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Problem Description

! Very large-scale imaging problems

! Usage of wave propagator that is desirable but 
expensive to compute

! Imaging is necessarily a recovery problem due to 
diminished evanescent waves

Project Goals

! Employ ideas of compressed sensing

! Deliberately limit signal sampling to reduce 
computational cost

! L1-minimization recovery reduces blurring due to 
missing evanescent modes

signal in spatial domain signal in Fourier domain

restricted signal in Fourier domain
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signal in spatial domain signal in H2 domain

restricted signal in H2 domain

propagated signal in spatial domain
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About this Propagator...

Stable Wave Propagator

s+

W-

R+

W+

p- ! Property of W± is crucial for computation

Stable Wave Propagator

s+W- R+ W+p-

∫

x3 > 0

= dx3

s+W- R+ W+p-

x3 > 0

=
∑

∆x3



Stable Wave Propagator

! No Dip Limitation

! Handles Lateral Variations

! Unconditional Stability

! Low Computational Cost

W±

One-Way Wave Operator

! Physical behavior of wavefield modeled by coupled 
differential equation of depth

! Solution for     at any depth

! Unfortunately this expression is meaningless!

(Claerbout, 1971; Wapenaar and Berkhout, 1989)

wave vector source vector

∂3Q + jAQ = D

Q
Q(x3) = exp(−jAx3)Q0

One-Way Wave Operator

! Structure of     confounds the meaning of its 
exponentiation, due to it being an operator

! H2 contains information about medium velocity

A =
(

0 ωρ
1

ωρ1/2 (H2ρ−1/2) 0

)

H2 = k2(x) + ∂µ∂µ

Two-way

Wave Operator

A

One-Way Wave Operator

! Decomposition of      proposed to rectify its 
usefulness in computation

A = LHL−1

H2 = H1H1

H =
(
H1 0
0 −H1

)
Two-way

Wave Operator

A
(Claerbout, 1971; Wapenaar and Berkhout, 1989; de Hoop, 1992)



One-Way Wave Operator

! Substitution of      by its decomposition is 
performed, and its composition operators is 
allowed to act on the signal vectors

∂3Q+ jAQ = D
A = LHL−1

∂3P + jHP = S + ΘP
One-way Wave Equation

A

One-Way Wave Operator

! Solution to one-way wave equation now has the 
one-way wave operator defined as

! The new definition is consistent with the standard 
“migration” model

W±(x3;x′
3) = exp(∓j(x3 − x′

3)H1)

s+W- R+ W+P-

x3 > 0

=
∑

∆x3

Modal Decomposition

! We still need to compute the actual W± Operator

" this requires structure of 

" with     defined as

" or, written as a numerical linear operator

H2 = H1H1

H2 = k2(x) + ∂µ∂µ

H1
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The continuous variables (x1, x
′
1) above relate to discrete in-

dices of an M × M matrix operator according to

˜
H2 =

˜
C +

˜
D2. (34)

Here,
˜
C is a diagonal matrix corresponding to the first term in

equation (33):

˜
C =





(
ω

c′
1

)2

0 · · · 0

0
(

ω

c′
2

)2

· · · 0

...
...

. . .
...

0 0 · · ·
(

ω

c′
M

)2





, (35)

where c′
n = c′(n"x1, x3) and "x1 is the lateral discretization

interval. Furthermore, the matrix operator
˜
D2 represents the

second-order differentiation filter, which may be implemented
as

˜
D2 = 1

"x2
1

=





−2 1 0 · · · 0 0
1 −2 1 · · · 0 0
0 1 −2 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · −2 1
0 0 0 · · · 1 −2





. (36)

However, in practice a matrix operator is applied which con-
tains more nonzero diagonals. The matrix elements of this oper-
ator are calculated using a least-squares optimization algorithm
(Thorbecke and Rietveld, 1994). As can be seen by inspection
of equations (35) and (36), both matrix operators in equation
(34) are real valued and symmetric; hence,

˜
H2 is self-adjoint

(
˜
H2 =

˜
HH

2 , where H denotes transposition and complex con-
jugation). A well-known result from matrix algebra (Golub
and van Loan, 1989) states that, for a self-adjoint matrix, the
following decomposition can be applied:

˜
H2 =

˜
L
˜
Λ
˜
L−1 =

˜
L
˜
Λ
˜
LH , (37)

where
˜
L contains the discrete equivalents of the normalized

eigenfunctions φ in its columns and
˜
Λ is a diagonal matrix

containing the eigenvalues of
˜
H2. This equation is the discrete

counterpart of equation (28). Hence, the eigenvalues in
˜
Λ re-

place both the discrete and the continuous part of the spectrum
(see also Figure 1). The square root matrix operator

˜
H1 conse-

quently can be written as

˜
H1 =

˜
L
˜
Λ

1
2
˜
L−1 =

˜
L
˜
Λ

1
2
˜
LH , (38)

with the signs of the square root of the eigenvalues in
˜
Λ

1
2 cho-

sen according to equations (30) and (31). This result is evident
because, as an equivalent of equations (2) and (16), we have

˜
H2 =

˜
H1

˜
H1.

The procedure described above is illustrated for a laterally
invariant and a laterally variant medium. Figure 3 shows the
laterally variant medium profile. At a fixed value of x3, this
medium contains a lateral perturbation (i.e., a velocity dip) of
the laterally invariant medium. In Figure 4 the spectrum of the
square root operator Ĥ1 and eigenfunctions of both profiles are
compared. The common part of the spectra [Figures 4(a) and
4(d)] corresponds to the continuous part in Figure 2. These
eigenvalues would condense into a continuous branch if the
lateral aperture were increased to infinity. The isolated eigen-
values on the right in Figure 4(d) are caused by the velocity dip
in the medium, which acts as a waveguide. In Figures 4(b) and
4(c), two eigenfunctions are shown for the laterally homoge-
neous profile. In Figures 4(e) and 4(f), one guided wave mode
and one radiating wave mode are shown.

Finally, the primary propagator matrix
˜
W±(x3, x

′
3) can be

expressed according to

˜
W±(x3, x

′
3) =

˜
L(x ′

3) exp
{
∓j(x3−x ′

3)
˜
Λ

1
2
}

˜
LH (x ′

3). (39)

In equation (39), the amplitude of the exponential function
equals unity for propagating wave modes and is lower than
unity for evanescent wave modes. This is demonstrated in Fig-
ure 5, where the amplitude of the exponential for each eigen-
value in Figure 4(a) is depicted. Hence, the wavefield is extrap-
olated accurately and in a stable manner up to 90◦ and beyond
(the evanescent wavefield). The stability of the extrapolator
is an important distinctive feature of the described method
compared to local explicit methods, which have been reported
to exhibit unstable behavior in various situations (Etgen,
1994).

NUMERICAL IMPLEMENTATION IN 3-D

As in the 2-D case, we now take the kernel of the Helmholtz
operator for the 3-D situation as a point of departure:

H2(xH , x3; x′
H ) =

(
ω

c′(xH , x3)

)2

δ(xH − x′
H )

+ ∇2
Hδ(xH − x′

H ). (40)

Evidently, the eigenvectors of this operator are in this case two
dimensional in space, which raises the question if equation (40)
can still be expressed in terms of a matrix operator. Kinneging
et al. (1989) show that monochromatic 3-D data can indeed be

FIG. 3. Laterally variant medium profile at a fixed depth
level x3.
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The continuous variables (x1, x
′
1) above relate to discrete in-

dices of an M × M matrix operator according to

˜
H2 =

˜
C +

˜
D2. (34)

Here,
˜
C is a diagonal matrix corresponding to the first term in

equation (33):
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C =
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, (35)

where c′
n = c′(n"x1, x3) and "x1 is the lateral discretization

interval. Furthermore, the matrix operator
˜
D2 represents the

second-order differentiation filter, which may be implemented
as

˜
D2 = 1

"x2
1

=





−2 1 0 · · · 0 0
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
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. (36)

However, in practice a matrix operator is applied which con-
tains more nonzero diagonals. The matrix elements of this oper-
ator are calculated using a least-squares optimization algorithm
(Thorbecke and Rietveld, 1994). As can be seen by inspection
of equations (35) and (36), both matrix operators in equation
(34) are real valued and symmetric; hence,

˜
H2 is self-adjoint

(
˜
H2 =

˜
HH

2 , where H denotes transposition and complex con-
jugation). A well-known result from matrix algebra (Golub
and van Loan, 1989) states that, for a self-adjoint matrix, the
following decomposition can be applied:

˜
H2 =

˜
L
˜
Λ
˜
L−1 =

˜
L
˜
Λ
˜
LH , (37)

where
˜
L contains the discrete equivalents of the normalized

eigenfunctions φ in its columns and
˜
Λ is a diagonal matrix

containing the eigenvalues of
˜
H2. This equation is the discrete

counterpart of equation (28). Hence, the eigenvalues in
˜
Λ re-

place both the discrete and the continuous part of the spectrum
(see also Figure 1). The square root matrix operator

˜
H1 conse-

quently can be written as

˜
H1 =

˜
L
˜
Λ

1
2
˜
L−1 =

˜
L
˜
Λ

1
2
˜
LH , (38)

with the signs of the square root of the eigenvalues in
˜
Λ

1
2 cho-

sen according to equations (30) and (31). This result is evident
because, as an equivalent of equations (2) and (16), we have

˜
H2 =

˜
H1

˜
H1.

The procedure described above is illustrated for a laterally
invariant and a laterally variant medium. Figure 3 shows the
laterally variant medium profile. At a fixed value of x3, this
medium contains a lateral perturbation (i.e., a velocity dip) of
the laterally invariant medium. In Figure 4 the spectrum of the
square root operator Ĥ1 and eigenfunctions of both profiles are
compared. The common part of the spectra [Figures 4(a) and
4(d)] corresponds to the continuous part in Figure 2. These
eigenvalues would condense into a continuous branch if the
lateral aperture were increased to infinity. The isolated eigen-
values on the right in Figure 4(d) are caused by the velocity dip
in the medium, which acts as a waveguide. In Figures 4(b) and
4(c), two eigenfunctions are shown for the laterally homoge-
neous profile. In Figures 4(e) and 4(f), one guided wave mode
and one radiating wave mode are shown.

Finally, the primary propagator matrix
˜
W±(x3, x

′
3) can be

expressed according to

˜
W±(x3, x

′
3) =

˜
L(x ′

3) exp
{
∓j(x3−x ′

3)
˜
Λ

1
2
}

˜
LH (x ′

3). (39)

In equation (39), the amplitude of the exponential function
equals unity for propagating wave modes and is lower than
unity for evanescent wave modes. This is demonstrated in Fig-
ure 5, where the amplitude of the exponential for each eigen-
value in Figure 4(a) is depicted. Hence, the wavefield is extrap-
olated accurately and in a stable manner up to 90◦ and beyond
(the evanescent wavefield). The stability of the extrapolator
is an important distinctive feature of the described method
compared to local explicit methods, which have been reported
to exhibit unstable behavior in various situations (Etgen,
1994).

NUMERICAL IMPLEMENTATION IN 3-D

As in the 2-D case, we now take the kernel of the Helmholtz
operator for the 3-D situation as a point of departure:

H2(xH , x3; x′
H ) =

(
ω

c′(xH , x3)
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δ(xH − x′
H )

+ ∇2
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Evidently, the eigenvectors of this operator are in this case two
dimensional in space, which raises the question if equation (40)
can still be expressed in terms of a matrix operator. Kinneging
et al. (1989) show that monochromatic 3-D data can indeed be

FIG. 3. Laterally variant medium profile at a fixed depth
level x3.
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The continuous variables (x1, x
′
1) above relate to discrete in-

dices of an M × M matrix operator according to

˜
H2 =

˜
C +

˜
D2. (34)

Here,
˜
C is a diagonal matrix corresponding to the first term in

equation (33):

˜
C =





(
ω
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1

)2
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0
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M

)2





, (35)

where c′
n = c′(n"x1, x3) and "x1 is the lateral discretization

interval. Furthermore, the matrix operator
˜
D2 represents the

second-order differentiation filter, which may be implemented
as

˜
D2 = 1

"x2
1

=





−2 1 0 · · · 0 0
1 −2 1 · · · 0 0
0 1 −2 · · · 0 0
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0 0 0 · · · −2 1
0 0 0 · · · 1 −2


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. (36)

However, in practice a matrix operator is applied which con-
tains more nonzero diagonals. The matrix elements of this oper-
ator are calculated using a least-squares optimization algorithm
(Thorbecke and Rietveld, 1994). As can be seen by inspection
of equations (35) and (36), both matrix operators in equation
(34) are real valued and symmetric; hence,

˜
H2 is self-adjoint

(
˜
H2 =

˜
HH

2 , where H denotes transposition and complex con-
jugation). A well-known result from matrix algebra (Golub
and van Loan, 1989) states that, for a self-adjoint matrix, the
following decomposition can be applied:

˜
H2 =

˜
L
˜
Λ
˜
L−1 =

˜
L
˜
Λ
˜
LH , (37)

where
˜
L contains the discrete equivalents of the normalized

eigenfunctions φ in its columns and
˜
Λ is a diagonal matrix

containing the eigenvalues of
˜
H2. This equation is the discrete

counterpart of equation (28). Hence, the eigenvalues in
˜
Λ re-

place both the discrete and the continuous part of the spectrum
(see also Figure 1). The square root matrix operator

˜
H1 conse-

quently can be written as

˜
H1 =

˜
L
˜
Λ

1
2
˜
L−1 =

˜
L
˜
Λ

1
2
˜
LH , (38)

with the signs of the square root of the eigenvalues in
˜
Λ

1
2 cho-

sen according to equations (30) and (31). This result is evident
because, as an equivalent of equations (2) and (16), we have

˜
H2 =

˜
H1

˜
H1.

The procedure described above is illustrated for a laterally
invariant and a laterally variant medium. Figure 3 shows the
laterally variant medium profile. At a fixed value of x3, this
medium contains a lateral perturbation (i.e., a velocity dip) of
the laterally invariant medium. In Figure 4 the spectrum of the
square root operator Ĥ1 and eigenfunctions of both profiles are
compared. The common part of the spectra [Figures 4(a) and
4(d)] corresponds to the continuous part in Figure 2. These
eigenvalues would condense into a continuous branch if the
lateral aperture were increased to infinity. The isolated eigen-
values on the right in Figure 4(d) are caused by the velocity dip
in the medium, which acts as a waveguide. In Figures 4(b) and
4(c), two eigenfunctions are shown for the laterally homoge-
neous profile. In Figures 4(e) and 4(f), one guided wave mode
and one radiating wave mode are shown.

Finally, the primary propagator matrix
˜
W±(x3, x

′
3) can be

expressed according to

˜
W±(x3, x

′
3) =

˜
L(x ′

3) exp
{
∓j(x3−x ′

3)
˜
Λ

1
2
}

˜
LH (x ′

3). (39)

In equation (39), the amplitude of the exponential function
equals unity for propagating wave modes and is lower than
unity for evanescent wave modes. This is demonstrated in Fig-
ure 5, where the amplitude of the exponential for each eigen-
value in Figure 4(a) is depicted. Hence, the wavefield is extrap-
olated accurately and in a stable manner up to 90◦ and beyond
(the evanescent wavefield). The stability of the extrapolator
is an important distinctive feature of the described method
compared to local explicit methods, which have been reported
to exhibit unstable behavior in various situations (Etgen,
1994).

NUMERICAL IMPLEMENTATION IN 3-D

As in the 2-D case, we now take the kernel of the Helmholtz
operator for the 3-D situation as a point of departure:

H2(xH , x3; x′
H ) =

(
ω

c′(xH , x3)

)2

δ(xH − x′
H )

+ ∇2
Hδ(xH − x′

H ). (40)

Evidently, the eigenvectors of this operator are in this case two
dimensional in space, which raises the question if equation (40)
can still be expressed in terms of a matrix operator. Kinneging
et al. (1989) show that monochromatic 3-D data can indeed be

FIG. 3. Laterally variant medium profile at a fixed depth
level x3.
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The continuous variables (x1, x
′
1) above relate to discrete in-

dices of an M × M matrix operator according to

˜
H2 =

˜
C +

˜
D2. (34)

Here,
˜
C is a diagonal matrix corresponding to the first term in

equation (33):

˜
C =





(
ω

c′
1

)2

0 · · · 0

0
(

ω

c′
2

)2

· · · 0

...
...

. . .
...

0 0 · · ·
(

ω

c′
M

)2





, (35)

where c′
n = c′(n"x1, x3) and "x1 is the lateral discretization

interval. Furthermore, the matrix operator
˜
D2 represents the

second-order differentiation filter, which may be implemented
as

˜
D2 = 1

"x2
1

=





−2 1 0 · · · 0 0
1 −2 1 · · · 0 0
0 1 −2 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · −2 1
0 0 0 · · · 1 −2





. (36)

However, in practice a matrix operator is applied which con-
tains more nonzero diagonals. The matrix elements of this oper-
ator are calculated using a least-squares optimization algorithm
(Thorbecke and Rietveld, 1994). As can be seen by inspection
of equations (35) and (36), both matrix operators in equation
(34) are real valued and symmetric; hence,

˜
H2 is self-adjoint

(
˜
H2 =

˜
HH

2 , where H denotes transposition and complex con-
jugation). A well-known result from matrix algebra (Golub
and van Loan, 1989) states that, for a self-adjoint matrix, the
following decomposition can be applied:

˜
H2 =

˜
L
˜
Λ
˜
L−1 =

˜
L
˜
Λ
˜
LH , (37)

where
˜
L contains the discrete equivalents of the normalized

eigenfunctions φ in its columns and
˜
Λ is a diagonal matrix

containing the eigenvalues of
˜
H2. This equation is the discrete

counterpart of equation (28). Hence, the eigenvalues in
˜
Λ re-

place both the discrete and the continuous part of the spectrum
(see also Figure 1). The square root matrix operator

˜
H1 conse-

quently can be written as

˜
H1 =

˜
L
˜
Λ

1
2
˜
L−1 =

˜
L
˜
Λ

1
2
˜
LH , (38)

with the signs of the square root of the eigenvalues in
˜
Λ

1
2 cho-

sen according to equations (30) and (31). This result is evident
because, as an equivalent of equations (2) and (16), we have

˜
H2 =

˜
H1

˜
H1.

The procedure described above is illustrated for a laterally
invariant and a laterally variant medium. Figure 3 shows the
laterally variant medium profile. At a fixed value of x3, this
medium contains a lateral perturbation (i.e., a velocity dip) of
the laterally invariant medium. In Figure 4 the spectrum of the
square root operator Ĥ1 and eigenfunctions of both profiles are
compared. The common part of the spectra [Figures 4(a) and
4(d)] corresponds to the continuous part in Figure 2. These
eigenvalues would condense into a continuous branch if the
lateral aperture were increased to infinity. The isolated eigen-
values on the right in Figure 4(d) are caused by the velocity dip
in the medium, which acts as a waveguide. In Figures 4(b) and
4(c), two eigenfunctions are shown for the laterally homoge-
neous profile. In Figures 4(e) and 4(f), one guided wave mode
and one radiating wave mode are shown.

Finally, the primary propagator matrix
˜
W±(x3, x

′
3) can be

expressed according to

˜
W±(x3, x

′
3) =

˜
L(x ′

3) exp
{
∓j(x3−x ′

3)
˜
Λ

1
2
}

˜
LH (x ′

3). (39)

In equation (39), the amplitude of the exponential function
equals unity for propagating wave modes and is lower than
unity for evanescent wave modes. This is demonstrated in Fig-
ure 5, where the amplitude of the exponential for each eigen-
value in Figure 4(a) is depicted. Hence, the wavefield is extrap-
olated accurately and in a stable manner up to 90◦ and beyond
(the evanescent wavefield). The stability of the extrapolator
is an important distinctive feature of the described method
compared to local explicit methods, which have been reported
to exhibit unstable behavior in various situations (Etgen,
1994).

NUMERICAL IMPLEMENTATION IN 3-D

As in the 2-D case, we now take the kernel of the Helmholtz
operator for the 3-D situation as a point of departure:

H2(xH , x3; x′
H ) =

(
ω

c′(xH , x3)

)2

δ(xH − x′
H )

+ ∇2
Hδ(xH − x′

H ). (40)

Evidently, the eigenvectors of this operator are in this case two
dimensional in space, which raises the question if equation (40)
can still be expressed in terms of a matrix operator. Kinneging
et al. (1989) show that monochromatic 3-D data can indeed be

FIG. 3. Laterally variant medium profile at a fixed depth
level x3.

! Symmetric

! Hermitian

! Self-adjoint



Modal Decomposition

! Guaranteed existence of similarity transform 
decomposition
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The continuous variables (x1, x
′
1) above relate to discrete in-

dices of an M × M matrix operator according to

˜
H2 =

˜
C +

˜
D2. (34)

Here,
˜
C is a diagonal matrix corresponding to the first term in

equation (33):

˜
C =





(
ω

c′
1

)2

0 · · · 0

0
(

ω

c′
2
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· · · 0

...
...

. . .
...

0 0 · · ·
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ω

c′
M

)2





, (35)

where c′
n = c′(n"x1, x3) and "x1 is the lateral discretization

interval. Furthermore, the matrix operator
˜
D2 represents the

second-order differentiation filter, which may be implemented
as

˜
D2 = 1

"x2
1

=




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. (36)

However, in practice a matrix operator is applied which con-
tains more nonzero diagonals. The matrix elements of this oper-
ator are calculated using a least-squares optimization algorithm
(Thorbecke and Rietveld, 1994). As can be seen by inspection
of equations (35) and (36), both matrix operators in equation
(34) are real valued and symmetric; hence,

˜
H2 is self-adjoint

(
˜
H2 =

˜
HH

2 , where H denotes transposition and complex con-
jugation). A well-known result from matrix algebra (Golub
and van Loan, 1989) states that, for a self-adjoint matrix, the
following decomposition can be applied:

˜
H2 =

˜
L
˜
Λ
˜
L−1 =

˜
L
˜
Λ
˜
LH , (37)

where
˜
L contains the discrete equivalents of the normalized

eigenfunctions φ in its columns and
˜
Λ is a diagonal matrix

containing the eigenvalues of
˜
H2. This equation is the discrete

counterpart of equation (28). Hence, the eigenvalues in
˜
Λ re-

place both the discrete and the continuous part of the spectrum
(see also Figure 1). The square root matrix operator

˜
H1 conse-

quently can be written as

˜
H1 =

˜
L
˜
Λ

1
2
˜
L−1 =

˜
L
˜
Λ

1
2
˜
LH , (38)

with the signs of the square root of the eigenvalues in
˜
Λ

1
2 cho-

sen according to equations (30) and (31). This result is evident
because, as an equivalent of equations (2) and (16), we have

˜
H2 =

˜
H1

˜
H1.

The procedure described above is illustrated for a laterally
invariant and a laterally variant medium. Figure 3 shows the
laterally variant medium profile. At a fixed value of x3, this
medium contains a lateral perturbation (i.e., a velocity dip) of
the laterally invariant medium. In Figure 4 the spectrum of the
square root operator�̂1 and eigenfunctions of both profiles are
compared. The common part of the spectra [Figures 4(a) and
4(d)] corresponds to the continuous part in Figure 2. These
eigenvalues would condense into a continuous branch if the
lateral aperture were increased to infinity. The isolated eigen-
values on the right in Figure 4(d) are caused by the velocity dip
in the medium, which acts as a waveguide. In Figures 4(b) and
4(c), two eigenfunctions are shown for the laterally homoge-
neous profile. In Figures 4(e) and 4(f), one guided wave mode
and one radiating wave mode are shown.

Finally, the primary propagator matrix
˜
W±(x3, x

′
3) can be

expressed according to

˜
W±(x3, x

′
3) =

˜
L(x ′

3) exp
{
∓j(x3−x ′

3)
˜
Λ

1
2
}

˜
LH (x ′

3). (39)

In equation (39), the amplitude of the exponential function
equals unity for propagating wave modes and is lower than
unity for evanescent wave modes. This is demonstrated in Fig-
ure 5, where the amplitude of the exponential for each eigen-
value in Figure 4(a) is depicted. Hence, the wavefield is extrap-
olated accurately and in a stable manner up to 90◦ and beyond
(the evanescent wavefield). The stability of the extrapolator
is an important distinctive feature of the described method
compared to local explicit methods, which have been reported
to exhibit unstable behavior in various situations (Etgen,
1994).

NUMERICAL IMPLEMENTATION IN 3-D

As in the 2-D case, we now take the kernel of the Helmholtz
operator for the 3-D situation as a point of departure:

�2(xH , x3; x′
H ) =

(
ω

c′(xH , x3)

)2

δ(xH − x′
H )

+�2
Hδ(xH − x′

H ). (40)

Evidently, the eigenvectors of this operator are in this case two
dimensional in space, which raises the question if equation (40)
can still be expressed in terms of a matrix operator. Kinneging
et al. (1989) show that monochromatic 3-D data can indeed be

FIG. 3. Laterally variant medium profile at a fixed depth
level x3.
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The continuous variables (x1, x
′
1) above relate to discrete in-

dices of an M × M matrix operator according to
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C +
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interval. Furthermore, the matrix operator
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D2 represents the

second-order differentiation filter, which may be implemented
as
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D2 = 1
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1

=
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However, in practice a matrix operator is applied which con-
tains more nonzero diagonals. The matrix elements of this oper-
ator are calculated using a least-squares optimization algorithm
(Thorbecke and Rietveld, 1994). As can be seen by inspection
of equations (35) and (36), both matrix operators in equation
(34) are real valued and symmetric; hence,

˜
H2 is self-adjoint

(
˜
H2 =

˜
HH

2 , where H denotes transposition and complex con-
jugation). A well-known result from matrix algebra (Golub
and van Loan, 1989) states that, for a self-adjoint matrix, the
following decomposition can be applied:

˜
H2 =

˜
L
˜
Λ
˜
L−1 =

˜
L
˜
Λ
˜
LH , (37)

where
˜
L contains the discrete equivalents of the normalized

eigenfunctions φ in its columns and
˜
Λ is a diagonal matrix

containing the eigenvalues of
˜
H2. This equation is the discrete

counterpart of equation (28). Hence, the eigenvalues in
˜
Λ re-

place both the discrete and the continuous part of the spectrum
(see also Figure 1). The square root matrix operator

˜
H1 conse-

quently can be written as

˜
H1 =
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L
˜
Λ

1
2
˜
L−1 =

˜
L
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1
2
˜
LH , (38)

with the signs of the square root of the eigenvalues in
˜
Λ

1
2 cho-

sen according to equations (30) and (31). This result is evident
because, as an equivalent of equations (2) and (16), we have

˜
H2 =

˜
H1

˜
H1.

The procedure described above is illustrated for a laterally
invariant and a laterally variant medium. Figure 3 shows the
laterally variant medium profile. At a fixed value of x3, this
medium contains a lateral perturbation (i.e., a velocity dip) of
the laterally invariant medium. In Figure 4 the spectrum of the
square root operator Ĥ1 and eigenfunctions of both profiles are
compared. The common part of the spectra [Figures 4(a) and
4(d)] corresponds to the continuous part in Figure 2. These
eigenvalues would condense into a continuous branch if the
lateral aperture were increased to infinity. The isolated eigen-
values on the right in Figure 4(d) are caused by the velocity dip
in the medium, which acts as a waveguide. In Figures 4(b) and
4(c), two eigenfunctions are shown for the laterally homoge-
neous profile. In Figures 4(e) and 4(f), one guided wave mode
and one radiating wave mode are shown.

Finally, the primary propagator matrix
˜
W±(x3, x

′
3) can be

expressed according to

˜
W±(x3, x

′
3) =

˜
L(x ′

3) exp
{
∓j(x3−x ′

3)
˜
Λ

1
2
}

˜
LH (x ′

3). (39)

In equation (39), the amplitude of the exponential function
equals unity for propagating wave modes and is lower than
unity for evanescent wave modes. This is demonstrated in Fig-
ure 5, where the amplitude of the exponential for each eigen-
value in Figure 4(a) is depicted. Hence, the wavefield is extrap-
olated accurately and in a stable manner up to 90◦ and beyond
(the evanescent wavefield). The stability of the extrapolator
is an important distinctive feature of the described method
compared to local explicit methods, which have been reported
to exhibit unstable behavior in various situations (Etgen,
1994).

NUMERICAL IMPLEMENTATION IN 3-D

As in the 2-D case, we now take the kernel of the Helmholtz
operator for the 3-D situation as a point of departure:

H2(xH , x3; x′
H ) =

(
ω

c′(xH , x3)

)2

δ(xH − x′
H )

+ ∇2
Hδ(xH − x′

H ). (40)

Evidently, the eigenvectors of this operator are in this case two
dimensional in space, which raises the question if equation (40)
can still be expressed in terms of a matrix operator. Kinneging
et al. (1989) show that monochromatic 3-D data can indeed be

FIG. 3. Laterally variant medium profile at a fixed depth
level x3.
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The continuous variables (x1, x
′
1) above relate to discrete in-

dices of an M × M matrix operator according to

˜
H2 =

˜
C +

˜
D2. (34)

Here,
˜
C is a diagonal matrix corresponding to the first term in

equation (33):
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C =
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

, (35)

where c′
n = c′(n"x1, x3) and "x1 is the lateral discretization

interval. Furthermore, the matrix operator
˜
D2 represents the

second-order differentiation filter, which may be implemented
as

˜
D2 = 1

"x2
1

=





−2 1 0 · · · 0 0
1 −2 1 · · · 0 0
0 1 −2 · · · 0 0
...

...
...
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0 0 0 · · · −2 1
0 0 0 · · · 1 −2


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. (36)

However, in practice a matrix operator is applied which con-
tains more nonzero diagonals. The matrix elements of this oper-
ator are calculated using a least-squares optimization algorithm
(Thorbecke and Rietveld, 1994). As can be seen by inspection
of equations (35) and (36), both matrix operators in equation
(34) are real valued and symmetric; hence,

˜
H2 is self-adjoint

(
˜
H2 =

˜
HH

2 , where H denotes transposition and complex con-
jugation). A well-known result from matrix algebra (Golub
and van Loan, 1989) states that, for a self-adjoint matrix, the
following decomposition can be applied:

˜
H2 =

˜
L
˜
Λ
˜
L−1 =

˜
L
˜
Λ
˜
LH , (37)

where
˜
L contains the discrete equivalents of the normalized

eigenfunctions φ in its columns and
˜
Λ is a diagonal matrix

containing the eigenvalues of
˜
H2. This equation is the discrete

counterpart of equation (28). Hence, the eigenvalues in
˜
Λ re-

place both the discrete and the continuous part of the spectrum
(see also Figure 1). The square root matrix operator

˜
H1 conse-

quently can be written as

˜
H1 =

˜
L
˜
Λ

1
2
˜
L−1 =

˜
L
˜
Λ

1
2
˜
LH , (38)

with the signs of the square root of the eigenvalues in
˜
Λ

1
2 cho-

sen according to equations (30) and (31). This result is evident
because, as an equivalent of equations (2) and (16), we have

˜
H2 =

˜
H1

˜
H1.

The procedure described above is illustrated for a laterally
invariant and a laterally variant medium. Figure 3 shows the
laterally variant medium profile. At a fixed value of x3, this
medium contains a lateral perturbation (i.e., a velocity dip) of
the laterally invariant medium. In Figure 4 the spectrum of the
square root operator Ĥ1 and eigenfunctions of both profiles are
compared. The common part of the spectra [Figures 4(a) and
4(d)] corresponds to the continuous part in Figure 2. These
eigenvalues would condense into a continuous branch if the
lateral aperture were increased to infinity. The isolated eigen-
values on the right in Figure 4(d) are caused by the velocity dip
in the medium, which acts as a waveguide. In Figures 4(b) and
4(c), two eigenfunctions are shown for the laterally homoge-
neous profile. In Figures 4(e) and 4(f), one guided wave mode
and one radiating wave mode are shown.

Finally, the primary propagator matrix
˜
W±(x3, x

′
3) can be

expressed according to

˜
W±(x3, x

′
3) =

˜
L(x ′

3) exp
{
∓j(x3−x ′

3)
˜
Λ

1
2
}

˜
LH (x ′

3). (39)

In equation (39), the amplitude of the exponential function
equals unity for propagating wave modes and is lower than
unity for evanescent wave modes. This is demonstrated in Fig-
ure 5, where the amplitude of the exponential for each eigen-
value in Figure 4(a) is depicted. Hence, the wavefield is extrap-
olated accurately and in a stable manner up to 90◦ and beyond
(the evanescent wavefield). The stability of the extrapolator
is an important distinctive feature of the described method
compared to local explicit methods, which have been reported
to exhibit unstable behavior in various situations (Etgen,
1994).

NUMERICAL IMPLEMENTATION IN 3-D

As in the 2-D case, we now take the kernel of the Helmholtz
operator for the 3-D situation as a point of departure:

H2(xH , x3; x′
H ) =

(
ω

c′(xH , x3)

)2

δ(xH − x′
H )

+ ∇2
Hδ(xH − x′

H ). (40)

Evidently, the eigenvectors of this operator are in this case two
dimensional in space, which raises the question if equation (40)
can still be expressed in terms of a matrix operator. Kinneging
et al. (1989) show that monochromatic 3-D data can indeed be

FIG. 3. Laterally variant medium profile at a fixed depth
level x3.
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The continuous variables (x1, x
′
1) above relate to discrete in-

dices of an M × M matrix operator according to

˜
H2 =

˜
C +

˜
D2. (34)

Here,
˜
C is a diagonal matrix corresponding to the first term in

equation (33):

˜
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, (35)

where c′
n = c′(n"x1, x3) and "x1 is the lateral discretization

interval. Furthermore, the matrix operator
˜
D2 represents the

second-order differentiation filter, which may be implemented
as

˜
D2 = 1

"x2
1

=


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−2 1 0 · · · 0 0
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. (36)

However, in practice a matrix operator is applied which con-
tains more nonzero diagonals. The matrix elements of this oper-
ator are calculated using a least-squares optimization algorithm
(Thorbecke and Rietveld, 1994). As can be seen by inspection
of equations (35) and (36), both matrix operators in equation
(34) are real valued and symmetric; hence,

˜
H2 is self-adjoint

(
˜
H2 =

˜
HH

2 , where H denotes transposition and complex con-
jugation). A well-known result from matrix algebra (Golub
and van Loan, 1989) states that, for a self-adjoint matrix, the
following decomposition can be applied:

˜
H2 =

˜
L
˜
Λ
˜
L−1 =

˜
L
˜
Λ
˜
LH , (37)

where
˜
L contains the discrete equivalents of the normalized

eigenfunctions φ in its columns and
˜
Λ is a diagonal matrix

containing the eigenvalues of
˜
H2. This equation is the discrete

counterpart of equation (28). Hence, the eigenvalues in
˜
Λ re-

place both the discrete and the continuous part of the spectrum
(see also Figure 1). The square root matrix operator

˜
H1 conse-

quently can be written as

˜
H1 =

˜
L
˜
Λ

1
2
˜
L−1 =

˜
L
˜
Λ

1
2
˜
LH , (38)

with the signs of the square root of the eigenvalues in
˜
Λ

1
2 cho-

sen according to equations (30) and (31). This result is evident
because, as an equivalent of equations (2) and (16), we have

˜
H2 =

˜
H1

˜
H1.

The procedure described above is illustrated for a laterally
invariant and a laterally variant medium. Figure 3 shows the
laterally variant medium profile. At a fixed value of x3, this
medium contains a lateral perturbation (i.e., a velocity dip) of
the laterally invariant medium. In Figure 4 the spectrum of the
square root operator Ĥ1 and eigenfunctions of both profiles are
compared. The common part of the spectra [Figures 4(a) and
4(d)] corresponds to the continuous part in Figure 2. These
eigenvalues would condense into a continuous branch if the
lateral aperture were increased to infinity. The isolated eigen-
values on the right in Figure 4(d) are caused by the velocity dip
in the medium, which acts as a waveguide. In Figures 4(b) and
4(c), two eigenfunctions are shown for the laterally homoge-
neous profile. In Figures 4(e) and 4(f), one guided wave mode
and one radiating wave mode are shown.

Finally, the primary propagator matrix
˜
W±(x3, x

′
3) can be

expressed according to

˜
W±(x3, x

′
3) =

˜
L(x ′

3) exp
{
∓j(x3−x ′

3)
˜
Λ

1
2
}

˜
LH (x ′

3). (39)

In equation (39), the amplitude of the exponential function
equals unity for propagating wave modes and is lower than
unity for evanescent wave modes. This is demonstrated in Fig-
ure 5, where the amplitude of the exponential for each eigen-
value in Figure 4(a) is depicted. Hence, the wavefield is extrap-
olated accurately and in a stable manner up to 90◦ and beyond
(the evanescent wavefield). The stability of the extrapolator
is an important distinctive feature of the described method
compared to local explicit methods, which have been reported
to exhibit unstable behavior in various situations (Etgen,
1994).

NUMERICAL IMPLEMENTATION IN 3-D

As in the 2-D case, we now take the kernel of the Helmholtz
operator for the 3-D situation as a point of departure:

H2(xH , x3; x′
H ) =

(
ω

c′(xH , x3)

)2

δ(xH − x′
H )

+ ∇2
Hδ(xH − x′

H ). (40)

Evidently, the eigenvectors of this operator are in this case two
dimensional in space, which raises the question if equation (40)
can still be expressed in terms of a matrix operator. Kinneging
et al. (1989) show that monochromatic 3-D data can indeed be

FIG. 3. Laterally variant medium profile at a fixed depth
level x3.
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The continuous variables (x1, x
′
1) above relate to discrete in-

dices of an M × M matrix operator according to

˜
H2 =

˜
C +

˜
D2. (34)

Here,
˜
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where c′
n = c′(n"x1, x3) and "x1 is the lateral discretization

interval. Furthermore, the matrix operator
˜
D2 represents the

second-order differentiation filter, which may be implemented
as

˜
D2 = 1
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1

=
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However, in practice a matrix operator is applied which con-
tains more nonzero diagonals. The matrix elements of this oper-
ator are calculated using a least-squares optimization algorithm
(Thorbecke and Rietveld, 1994). As can be seen by inspection
of equations (35) and (36), both matrix operators in equation
(34) are real valued and symmetric; hence,

˜
H2 is self-adjoint

(
˜
H2 =

˜
HH

2 , where H denotes transposition and complex con-
jugation). A well-known result from matrix algebra (Golub
and van Loan, 1989) states that, for a self-adjoint matrix, the
following decomposition can be applied:

˜
H2 =

˜
L
˜
Λ
˜
L−1 =

˜
L
˜
Λ
˜
LH , (37)

where
˜
L contains the discrete equivalents of the normalized

eigenfunctions φ in its columns and
˜
Λ is a diagonal matrix

containing the eigenvalues of
˜
H2. This equation is the discrete

counterpart of equation (28). Hence, the eigenvalues in
˜
Λ re-

place both the discrete and the continuous part of the spectrum
(see also Figure 1). The square root matrix operator

˜
H1 conse-

quently can be written as

˜
H1 =

˜
L
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Λ

1
2
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L−1 =

˜
L
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1
2
˜
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with the signs of the square root of the eigenvalues in
˜
Λ

1
2 cho-

sen according to equations (30) and (31). This result is evident
because, as an equivalent of equations (2) and (16), we have

˜
H2 =

˜
H1

˜
H1.

The procedure described above is illustrated for a laterally
invariant and a laterally variant medium. Figure 3 shows the
laterally variant medium profile. At a fixed value of x3, this
medium contains a lateral perturbation (i.e., a velocity dip) of
the laterally invariant medium. In Figure 4 the spectrum of the
square root operator Ĥ1 and eigenfunctions of both profiles are
compared. The common part of the spectra [Figures 4(a) and
4(d)] corresponds to the continuous part in Figure 2. These
eigenvalues would condense into a continuous branch if the
lateral aperture were increased to infinity. The isolated eigen-
values on the right in Figure 4(d) are caused by the velocity dip
in the medium, which acts as a waveguide. In Figures 4(b) and
4(c), two eigenfunctions are shown for the laterally homoge-
neous profile. In Figures 4(e) and 4(f), one guided wave mode
and one radiating wave mode are shown.

Finally, the primary propagator matrix
˜
W±(x3, x

′
3) can be

expressed according to

˜
W±(x3, x

′
3) =

˜
L(x ′

3) exp
{
∓j(x3−x ′

3)
˜
Λ

1
2
}

˜
LH (x ′

3). (39)

In equation (39), the amplitude of the exponential function
equals unity for propagating wave modes and is lower than
unity for evanescent wave modes. This is demonstrated in Fig-
ure 5, where the amplitude of the exponential for each eigen-
value in Figure 4(a) is depicted. Hence, the wavefield is extrap-
olated accurately and in a stable manner up to 90◦ and beyond
(the evanescent wavefield). The stability of the extrapolator
is an important distinctive feature of the described method
compared to local explicit methods, which have been reported
to exhibit unstable behavior in various situations (Etgen,
1994).

NUMERICAL IMPLEMENTATION IN 3-D

As in the 2-D case, we now take the kernel of the Helmholtz
operator for the 3-D situation as a point of departure:

H2(xH , x3; x′
H ) =

(
ω

c′(xH , x3)

)2

δ(xH − x′
H )

+ ∇2
Hδ(xH − x′

H ). (40)

Evidently, the eigenvectors of this operator are in this case two
dimensional in space, which raises the question if equation (40)
can still be expressed in terms of a matrix operator. Kinneging
et al. (1989) show that monochromatic 3-D data can indeed be

FIG. 3. Laterally variant medium profile at a fixed depth
level x3.
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The continuous variables (x1, x
′
1) above relate to discrete in-

dices of an M × M matrix operator according to

˜
H2 =

˜
C +

˜
D2. (34)

Here,
˜
C is a diagonal matrix corresponding to the first term in

equation (33):

˜
C =





(
ω

c′
1

)2

0 · · · 0

0
(

ω

c′
2

)2

· · · 0

...
...

. . .
...

0 0 · · ·
(

ω

c′
M

)2





, (35)

where c′
n = c′(n"x1, x3) and "x1 is the lateral discretization

interval. Furthermore, the matrix operator
˜
D2 represents the

second-order differentiation filter, which may be implemented
as

˜
D2 = 1

"x2
1

=





−2 1 0 · · · 0 0
1 −2 1 · · · 0 0
0 1 −2 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · −2 1
0 0 0 · · · 1 −2





. (36)

However, in practice a matrix operator is applied which con-
tains more nonzero diagonals. The matrix elements of this oper-
ator are calculated using a least-squares optimization algorithm
(Thorbecke and Rietveld, 1994). As can be seen by inspection
of equations (35) and (36), both matrix operators in equation
(34) are real valued and symmetric; hence,

˜
H2 is self-adjoint

(
˜
H2 =

˜
HH

2 , where H denotes transposition and complex con-
jugation). A well-known result from matrix algebra (Golub
and van Loan, 1989) states that, for a self-adjoint matrix, the
following decomposition can be applied:

˜
H2 =

˜
L
˜
Λ
˜
L−1 =

˜
L
˜
Λ
˜
LH , (37)

where
˜
L contains the discrete equivalents of the normalized

eigenfunctions φ in its columns and
˜
Λ is a diagonal matrix

containing the eigenvalues of
˜
H2. This equation is the discrete

counterpart of equation (28). Hence, the eigenvalues in
˜
Λ re-

place both the discrete and the continuous part of the spectrum
(see also Figure 1). The square root matrix operator

˜
H1 conse-

quently can be written as

˜
H1 =

˜
L
˜
Λ

1
2
˜
L−1 =

˜
L
˜
Λ

1
2
˜
LH , (38)

with the signs of the square root of the eigenvalues in
˜
Λ

1
2 cho-

sen according to equations (30) and (31). This result is evident
because, as an equivalent of equations (2) and (16), we have

˜
H2 =

˜
H1

˜
H1.

The procedure described above is illustrated for a laterally
invariant and a laterally variant medium. Figure 3 shows the
laterally variant medium profile. At a fixed value of x3, this
medium contains a lateral perturbation (i.e., a velocity dip) of
the laterally invariant medium. In Figure 4 the spectrum of the
square root operator Ĥ1 and eigenfunctions of both profiles are
compared. The common part of the spectra [Figures 4(a) and
4(d)] corresponds to the continuous part in Figure 2. These
eigenvalues would condense into a continuous branch if the
lateral aperture were increased to infinity. The isolated eigen-
values on the right in Figure 4(d) are caused by the velocity dip
in the medium, which acts as a waveguide. In Figures 4(b) and
4(c), two eigenfunctions are shown for the laterally homoge-
neous profile. In Figures 4(e) and 4(f), one guided wave mode
and one radiating wave mode are shown.

Finally, the primary propagator matrix
˜
W±(x3, x

′
3) can be

expressed according to

˜
W±(x3, x

′
3) =

˜
L(x ′

3) exp
{
∓j(x3−x ′

3)
˜
Λ

1
2
}

˜
LH (x ′

3). (39)

In equation (39), the amplitude of the exponential function
equals unity for propagating wave modes and is lower than
unity for evanescent wave modes. This is demonstrated in Fig-
ure 5, where the amplitude of the exponential for each eigen-
value in Figure 4(a) is depicted. Hence, the wavefield is extrap-
olated accurately and in a stable manner up to 90◦ and beyond
(the evanescent wavefield). The stability of the extrapolator
is an important distinctive feature of the described method
compared to local explicit methods, which have been reported
to exhibit unstable behavior in various situations (Etgen,
1994).

NUMERICAL IMPLEMENTATION IN 3-D

As in the 2-D case, we now take the kernel of the Helmholtz
operator for the 3-D situation as a point of departure:

H2(xH , x3; x′
H ) =

(
ω

c′(xH , x3)

)2

δ(xH − x′
H )

+ ∇2
Hδ(xH − x′

H ). (40)

Evidently, the eigenvectors of this operator are in this case two
dimensional in space, which raises the question if equation (40)
can still be expressed in terms of a matrix operator. Kinneging
et al. (1989) show that monochromatic 3-D data can indeed be

FIG. 3. Laterally variant medium profile at a fixed depth
level x3.
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The continuous variables (x1, x
′
1) above relate to discrete in-

dices of an M × M matrix operator according to

˜
H2 =

˜
C +

˜
D2. (34)

Here,
˜
C is a diagonal matrix corresponding to the first term in

equation (33):

˜
C =
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

, (35)

where c′
n = c′(n"x1, x3) and "x1 is the lateral discretization

interval. Furthermore, the matrix operator
˜
D2 represents the

second-order differentiation filter, which may be implemented
as

˜
D2 = 1

"x2
1

=





−2 1 0 · · · 0 0
1 −2 1 · · · 0 0
0 1 −2 · · · 0 0
...

...
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...

...

0 0 0 · · · −2 1
0 0 0 · · · 1 −2





. (36)

However, in practice a matrix operator is applied which con-
tains more nonzero diagonals. The matrix elements of this oper-
ator are calculated using a least-squares optimization algorithm
(Thorbecke and Rietveld, 1994). As can be seen by inspection
of equations (35) and (36), both matrix operators in equation
(34) are real valued and symmetric; hence,

˜
H2 is self-adjoint

(
˜
H2 =

˜
HH

2 , where H denotes transposition and complex con-
jugation). A well-known result from matrix algebra (Golub
and van Loan, 1989) states that, for a self-adjoint matrix, the
following decomposition can be applied:

˜
H2 =

˜
L
˜
Λ
˜
L−1 =

˜
L
˜
Λ
˜
LH , (37)

where
˜
L contains the discrete equivalents of the normalized

eigenfunctions φ in its columns and
˜
Λ is a diagonal matrix

containing the eigenvalues of
˜
H2. This equation is the discrete

counterpart of equation (28). Hence, the eigenvalues in
˜
Λ re-

place both the discrete and the continuous part of the spectrum
(see also Figure 1). The square root matrix operator

˜
H1 conse-

quently can be written as

˜
H1 =

˜
L
˜
Λ

1
2
˜
L−1 =

˜
L
˜
Λ

1
2
˜
LH , (38)

with the signs of the square root of the eigenvalues in
˜
Λ

1
2 cho-

sen according to equations (30) and (31). This result is evident
because, as an equivalent of equations (2) and (16), we have

˜
H2 =

˜
H1

˜
H1.

The procedure described above is illustrated for a laterally
invariant and a laterally variant medium. Figure 3 shows the
laterally variant medium profile. At a fixed value of x3, this
medium contains a lateral perturbation (i.e., a velocity dip) of
the laterally invariant medium. In Figure 4 the spectrum of the
square root operator Ĥ1 and eigenfunctions of both profiles are
compared. The common part of the spectra [Figures 4(a) and
4(d)] corresponds to the continuous part in Figure 2. These
eigenvalues would condense into a continuous branch if the
lateral aperture were increased to infinity. The isolated eigen-
values on the right in Figure 4(d) are caused by the velocity dip
in the medium, which acts as a waveguide. In Figures 4(b) and
4(c), two eigenfunctions are shown for the laterally homoge-
neous profile. In Figures 4(e) and 4(f), one guided wave mode
and one radiating wave mode are shown.

Finally, the primary propagator matrix
˜
W±(x3, x

′
3) can be

expressed according to

˜
W±(x3, x

′
3) =

˜
L(x ′

3) exp
{
∓j(x3−x ′

3)
˜
Λ

1
2
}

˜
LH (x ′

3). (39)

In equation (39), the amplitude of the exponential function
equals unity for propagating wave modes and is lower than
unity for evanescent wave modes. This is demonstrated in Fig-
ure 5, where the amplitude of the exponential for each eigen-
value in Figure 4(a) is depicted. Hence, the wavefield is extrap-
olated accurately and in a stable manner up to 90◦ and beyond
(the evanescent wavefield). The stability of the extrapolator
is an important distinctive feature of the described method
compared to local explicit methods, which have been reported
to exhibit unstable behavior in various situations (Etgen,
1994).

NUMERICAL IMPLEMENTATION IN 3-D

As in the 2-D case, we now take the kernel of the Helmholtz
operator for the 3-D situation as a point of departure:

H2(xH , x3; x′
H ) =

(
ω

c′(xH , x3)

)2

δ(xH − x′
H )

+ ∇2
Hδ(xH − x′

H ). (40)

Evidently, the eigenvectors of this operator are in this case two
dimensional in space, which raises the question if equation (40)
can still be expressed in terms of a matrix operator. Kinneging
et al. (1989) show that monochromatic 3-D data can indeed be

FIG. 3. Laterally variant medium profile at a fixed depth
level x3.
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The continuous variables (x1, x
′
1) above relate to discrete in-

dices of an M × M matrix operator according to

˜
H2 =

˜
C +

˜
D2. (34)

Here,
˜
C is a diagonal matrix corresponding to the first term in

equation (33):

˜
C =




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



, (35)

where c′
n = c′(n"x1, x3) and "x1 is the lateral discretization

interval. Furthermore, the matrix operator
˜
D2 represents the

second-order differentiation filter, which may be implemented
as

˜
D2 = 1

"x2
1

=





−2 1 0 · · · 0 0
1 −2 1 · · · 0 0
0 1 −2 · · · 0 0
...

...
...
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...

...

0 0 0 · · · −2 1
0 0 0 · · · 1 −2





. (36)

However, in practice a matrix operator is applied which con-
tains more nonzero diagonals. The matrix elements of this oper-
ator are calculated using a least-squares optimization algorithm
(Thorbecke and Rietveld, 1994). As can be seen by inspection
of equations (35) and (36), both matrix operators in equation
(34) are real valued and symmetric; hence,

˜
H2 is self-adjoint

(
˜
H2 =

˜
HH

2 , where H denotes transposition and complex con-
jugation). A well-known result from matrix algebra (Golub
and van Loan, 1989) states that, for a self-adjoint matrix, the
following decomposition can be applied:

˜
H2 =

˜
L
˜
Λ
˜
L−1 =

˜
L
˜
Λ
˜
LH , (37)

where
˜
L contains the discrete equivalents of the normalized

eigenfunctions φ in its columns and
˜
Λ is a diagonal matrix

containing the eigenvalues of
˜
H2. This equation is the discrete

counterpart of equation (28). Hence, the eigenvalues in
˜
Λ re-

place both the discrete and the continuous part of the spectrum
(see also Figure 1). The square root matrix operator

˜
H1 conse-

quently can be written as

˜
H1 =

˜
L
˜
Λ

1
2
˜
L−1 =

˜
L
˜
Λ

1
2
˜
LH , (38)

with the signs of the square root of the eigenvalues in
˜
Λ

1
2 cho-

sen according to equations (30) and (31). This result is evident
because, as an equivalent of equations (2) and (16), we have

˜
H2 =

˜
H1

˜
H1.

The procedure described above is illustrated for a laterally
invariant and a laterally variant medium. Figure 3 shows the
laterally variant medium profile. At a fixed value of x3, this
medium contains a lateral perturbation (i.e., a velocity dip) of
the laterally invariant medium. In Figure 4 the spectrum of the
square root operator Ĥ1 and eigenfunctions of both profiles are
compared. The common part of the spectra [Figures 4(a) and
4(d)] corresponds to the continuous part in Figure 2. These
eigenvalues would condense into a continuous branch if the
lateral aperture were increased to infinity. The isolated eigen-
values on the right in Figure 4(d) are caused by the velocity dip
in the medium, which acts as a waveguide. In Figures 4(b) and
4(c), two eigenfunctions are shown for the laterally homoge-
neous profile. In Figures 4(e) and 4(f), one guided wave mode
and one radiating wave mode are shown.

Finally, the primary propagator matrix
˜
W±(x3, x

′
3) can be

expressed according to

˜
W±(x3, x

′
3) =

˜
L(x ′

3) exp
{
∓j(x3−x ′

3)
˜
Λ

1
2
}

˜
LH (x ′

3). (39)

In equation (39), the amplitude of the exponential function
equals unity for propagating wave modes and is lower than
unity for evanescent wave modes. This is demonstrated in Fig-
ure 5, where the amplitude of the exponential for each eigen-
value in Figure 4(a) is depicted. Hence, the wavefield is extrap-
olated accurately and in a stable manner up to 90◦ and beyond
(the evanescent wavefield). The stability of the extrapolator
is an important distinctive feature of the described method
compared to local explicit methods, which have been reported
to exhibit unstable behavior in various situations (Etgen,
1994).

NUMERICAL IMPLEMENTATION IN 3-D

As in the 2-D case, we now take the kernel of the Helmholtz
operator for the 3-D situation as a point of departure:

H2(xH , x3; x′
H ) =

(
ω

c′(xH , x3)

)2

δ(xH − x′
H )

+ ∇2
Hδ(xH − x′

H ). (40)

Evidently, the eigenvectors of this operator are in this case two
dimensional in space, which raises the question if equation (40)
can still be expressed in terms of a matrix operator. Kinneging
et al. (1989) show that monochromatic 3-D data can indeed be

FIG. 3. Laterally variant medium profile at a fixed depth
level x3.
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The continuous variables (x1, x
′
1) above relate to discrete in-

dices of an M × M matrix operator according to

˜
H2 =

˜
C +

˜
D2. (34)

Here,
˜
C is a diagonal matrix corresponding to the first term in

equation (33):

˜
C =




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
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, (35)

where c′
n = c′(n"x1, x3) and "x1 is the lateral discretization

interval. Furthermore, the matrix operator
˜
D2 represents the

second-order differentiation filter, which may be implemented
as

˜
D2 = 1

"x2
1

=





−2 1 0 · · · 0 0
1 −2 1 · · · 0 0
0 1 −2 · · · 0 0
...

...
...
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...

0 0 0 · · · −2 1
0 0 0 · · · 1 −2





. (36)

However, in practice a matrix operator is applied which con-
tains more nonzero diagonals. The matrix elements of this oper-
ator are calculated using a least-squares optimization algorithm
(Thorbecke and Rietveld, 1994). As can be seen by inspection
of equations (35) and (36), both matrix operators in equation
(34) are real valued and symmetric; hence,

˜
H2 is self-adjoint

(
˜
H2 =

˜
HH

2 , where H denotes transposition and complex con-
jugation). A well-known result from matrix algebra (Golub
and van Loan, 1989) states that, for a self-adjoint matrix, the
following decomposition can be applied:

˜
H2 =

˜
L
˜
Λ
˜
L−1 =

˜
L
˜
Λ
˜
LH , (37)

where
˜
L contains the discrete equivalents of the normalized

eigenfunctions φ in its columns and
˜
Λ is a diagonal matrix

containing the eigenvalues of
˜
H2. This equation is the discrete

counterpart of equation (28). Hence, the eigenvalues in
˜
Λ re-

place both the discrete and the continuous part of the spectrum
(see also Figure 1). The square root matrix operator

˜
H1 conse-

quently can be written as

˜
H1 =

˜
L
˜
Λ

1
2
˜
L−1 =

˜
L
˜
Λ

1
2
˜
LH , (38)

with the signs of the square root of the eigenvalues in
˜
Λ

1
2 cho-

sen according to equations (30) and (31). This result is evident
because, as an equivalent of equations (2) and (16), we have

˜
H2 =

˜
H1

˜
H1.

The procedure described above is illustrated for a laterally
invariant and a laterally variant medium. Figure 3 shows the
laterally variant medium profile. At a fixed value of x3, this
medium contains a lateral perturbation (i.e., a velocity dip) of
the laterally invariant medium. In Figure 4 the spectrum of the
square root operator Ĥ1 and eigenfunctions of both profiles are
compared. The common part of the spectra [Figures 4(a) and
4(d)] corresponds to the continuous part in Figure 2. These
eigenvalues would condense into a continuous branch if the
lateral aperture were increased to infinity. The isolated eigen-
values on the right in Figure 4(d) are caused by the velocity dip
in the medium, which acts as a waveguide. In Figures 4(b) and
4(c), two eigenfunctions are shown for the laterally homoge-
neous profile. In Figures 4(e) and 4(f), one guided wave mode
and one radiating wave mode are shown.

Finally, the primary propagator matrix
˜
W±(x3, x

′
3) can be

expressed according to

˜
W±(x3, x

′
3) =

˜
L(x ′

3) exp
{
∓j(x3−x ′

3)
˜
Λ

1
2
}

˜
LH (x ′

3). (39)

In equation (39), the amplitude of the exponential function
equals unity for propagating wave modes and is lower than
unity for evanescent wave modes. This is demonstrated in Fig-
ure 5, where the amplitude of the exponential for each eigen-
value in Figure 4(a) is depicted. Hence, the wavefield is extrap-
olated accurately and in a stable manner up to 90◦ and beyond
(the evanescent wavefield). The stability of the extrapolator
is an important distinctive feature of the described method
compared to local explicit methods, which have been reported
to exhibit unstable behavior in various situations (Etgen,
1994).

NUMERICAL IMPLEMENTATION IN 3-D

As in the 2-D case, we now take the kernel of the Helmholtz
operator for the 3-D situation as a point of departure:

H2(xH , x3; x′
H ) =

(
ω

c′(xH , x3)

)2

δ(xH − x′
H )

+ ∇2
Hδ(xH − x′

H ). (40)

Evidently, the eigenvectors of this operator are in this case two
dimensional in space, which raises the question if equation (40)
can still be expressed in terms of a matrix operator. Kinneging
et al. (1989) show that monochromatic 3-D data can indeed be

FIG. 3. Laterally variant medium profile at a fixed depth
level x3.
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the available local explicit method is not straightforward be-
cause both the length and the optimization angle can be varied.
Choosing these parameters leads to conflicting requirements.
In case of strong lateral variations, short operators are needed
to avoid instabilities. Imaging of steep dips, however, asks for
longer operators that allow for higher optimization angles. Fig-
ure 11 shows the results for several choices of these parameters.
Note that a higher optimization angle improves the imaging of
steep dips but causes stronger artifacts at the same time. These
artifacts are caused by the increased spatial length of the opera-
tor. All results in Figure 11 are inferior to the model expansion
result in Figure 10.

DISCUSSION

We have shown that the proposed method to calculate one-
way operators has desirable properties such as the absence
of dip limitation, the accurate handling of lateral variations,
and the unconditional stability of the operators. The obvious
drawback of the method is the computational cost of a full
eigenvalue decomposition, which is considerable compared to
the construction of the local explicit operators. However, the
following considerations may help to overcome this problem.

1) The Helmholtz matrix operator is a sparse symmetric
band matrix. For a full symmetric M ×M matrix, the
number of floating-point operations necessary to cal-
culate all eigenvalues and all eigenvectors will increase
with the third power of M . However, in case of a matrix

Table 1. The acquisition parameters for the migration
example.

Parameter Value

Geometry Fixed spread
Number of shots 11
Shot spacing 500 m
Number of detectors per shot 251
Receiver spacing 20 m
Recording time 3 s
Time sampling 4 ms
Frequency content wavelet Up to 35 Hz

FIG. 8. Results of well-to-well extrapolation using modal expansion (left) and the local explicit method (right).

operator with a fixed number of nonzero diagonals inde-
pendent of M , the number of floating-point operations
will increase only with the square of M (Golub and Van
Loan, 1989).

2) Not all eigenvalues need to be calculated (Druskin and
Knizhnerman, 1994). Calculating only the positive eigen-
values (propagating modes) still leads to accurate results
because the evanescent part of the wavefield decays expo-
nentially with the extrapolation distance. (In inverse ex-
trapolation, the evanescent field is suppressed anyway to
obtain stable operators.) This argument holds in particu-
lar for low temporal frequencies where a large number of
the eigenvalues are associated to evanescent wave modes.

3) Hybrid methods may be implemented. Local explicit
operators and modal expansion operators (in regions
of significant lateral variations) can be applied in
combination. This will be a subject of future research.

The modal expansion method also provides an interest-
ing scope for turning-wave migration. In some references
(Claerbout, 1985; Hale et al., 1992), the phase-shift method
is applied because it has no dip limitation, which is an es-
sential requirement for turning-wave migration. However, the
phase-shift method is applicable only in laterally invariant me-
dia (which was acknowledged by the authors). The modal ex-
pansion method combines both the ability to deal with lateral
variations and the ability to handle dips up to 90◦.

FIG. 9. Velocity model for the migration. Velocities are indi-
cated in the corresponding layers.

Modal Decomposition

! For propagation 
examples, refer to 
Grimbergen et. al. 
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! Shown to effortlessly 
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FIG. 10. Migrated section using modal expansion extrapolation operators.

FIG. 11. Migrated sections using local explicit operators. (a) Operator length 27, optimization up to 60◦ (top).
(b) Operator length 27, optimization up to 80◦. (c) Operator length 37, optimization up to 80◦.
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where the asterisk (∗) denotes complex conjugation. As an
example, consider the laterally invariant case. In this case, the
discrete spectrum disappears. It is easily seen, then, that the
following complex exponential functions satisfy equation (18):

φ(xH ,κ) = 1
2π

exp{− jκ · xH }, (24)

in which a plane wave can be recognized. However, since Ĥ2 is
a real-valued self-adjoint operator having a real spectrum, we
can alternatively choose the eigenfunctions to be real valued:

φ(xH ,κ) = 1

π
√

2
cos{κ · xH − π/4} . (25)

In this equation, the π/4 phase shift is essential for the con-
struction of both odd-as-even functions F(xH ). Substitution of
equations (24) or (25) in equations (20) and (22) yields the in-
verse and forward spatial Fourier and Hartley transformations,
respectively (Bracewell, 1986).

We return to the laterally variant situation. By definition, Ĥ2

becomes a multiplication operator in the domain constituted
by its eigenfunctions. Therefore, according to equations (18)
and (20), we may write

Ĥ2F(xH ) =
∫

R2
λ(κ)φ(xH ,κ)F̄(κ) d2κ

+
∑

λi∈σdiscr

λiφ
(i)

(xH )F̄
(i)

. (26)

The expansion coefficients can be eliminated from expres-
sion (26), by using the modal transform [equations (22) and
(23)], yielding

Ĥ2F(xH ) =
∫

R2
H2

(
xH , x′

H )F(x′
H ) d2x′

H , (27)

where the kernel H2(xH , x′
H ) can be expressed according to

H2(xH , x′
H ) =

∫

R2
φ(xH ,κ)λ(κ)φ∗(x′

H ,κ) d2κ

+
∑

λi∈σdiscr

φ(i)(xH )λiφ(i)(x′
H ). (28)

Equation (28) and other expansions of following kernels
should be understood in the sense of distributions (Zemanian,
1965).

EXPANDING THE ONE-WAY PROPAGATOR

Using equations (16) and (28) as well as the orthonormality
of the eigenfunctions, the kernel of the square root operator
can be written as

H1(xH , x′
H ) =

∫

R2
φ(xH ,κ)λ

1
2 (κ)φ∗(x′

H ,κ) d2κ

+
∑

λi∈σdiscr

φ(i)(xH )λ
1
2
i φ(i)(x′

H ), (29)

where for later convenience the signs of the square root are
chosen according to

Re
(
λ

1
2
)

≥ 0 for λ ≥ 0 (30)

and

Im
(
λ

1
2
)

< 0 for λ < 0. (31)

Figure 2 shows the spectrum of the square root operator. Sim-
ilarly, for the primary propagator as defined in equation (10),
we may write

W±(xH , x3; x′
H , x ′

3)

=
∫

R2
φ(xH ,κ) exp

{
∓j(x3 − x ′

3)λ
1
2 (κ)

}

× φ∗(x′
H ,κ) d2κ

+
∑

λi∈σdiscr

φ(i)(xH ) exp
{

∓j(x3 − x ′
3)λ

1
2
i

}
φ(i)(x′

H ).

(32)

NUMERICAL IMPLEMENTATION IN 2-D

The discretization of the wavefield operators and variables
leads to matrix operators and (column) vectors. The one-way
matrix operators differ fundamentally from their continuous
counterparts as the “spectrum” becomes fully discrete due to
the finite dimensions of the matrix. The important properties
of the continuous operators (e.g., self-adjointness) and eigen-
functions (orthogonality and completeness), however, trans-
late elegantly into similar properties for matrix operators and
eigenvectors (Golub and Van Loan, 1989).

For the 2-D situation, the transition from the Helmholtz op-
erator Ĥ2 to the corresponding matrix operator can be clarified
using the operator kernel Ĥ2(x1, x3; x ′

1). From equations (12)
and (17) we have

H2(x1, x3; x ′
1) =

(
ω

c′(x1, x3)

)2

δ(x1 − x ′
1)+ ∂2

∂x2
1
δ(x1 − x ′

1).

(33)

FIG. 2. Spectrum of the square root operator Ĥ1 in the complex
plane.
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The continuous variables (x1, x
′
1) above relate to discrete in-

dices of an M × M matrix operator according to

˜
H2 =

˜
C +

˜
D2. (34)

Here,
˜
C is a diagonal matrix corresponding to the first term in

equation (33):

˜
C =





(
ω

c′
1

)2

0 · · · 0

0
(

ω

c′
2

)2

· · · 0

...
...

. . .
...

0 0 · · ·
(

ω

c′
M

)2





, (35)

where c′
n = c′(n"x1, x3) and "x1 is the lateral discretization

interval. Furthermore, the matrix operator
˜
D2 represents the

second-order differentiation filter, which may be implemented
as

˜
D2 = 1

"x2
1

=





−2 1 0 · · · 0 0
1 −2 1 · · · 0 0
0 1 −2 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · −2 1
0 0 0 · · · 1 −2





. (36)

However, in practice a matrix operator is applied which con-
tains more nonzero diagonals. The matrix elements of this oper-
ator are calculated using a least-squares optimization algorithm
(Thorbecke and Rietveld, 1994). As can be seen by inspection
of equations (35) and (36), both matrix operators in equation
(34) are real valued and symmetric; hence,

˜
H2 is self-adjoint

(
˜
H2 =

˜
HH

2 , where H denotes transposition and complex con-
jugation). A well-known result from matrix algebra (Golub
and van Loan, 1989) states that, for a self-adjoint matrix, the
following decomposition can be applied:

˜
H2 =

˜
L
˜
Λ
˜
L−1 =

˜
L
˜
Λ
˜
LH , (37)

where
˜
L contains the discrete equivalents of the normalized

eigenfunctions φ in its columns and
˜
Λ is a diagonal matrix

containing the eigenvalues of
˜
H2. This equation is the discrete

counterpart of equation (28). Hence, the eigenvalues in
˜
Λ re-

place both the discrete and the continuous part of the spectrum
(see also Figure 1). The square root matrix operator

˜
H1 conse-

quently can be written as

˜
H1 =

˜
L
˜
Λ

1
2
˜
L−1 =

˜
L
˜
Λ

1
2
˜
LH , (38)

with the signs of the square root of the eigenvalues in
˜
Λ

1
2 cho-

sen according to equations (30) and (31). This result is evident
because, as an equivalent of equations (2) and (16), we have

˜
H2 =

˜
H1

˜
H1.

The procedure described above is illustrated for a laterally
invariant and a laterally variant medium. Figure 3 shows the
laterally variant medium profile. At a fixed value of x3, this
medium contains a lateral perturbation (i.e., a velocity dip) of
the laterally invariant medium. In Figure 4 the spectrum of the
square root operator Ĥ1 and eigenfunctions of both profiles are
compared. The common part of the spectra [Figures 4(a) and
4(d)] corresponds to the continuous part in Figure 2. These
eigenvalues would condense into a continuous branch if the
lateral aperture were increased to infinity. The isolated eigen-
values on the right in Figure 4(d) are caused by the velocity dip
in the medium, which acts as a waveguide. In Figures 4(b) and
4(c), two eigenfunctions are shown for the laterally homoge-
neous profile. In Figures 4(e) and 4(f), one guided wave mode
and one radiating wave mode are shown.

Finally, the primary propagator matrix
˜
W±(x3, x

′
3) can be

expressed according to

˜
W±(x3, x

′
3) =

˜
L(x ′

3) exp
{
∓j(x3−x ′

3)
˜
Λ

1
2
}

˜
LH (x ′

3). (39)

In equation (39), the amplitude of the exponential function
equals unity for propagating wave modes and is lower than
unity for evanescent wave modes. This is demonstrated in Fig-
ure 5, where the amplitude of the exponential for each eigen-
value in Figure 4(a) is depicted. Hence, the wavefield is extrap-
olated accurately and in a stable manner up to 90◦ and beyond
(the evanescent wavefield). The stability of the extrapolator
is an important distinctive feature of the described method
compared to local explicit methods, which have been reported
to exhibit unstable behavior in various situations (Etgen,
1994).

NUMERICAL IMPLEMENTATION IN 3-D

As in the 2-D case, we now take the kernel of the Helmholtz
operator for the 3-D situation as a point of departure:

H2(xH , x3; x′
H ) =

(
ω

c′(xH , x3)

)2

δ(xH − x′
H )

+ ∇2
Hδ(xH − x′

H ). (40)

Evidently, the eigenvectors of this operator are in this case two
dimensional in space, which raises the question if equation (40)
can still be expressed in terms of a matrix operator. Kinneging
et al. (1989) show that monochromatic 3-D data can indeed be

FIG. 3. Laterally variant medium profile at a fixed depth
level x3.
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organized in vectors such that the corresponding 3-D wavefield
operators again become matrices. Following this procedure, a
one-way monochromatic wavefield at depth level x3 can be
written as a vector, according to

P±(x3) =





P
±(!x1, !x2, x3)

P
±(2!x1, !x2, x3)

...

P
±(M!x1, !x2, x3)
P

±(!x1, 2!x2, x3)
...
...

P
±(M!x1, N!x2, x3)





. (41)

This way of organizing the data can be used to derive a matrix
operator from equation (40), which represents the Helmholtz
operator at a fixed depth level x3 for the 3-D situation. As in the
2-D case, this matrix operator is extremely sparse. To illustrate,
we have computed a number of modes. One medium is later-
ally invariant with a velocity of 2500 m/s; the other medium
profile is the circular symmetric extension of the profile shown
in Figure 3. Figure 6 shows the 2-D eigenfunctions at a
fixed x3.

FIG. 4. (a) Spectrum of the square root operator Ĥ1 for a laterally invariant medium with a velocity of c0 = 2500 m/s. The frequency
equals 25 Hz; hence, k0 = ω/c0 = 0.063 m−1. (b) and (c) Two radiating wave modes at fixed x3. Note that the radiating wave modes
in the homogeneous profile are harmonic functions. (d) Spectrum of the square root operator Ĥ1 for the laterally variant medium
of Figure 3. (e) Guided wave mode. (f) Radiating wave mode. The squares in the spectrum of the square root operator denote the
eigenvalues corresponding to the plotted eigenfunctions.

EXAMPLES

Well-to-well extrapolation

As a first illustration of the one-way operators that have been
constructed, a crosswell configuration is considered. A point
source in one well generates a wavefield that is recorded in an-
other well. The medium is assumed to be depth dependent only.
In this example, the direction of preference is horizontal, while
the lateral dimension represents depth. Figure 7 shows the 1-D
subsurface model and the result of finite-difference modeling,
which is used as a benchmark. The results of model expan-
sion and the local explicit method are compared in Figure 8.
Not surprisingly, the results of the local explicit method are
very poor in this example because of the considerable velocity

FIG. 5. Amplitude of the eigenvalues of the propagator matrix
for an extrapolation distance of 30 m.
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organized in vectors such that the corresponding 3-D wavefield
operators again become matrices. Following this procedure, a
one-way monochromatic wavefield at depth level x3 can be
written as a vector, according to

P±(x3) =





P
±(!x1, !x2, x3)

P
±(2!x1, !x2, x3)

...

P
±(M!x1, !x2, x3)
P

±(!x1, 2!x2, x3)
...
...

P
±(M!x1, N!x2, x3)





. (41)

This way of organizing the data can be used to derive a matrix
operator from equation (40), which represents the Helmholtz
operator at a fixed depth level x3 for the 3-D situation. As in the
2-D case, this matrix operator is extremely sparse. To illustrate,
we have computed a number of modes. One medium is later-
ally invariant with a velocity of 2500 m/s; the other medium
profile is the circular symmetric extension of the profile shown
in Figure 3. Figure 6 shows the 2-D eigenfunctions at a
fixed x3.

FIG. 4. (a) Spectrum of the square root operator Ĥ1 for a laterally invariant medium with a velocity of c0 = 2500 m/s. The frequency
equals 25 Hz; hence, k0 = ω/c0 = 0.063 m−1. (b) and (c) Two radiating wave modes at fixed x3. Note that the radiating wave modes
in the homogeneous profile are harmonic functions. (d) Spectrum of the square root operator Ĥ1 for the laterally variant medium
of Figure 3. (e) Guided wave mode. (f) Radiating wave mode. The squares in the spectrum of the square root operator denote the
eigenvalues corresponding to the plotted eigenfunctions.

EXAMPLES

Well-to-well extrapolation

As a first illustration of the one-way operators that have been
constructed, a crosswell configuration is considered. A point
source in one well generates a wavefield that is recorded in an-
other well. The medium is assumed to be depth dependent only.
In this example, the direction of preference is horizontal, while
the lateral dimension represents depth. Figure 7 shows the 1-D
subsurface model and the result of finite-difference modeling,
which is used as a benchmark. The results of model expan-
sion and the local explicit method are compared in Figure 8.
Not surprisingly, the results of the local explicit method are
very poor in this example because of the considerable velocity

FIG. 5. Amplitude of the eigenvalues of the propagator matrix
for an extrapolation distance of 30 m.
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organized in vectors such that the corresponding 3-D wavefield
operators again become matrices. Following this procedure, a
one-way monochromatic wavefield at depth level x3 can be
written as a vector, according to

P±(x3) =





P
±(!x1, !x2, x3)

P
±(2!x1, !x2, x3)

...

P
±(M!x1, !x2, x3)
P

±(!x1, 2!x2, x3)
...
...

P
±(M!x1, N!x2, x3)





. (41)

This way of organizing the data can be used to derive a matrix
operator from equation (40), which represents the Helmholtz
operator at a fixed depth level x3 for the 3-D situation. As in the
2-D case, this matrix operator is extremely sparse. To illustrate,
we have computed a number of modes. One medium is later-
ally invariant with a velocity of 2500 m/s; the other medium
profile is the circular symmetric extension of the profile shown
in Figure 3. Figure 6 shows the 2-D eigenfunctions at a
fixed x3.

FIG. 4. (a) Spectrum of the square root operator Ĥ1 for a laterally invariant medium with a velocity of c0 = 2500 m/s. The frequency
equals 25 Hz; hence, k0 = ω/c0 = 0.063 m−1. (b) and (c) Two radiating wave modes at fixed x3. Note that the radiating wave modes
in the homogeneous profile are harmonic functions. (d) Spectrum of the square root operator Ĥ1 for the laterally variant medium
of Figure 3. (e) Guided wave mode. (f) Radiating wave mode. The squares in the spectrum of the square root operator denote the
eigenvalues corresponding to the plotted eigenfunctions.

EXAMPLES

Well-to-well extrapolation

As a first illustration of the one-way operators that have been
constructed, a crosswell configuration is considered. A point
source in one well generates a wavefield that is recorded in an-
other well. The medium is assumed to be depth dependent only.
In this example, the direction of preference is horizontal, while
the lateral dimension represents depth. Figure 7 shows the 1-D
subsurface model and the result of finite-difference modeling,
which is used as a benchmark. The results of model expan-
sion and the local explicit method are compared in Figure 8.
Not surprisingly, the results of the local explicit method are
very poor in this example because of the considerable velocity

FIG. 5. Amplitude of the eigenvalues of the propagator matrix
for an extrapolation distance of 30 m.
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The continuous variables (x1, x
′
1) above relate to discrete in-

dices of an M × M matrix operator according to

˜
H2 =

˜
C +

˜
D2. (34)

Here,
˜
C is a diagonal matrix corresponding to the first term in

equation (33):

˜
C =





(
ω

c′
1

)2

0 · · · 0

0
(

ω

c′
2

)2

· · · 0

...
...

. . .
...

0 0 · · ·
(

ω

c′
M

)2





, (35)

where c′
n = c′(n"x1, x3) and "x1 is the lateral discretization

interval. Furthermore, the matrix operator
˜
D2 represents the

second-order differentiation filter, which may be implemented
as

˜
D2 = 1

"x2
1

=





−2 1 0 · · · 0 0
1 −2 1 · · · 0 0
0 1 −2 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · −2 1
0 0 0 · · · 1 −2





. (36)

However, in practice a matrix operator is applied which con-
tains more nonzero diagonals. The matrix elements of this oper-
ator are calculated using a least-squares optimization algorithm
(Thorbecke and Rietveld, 1994). As can be seen by inspection
of equations (35) and (36), both matrix operators in equation
(34) are real valued and symmetric; hence,

˜
H2 is self-adjoint

(
˜
H2 =

˜
HH

2 , where H denotes transposition and complex con-
jugation). A well-known result from matrix algebra (Golub
and van Loan, 1989) states that, for a self-adjoint matrix, the
following decomposition can be applied:

˜
H2 =

˜
L
˜
Λ
˜
L−1 =

˜
L
˜
Λ
˜
LH , (37)

where
˜
L contains the discrete equivalents of the normalized

eigenfunctions φ in its columns and
˜
Λ is a diagonal matrix

containing the eigenvalues of
˜
H2. This equation is the discrete

counterpart of equation (28). Hence, the eigenvalues in
˜
Λ re-

place both the discrete and the continuous part of the spectrum
(see also Figure 1). The square root matrix operator

˜
H1 conse-

quently can be written as

˜
H1 =

˜
L
˜
Λ

1
2
˜
L−1 =

˜
L
˜
Λ

1
2
˜
LH , (38)

with the signs of the square root of the eigenvalues in
˜
Λ

1
2 cho-

sen according to equations (30) and (31). This result is evident
because, as an equivalent of equations (2) and (16), we have

˜
H2 =

˜
H1

˜
H1.

The procedure described above is illustrated for a laterally
invariant and a laterally variant medium. Figure 3 shows the
laterally variant medium profile. At a fixed value of x3, this
medium contains a lateral perturbation (i.e., a velocity dip) of
the laterally invariant medium. In Figure 4 the spectrum of the
square root operator Ĥ1 and eigenfunctions of both profiles are
compared. The common part of the spectra [Figures 4(a) and
4(d)] corresponds to the continuous part in Figure 2. These
eigenvalues would condense into a continuous branch if the
lateral aperture were increased to infinity. The isolated eigen-
values on the right in Figure 4(d) are caused by the velocity dip
in the medium, which acts as a waveguide. In Figures 4(b) and
4(c), two eigenfunctions are shown for the laterally homoge-
neous profile. In Figures 4(e) and 4(f), one guided wave mode
and one radiating wave mode are shown.

Finally, the primary propagator matrix
˜
W±(x3, x

′
3) can be

expressed according to

˜
W±(x3, x

′
3) =

˜
L(x ′

3) exp
{
∓j(x3−x ′

3)
˜
Λ

1
2
}

˜
LH (x ′

3). (39)

In equation (39), the amplitude of the exponential function
equals unity for propagating wave modes and is lower than
unity for evanescent wave modes. This is demonstrated in Fig-
ure 5, where the amplitude of the exponential for each eigen-
value in Figure 4(a) is depicted. Hence, the wavefield is extrap-
olated accurately and in a stable manner up to 90◦ and beyond
(the evanescent wavefield). The stability of the extrapolator
is an important distinctive feature of the described method
compared to local explicit methods, which have been reported
to exhibit unstable behavior in various situations (Etgen,
1994).

NUMERICAL IMPLEMENTATION IN 3-D

As in the 2-D case, we now take the kernel of the Helmholtz
operator for the 3-D situation as a point of departure:

H2(xH , x3; x′
H ) =

(
ω

c′(xH , x3)

)2

δ(xH − x′
H )

+ ∇2
Hδ(xH − x′

H ). (40)

Evidently, the eigenvectors of this operator are in this case two
dimensional in space, which raises the question if equation (40)
can still be expressed in terms of a matrix operator. Kinneging
et al. (1989) show that monochromatic 3-D data can indeed be

FIG. 3. Laterally variant medium profile at a fixed depth
level x3.
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organized in vectors such that the corresponding 3-D wavefield
operators again become matrices. Following this procedure, a
one-way monochromatic wavefield at depth level x3 can be
written as a vector, according to

P±(x3) =





P
±(!x1, !x2, x3)

P
±(2!x1, !x2, x3)

...

P
±(M!x1, !x2, x3)
P

±(!x1, 2!x2, x3)
...
...

P
±(M!x1, N!x2, x3)





. (41)

This way of organizing the data can be used to derive a matrix
operator from equation (40), which represents the Helmholtz
operator at a fixed depth level x3 for the 3-D situation. As in the
2-D case, this matrix operator is extremely sparse. To illustrate,
we have computed a number of modes. One medium is later-
ally invariant with a velocity of 2500 m/s; the other medium
profile is the circular symmetric extension of the profile shown
in Figure 3. Figure 6 shows the 2-D eigenfunctions at a
fixed x3.

FIG. 4. (a) Spectrum of the square root operator Ĥ1 for a laterally invariant medium with a velocity of c0 = 2500 m/s. The frequency
equals 25 Hz; hence, k0 = ω/c0 = 0.063 m−1. (b) and (c) Two radiating wave modes at fixed x3. Note that the radiating wave modes
in the homogeneous profile are harmonic functions. (d) Spectrum of the square root operator Ĥ1 for the laterally variant medium
of Figure 3. (e) Guided wave mode. (f) Radiating wave mode. The squares in the spectrum of the square root operator denote the
eigenvalues corresponding to the plotted eigenfunctions.

EXAMPLES

Well-to-well extrapolation

As a first illustration of the one-way operators that have been
constructed, a crosswell configuration is considered. A point
source in one well generates a wavefield that is recorded in an-
other well. The medium is assumed to be depth dependent only.
In this example, the direction of preference is horizontal, while
the lateral dimension represents depth. Figure 7 shows the 1-D
subsurface model and the result of finite-difference modeling,
which is used as a benchmark. The results of model expan-
sion and the local explicit method are compared in Figure 8.
Not surprisingly, the results of the local explicit method are
very poor in this example because of the considerable velocity

FIG. 5. Amplitude of the eigenvalues of the propagator matrix
for an extrapolation distance of 30 m.
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(Grimbergin et. al., 1998)

Propagation via L1-recovery

! We can actually directly ignore evanescent wave 
modes and call it “conveniently restricted out”

! Result is clean spikes without artifacts caused by 
“incomplete” propagation
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Propagation via L1-recovery

! Restricted Wave Propagation Algorithm

" Decompose signal into freq & H2 wave mode

" Delete (restrict) most of the signal, for practical 
cases usually ~90%

" Construct a much smaller Implicit Wavefield 
Propagation Algorithm and apply it to restricted 
signal

" Use a fast L1-solver to recover the full 
propagated signal in space/time domain
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restricted signal in H2 domain
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! Restricted Wave Propagation Algorithm
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! Restricted Wave Propagation Algorithm
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Expanding operator size to “force” sparsity

propagated signal in spatial domain
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Propagation via L1-recovery

! Restriction index keeps track of restricted signal

evanescent



Computational Savings

! Reduction in synthesis cost

" a fully restricted frequency eliminates one full 
eigenvalue problem

" partially restricted frequencies gain a reduction 
in the size of the eigenvalue (10% of original 
size)

! Reduction in computation cost

" Applying the operator now is only O(n), with a 
factor that is proportional to the fraction of 
signal surviving restriction

What about the L1-recovery?

! L1-recovery isn’t free, which is why we need a fast 
solver

! StOMP can be utilized as a fast approximate L1 
solver

! But in reality, any L1 solver can be used as long as 
it is fast

StOMP Computational Costs

! StOMP is approximately equal to 2~5x of an 
iterative lsqr problem. But:

" i.e., Operating on a signal 10% of the original size will take 
about 10% of the time taken by a full operator

! StOMP will usually be faster than lsqr provided that 
we restrict more than 80% of the signal

Cost of 
Reduced Operator !

Restriction 
Ratio

Cost of 
Full Operator

Experimental Results

! Recoverability phase diagrams

! Eigenvalue problem cost reduction



Recoverability Phase Diagrams

! Invariant Medium, 1km down

full restriction no restriction

Hard Problems

! What do we expect when we inverse-propagate in 
a “hard” medium?

! Guided wave modes will probably affect 
recoverability, but hard to predict

! See separate effects of frequency vs. H2 wave 
mode restriction
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Choosing Restrictions

! Choice of restrictions in frequency and H2 modes

Recoverability Phase Diagrams

! Rapidly Varying Medium, 1km down, freq restriction

full restriction no restriction



Recoverability Phase Diagrams

! Rapidly Varying Medium, 1km down, H2 restriction

full restriction no restriction

Savings on Eigenvalue Problem

! We additionally save time by computing only a 
small percentage of eigenvalues
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Interpolated operation time using ARPACK

Future Directions

! Optimal Restriction

! Multi-layer Propagation

! Working in curvelet sparsity

Optimal Restriction

! Restricting whole frequencies eliminate entire 
eigenvalue problems, but give less predictable 
results

! Pure random restriction gives predictable results 
but still require solving eigenvalues

An optimal restriction scheme is proposed to exist



Multi-Layer Propagation

! Multi-Layer propagation is the only way to deal 
with vertical velocity variations

! Decaying evanescent waves make deep 
propagations through many layers difficult

s+W- R+ W+P-

x3 > 0

=
∑

∆x3W+ W+W- W-

Possible non-linear inv. propagation using L1 Solvers

Curvelet Sparsity

! Stop working in broadband and start working in 
Curvelet sparsity

! Utilizing Curvelet sparsity is possible by 
incorporating FDCT into the operator

Maintain signal sparsity with new sparsity basis

Conclusions

! Reformat inverse propagation and therefore 
imaging as a sparse recovery problem

! Remove problem with evanescent wave modes

! Faster (or at least as fast) to compute as lsqr

! Loosened memory requirements

! Improves with future fast L1 solver

Thanks for your time!


