usage of wave propagator that is desirable but
expensive to compute

Imaging is necessarily a recovery problem due to
diminished evanescent waves

Project Goals

Employ ideas of compressed sensing

Deliberately limit signal sampling to reduce
computational cost

L1-minimization recovery reduces blurring due to
missing evanescent modes
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Stable Wave Propagator Stable Wave Propagator

. . ' Property of W*is crucial for computation
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Stable Wave Propagator

No Dip Limitation

Handles Lateral Variations
Unconditional Stability
Low Computational Cost

One-Way Wave Operator

Physical behavior of wavefield modeled by coupled
differential equation of depth

(Claerbout, 1971; Wapenaar and Berkhout, 1989)

0:Q +jAQ =D

wave vector source vector

Solution for Q at any depth
Q(x3) = exp(—jAx3) Qo

Unfortunately this expression is meaningless!

One-Way Wave Operator

Structure of A confounds the meaning of its
exponentiation, due to it being an operator
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Two-way

Wave Operator Ho = kQ(gj) + auap,

H2 contains information about medium velocity

One-Way Wave Operator

Decomposition of A proposed to rectify its
usefulness in computation

(Claerbout, 1971; Wapenaar and Berkhout, 1989; de Hoop, 1992)

H 0
Two-way H= ( 01 —H, )

Wave Operator
Ho = Hi1Hy




One-Way Wave Operator

Substitution of A by its decomposition is
performed, and its composition operators is
allowed to act on the signal vectors

039+ 1JAQ =D
A=LHL!

5:P + jHP =S+ @P

One-way Wave Equation

One-Way Wave Operator

Solution to one-way wave equation now has the
one-way wave operator defined as

Wi(xg; r%) = exp(Fj(ws — x5)H1)

The new definition is consistent with the standard

“migration” model
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Modal Decomposition

We still need to compute the actual W* Operator
® this requires structure of H;

Ho = HiH1

= with 7, defined as
_ 1.2
Ho = k (:B) + (‘9“8“
= or, written as a numerical linear operator

H, =C+D».

Modal Decomposition

H; = C+ Do.
C
Symmetric
Hermitian
Self-adjoint
1
0. = Ax12

-2 1 0 0
-2 1 0 0
0o 1 =2 0 0
0 0 O -2 1
0o 0 O 1 -2




Modal Decomposition

Guaranteed existence of similarity transform
decomposition

H, = LAL™' = LAL”

Diagonal
Eigenvalue
Matrix

Composition
Transform to
Wave Modes
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Modal Decomposition

From the structure of H; it is simple to deduce
that it's “square root” can be computed as

1 1
H; = LA2L™' = LA2L”

Linear algebra thus allows the propagator to be
written in the form:

1 /
W(x3, ¥5) = L(x}) exp| /(- ¥5) A2 L7 (x))

(Grimbergin et. al., 1998)

Modal Decomposition

Implicit Wavefield Propagation Algorithm
® bring signal into frequency domain

= for each frequency & layer:
construct H, operator matrix
obtain eigenvalue decomposition of Hj,
transform monochromatic signal to eigenvector basis
apply phase rotation exp{q:j(x3—x§)1_x%}
backward transform signal to space basis
= combine monochromatic signal & transform
back to time domain

Modal Decomposition

For propagation
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Grimbergen et. al.
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Shown to effortlessly
handle lateral medium
variations without
tweaking




Modal Decomposition

simple 1-D space/time propagation example
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Imaging and Modelng

Motivation: Ideal Propagator?

v No Dip Limitation

v Handles Lateral Variations
v Unconditional Stability
Computational Speed

Imaging and Modelng

Motivation: Ideal Propagator?

spectrum of A dictates existence of evanescent
wave modes belonging to imaginary eigenvalues

Im

max{k(xu)}

0 ko Tgiser /
Re
imaginary eigenvalues
1 Amplitude of these wave modes
p ) decay exponentially as a result

Imaging and Modelng

Motivation: Ideal Propagator?

Our W operator will inevitably be “pseudo-
restricted” with a part of the operator having
diminished amplitude

Only part of
propagated wave
modes have
correct amplitude

{

amplitude decay

Imaging and Modelng




Motivation: Ideal Propagator?

This causes problems
with inverse o
propagation, defined as
Hermitian adjoint

WIwz .
B Evanescent wave

modes are not os
accounted !

= Results in Inverse propagated wave signal
freq uency_ I | m |ted (should resemble source’s perfect spike shape)

artifact

Motivation: Ideal Propagator?
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Fourier spectrum
(should be const. for perfect spike shape)

Motivation: Ideal Propagator?

Inverse propagation can instead be treated as a
least squares problem to reduce artifact

&= (ATA+el) tATYy

However this must be solved iteratively since the
Hessian (AT A) is ill-conditioned

This adds a factor of 10x~20x to the computing
cost of each propagation

Motivation: Ideal Propagator?

However, least-squares do not completely solve
the problem of inverse propagation
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Still missing some
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Motivation: Ideal Propagator? Propagation via L1-recovery

Furthermore, the modal decomposition method is Fourier basis is known to be a good measurement
inherently costly basis for sparse recovery due to strong
= synthesis cost: incoherence with Dirac basis (E. Candes, D.L. Donoho)
requires solving a full eigenvalue problem with
the H2 matrix, which could be O(n3) with n Dirac Fourier

= operation cost: —@—-}
requires a FFT in addition to vector-matrix
multiplications which is O(n2), with /sqr
contributing a factor of 10~20 to this cost From UUP we know that it takes only ~5 Fourier
wave modes to recover one point spike
(disregarding log-like factors)

being the number of detectors ‘

})sLim })sLim
Inspiration: Wave Modes of H2 Propagation via L1-recovery
The wave modes of H, very much resembles a We can actually directly ignore evanescent wave
Fourier transform operator’s wave modes! modes and call it “conveniently restricted out”
(Grimbergin et. al., 1998) Result is clean spikes without artifacts caused by

“incomplete” propagation
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Wave modes for
invariant medium

is identical to that 0 0
of a cosine
transform
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Restricted Wave Propagation Algorithm

Propagation via LL1-recovery

Restricted Wave Propagation Algorithm —@-@-) ﬁww M
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® Decompose signal into freq & H2 wave mode sigrjal in spatial domain signal JJL ld i
® Delete (restrict) most of the signal, for practical
cases usually ~90%
= Construct a much smaller Implicit Wavefield
Propagation Algorithm and apply it to restricted ]
signal |
= Use a fast L1-solver to recover the full |
propagated signal in space/time domain propagated signal in spatial domain
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Computational Savings

Reduction in synthesis cost

® a fully restricted frequency eliminates one full
eigenvalue problem

= partially restricted frequencies gain a reduction
in the size of the eigenvalue (10% of original
size)

Reduction in computation cost

= Applying the operator now is only O(n), with a
factor that is proportional to the fraction of
signal surviving restriction

What about the I.1-recovery?

L1-recovery isn’t free, which is why we need a fast
solver

StOMP can be utilized as a fast approximate L1
solver

But in reality, any L1 solver can be used as long as
it is fast

StOMP Computational Costs
StOMP is approximately equal to 2~5x of an
iterative /sgr problem. But:
Cost of ~ | Restriction || Cost of
Reduced Operator ~ | Ratio Full Operator

= j.e., Operating on a signal 10% of the original size will take
about 10% of the time taken by a full operator

StOMP will usually be faster than /sgr provided that
we restrict more than 80% of the signal

O
Experimental Results
Recoverability phase diagrams
Eigenvalue problem cost reduction
O




Recoverability Phase Diagrams

Invariant Medium, 1km down
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Hard Problems

What do we expect when we inverse-propagate in
a “hard” medium?

4000r b
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2400r

Guided wave modes will probably affect
recoverability, but hard to predict

See separate effects of frequency vs. H2 wave
mode restriction

Choosing Restrictions

Choice of restrictions in frequency and H2 modes
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Recoverability Phase Diagrams

Rapidly Varying Medium, 1km down, freq restriction
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Recoverability Phase Diagrams Savings on Figenvalue Problem

Rapidly Varying Medium, 1km down, H2 restriction

We additionally save time by computing only a
small percentage of eigenvalues
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Future Directions Optimal Restriction
Optimal Restriction Restricting whole frequencies eliminate entire
Multi-layer Propagation eigenvalue problems, but give less predictable
Working in curvelet sparsity results o ) )
Pure random restriction gives predictable results
but still require solving eigenvalues
[An optimal restriction scheme is proposed to exist ]
})SLim })SLim
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Multi-Layer Propagation

Multi-Layer propagation is the only way to deal
with vertical velocity variations

®-) 000000
x3 >0

Decaying evanescent waves make deep
propagations through many layers difficult

[Possible non-linear inv. propagation using L1 Solvers ]

Curvelet Sparsity

Stop working in broadband and start working in
Curvelet sparsity

Utilizing Curvelet sparsity is possible by
incorporating FDCT into the operator

[ Maintain signal sparsity with new sparsity basis ]

Conclusions

Reformat inverse propagation and therefore
imaging as a sparse recovery problem

Remove problem with evanescent wave modes
Faster (or at least as fast) to compute as /sgr
Loosened memory requirements

Improves with future fast L1 solver

Thanks for your time!




