Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2018 SINBAD consortium - SLIM group @ The University of British Columbia.

SLIM

Project Goals

- Employ ideas of compressed sensing
- Deliberately limit signal sampling to reduce computational cost
- L1-minimization recovery reduces blurring due to missing evanescent modes

Stable Wave Propagator

- No Dip Limitation
- Handles Lateral Variations
- Unconditional Stability
- Low Computational Cost

<text><text><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block>

One-Way Wave Operator • Structure of \mathcal{A} confounds the meaning of its exponentiation, due to it being an operator $\mathcal{A} = \begin{pmatrix} 0 & \omega \rho \\ \frac{1}{\omega \rho^{1/2}} (\mathcal{H}_2 \rho^{-1/2}) & 0 \end{pmatrix}$ Two-way Wave Operator $\mathcal{H}_2 = k^2(\mathbf{x}) + \partial_\mu \partial_\mu$ • H2 contains information about medium velocity

<section-header><section-header><text><text><text><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block>

One-Way Wave Operator

Solution to one-way wave equation now has the one-way wave operator defined as

$$\mathcal{W}^{\pm}(x_3; x_3') = \exp(\mp j(x_3 - x_3')\mathcal{H}_1)$$

The new definition is consistent with the standard "migration" model

$$\mathbf{P}^{\bullet} = \sum_{x_3 > 0} \mathbf{W}^{\bullet} \mathbf{R}^{\bullet} \mathbf{W}^{\bullet} \mathbf{s}^{\bullet} \Delta x_3$$

Modal Decomposition

We still need to compute the actual W[±] Operator
this requires structure of H₁

$$\mathcal{H}_2 = \mathcal{H}_1 \mathcal{H}_1$$

• with \mathcal{H}_2 defined as

$$\mathcal{H}_2 = k^2(\boldsymbol{x}) + \partial_\mu \partial_\mu$$

or, written as a numerical linear operator

$$\underline{\mathbf{H}}_2 = \underline{\mathbf{C}} + \underline{\mathbf{D}}_2$$

Modal Decomposition

Guaranteed existence of similarity transform decomposition

Modal Decomposition

 $\hfill\square$ From the structure of \underline{H}_2 it is simple to deduce that it's "square root" can be computed as

$$\mathbf{H}_1 = \mathbf{L}\mathbf{\Lambda}^{\frac{1}{2}}\mathbf{L}^{-1} = \mathbf{L}\mathbf{\Lambda}^{\frac{1}{2}}\mathbf{L}^H$$

Linear algebra thus allows the propagator to be written in the form:

$$\mathbf{\underline{W}}^{\pm}(x_3, x_3') = \mathbf{\underline{L}}(x_3') \exp\left\{ \mp j(x_3 - x_3')\mathbf{\underline{\Lambda}}^{\frac{1}{2}} \right\} \mathbf{\underline{L}}^H(x_3')$$

(Grimbergin et. al., 1998)

SLIM

SLIM

Modal Decomposition

Implicit Wavefield Propagation Algorithm

- bring signal into frequency domain
- for each frequency & layer:
 - $\$ construct \mathbf{H}_2 operator matrix
 - $\mbox{\tt $^{$$}$}$ obtain eigenvalue decomposition of ${\mbox{\bf H}}_2$
 - transform monochromatic signal to eigenvector basis
 - apply phase rotation $\exp\left\{ \mp j(x_3 x'_3) \Lambda^{\frac{1}{2}} \right\}$
 - backward transform signal to space basis
- combine monochromatic signal & transform back to time domain

Modal Decomposition

- For propagation examples, refer to Grimbergen et. al. 1998
- Shown to effortlessly handle lateral medium variations without tweaking

Modal Decomposition

simple 1-D space/time propagation example

Motivation: Ideal Propagator?

- ▼ No Dip Limitation
- V Handles Lateral Variations
- V Unconditional Stability
- Computational Speed

Motivation: Ideal Propagator?

 $\hfill\square$ spectrum of Λ dictates existence of evanescent wave modes $\tilde{b}elonging$ to imaginary eigenvalues

Motivation: Ideal Propagator?

Motivation: Ideal Propagator?

Inverse propagation can instead be treated as a least squares problem to reduce artifact

$$\hat{x} = (A^T A + \epsilon I)^{-1} A^T y$$

- □ However this must be solved iteratively since the Hessian $(A^T A)$ is ill-conditioned
- This adds a factor of **10x~20x** to the computing cost of each propagation

SLIM

Motivation: Ideal Propagator?

However, least-squares do not completely solve the problem of inverse propagation

Motivation: Ideal Propagator?

Furthermore, the modal decomposition method is inherently *costly*

synthesis cost:

requires solving a full eigenvalue problem with the H2 matrix, which could be $O(n^3)$ with n being the number of detectors

operation cost:

requires a FFT in addition to vector-matrix multiplications which is $O(n^2)$, with *lsqr* contributing a factor of $10 \sim 20$ to this cost

SLIM Seismic Laboratory for Imaging and Modeling

Propagation via L1-recovery

Fourier basis is known to be a good measurement basis for sparse recovery due to strong incoherence with Dirac basis (E. Candes, D.L. Donoho)

 From UUP we know that it takes only ~5 Fourier wave modes to recover one point spike (disregarding log-like factors)

<section-header><section-header><section-header><section-header><text><text><text><figure>

Propagation via L1-recovery

- We can actually directly ignore evanescent wave modes and call it "conveniently restricted out"
- Result is clean spikes without artifacts caused by "incomplete" propagation

Restricted Wave Propagation Algorithm

- Decompose signal into freq & H2 wave mode
- Delete (restrict) most of the signal, for practical cases usually ~90%
- Construct a much smaller Implicit Wavefield Propagation Algorithm and apply it to restricted signal

<mark>↓)</mark>SLIM

 Use a fast L1-solver to recover the full propagated signal in space/time domain

<section-header>

Computational Savings

Reduction in synthesis cost

- a fully restricted frequency eliminates one full eigenvalue problem
- partially restricted frequencies gain a reduction in the size of the eigenvalue (10% of original size)
- Reduction in computation cost
 - Applying the operator now is only O(n), with a factor that is proportional to the fraction of signal surviving restriction

SLIM Seismic Laboratory for Imaging and Modeling

SLIM

What about the L1-recovery?

- L1-recovery isn't free, which is why we need a fast solver
- StOMP can be utilized as a fast approximate L1 solver
- But in reality, any L1 solver can be used as long as it is *fast*

StOMP is approximately equal to 2~5x of an iterative *lsqr* problem. But:

- i.e., Operating on a signal 10% of the original size will take about 10% of the time taken by a full operator
- StOMP will usually be faster than *lsqr* provided that we restrict more than 80% of the signal

Recoverability Phase Diagrams

Invariant Medium, 1km down

Hard Problems

What do we expect when we inverse-propagate in a "hard" medium?

- Guided wave modes will probably affect recoverability, but hard to predict
- See separate effects of frequency vs. H2 wave mode restriction

Recoverability Phase Diagrams

Rapidly Varying Medium, 1km down, freq restriction

Recoverability Phase Diagrams

Rapidly Varying Medium, 1km down, H2 restriction

Savings on Eigenvalue Problem

We additionally save time by computing only a small percentage of eigenvalues

Future Directions

- Optimal Restriction
- Multi-layer Propagation
- Working in curvelet sparsity

Optimal Restriction

- Restricting whole frequencies eliminate entire eigenvalue problems, but give less predictable results
- Pure random restriction gives predictable results but still require solving eigenvalues

An optimal restriction scheme is proposed to exist

Multi-Layer Propagation

Multi-Layer propagation is the only way to deal with vertical velocity variations

Decaying evanescent waves make deep propagations through many layers difficult

Possible non-linear inv. propagation using L1 Solvers

SLIM Seismic Laboratory for imaging and Modeling

Curvelet Sparsity

- Stop working in broadband and start working in Curvelet sparsity
- Utilizing Curvelet sparsity is possible by incorporating FDCT into the operator

Maintain signal sparsity with new sparsity basis

Conclusions

- Reformat inverse propagation and therefore imaging as a sparse recovery problem
- Remove problem with evanescent wave modes
- Faster (or at least as fast) to compute as *lsqr*
- Loosened memory requirements
- Improves with future fast L1 solver

Thanks for your time!

