Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0).
Copyright (c) 2018 SINBAD consortium - SLIM group @ The University of British Columbia.
Tim Tai-Yi Lin
in collaboration with Felix Herrmann
Joris Grimbergen, Frank Dessing, E. Candes et. al.
with special thanks to authors of StOMP
D. L. Donoho et. al.
SLIM
Seissic. Laboratory for
Imaging and Modeling
August 29, 2006

Problem Description

\square Very large-scale imaging problems
\square Usage of wave propagator that is desirable but expensive to compute
\square Imaging is necessarily a recovery problem due to diminished evanescent waves

Project Goals

\square Employ ideas of compressed sensing
\square Deliberately limit signal sampling to reduce computational cost
\square L1-minimization recovery reduces blurring due to missing evanescent modes

propagated signal in spatial domain

Stable Wave Propagator

Stable Wave Propagator

\square Property of $\mathrm{W}^{ \pm}$is crucial for computation

$$
\begin{aligned}
& \mathbf{p}^{\mathbf{p}}=\int_{x_{3}>0} \mathbf{W} \mathbf{R}^{+} \mathbf{W}^{+} \mathbf{s}^{+} \mathrm{d} x_{3} \\
& \mathbf{p}=\sum_{x_{3}>0} \mathbf{W}^{-} \mathbf{R}^{+} \mathbf{W}^{+} \mathbf{s}^{+} \Delta x_{3}
\end{aligned}
$$

Stable Wave Propagator

\square No Dip Limitation

\square Handles Lateral Variations

- Unconditional Stability
- Low Computational Cost

\square Physical behavior of wavefield modeled by coupled differential equation of depth
(Claerbout, 1971; Wapenaar and Berkhout, 1989)

$$
\partial_{3} \mathcal{Q}+j \mathcal{A} \mathcal{Q}=\mathcal{D}
$$

$\sqrt{4}$

One-Way Wave Operator

wave vector
source vector
\square Solution for \mathcal{Q} at any depth

$$
\mathcal{Q}\left(x_{3}\right)=\exp \left(-j \mathcal{A} x_{3}\right) \mathcal{Q}_{0}
$$

\square Unfortunately this expression is meaningless!

One-Way Wave Operator

\square Decomposition of \mathcal{A} proposed to rectify its usefulness in computation
(Claerbout, 1971; Wapenaar and Berkhout, 1989; de Hoop, 1992)

$$
\begin{aligned}
& \mathcal{A}=\mathcal{H} \mathcal{C} \\
& \mathcal{H}=\left(\begin{array}{cc}
\mathcal{H}_{1} & 0 \\
0 & -\mathcal{H}_{1}
\end{array}\right) \\
& \mathcal{H}_{2}=\mathcal{H}_{1} \mathcal{H}_{1}
\end{aligned}
$$

One-Way Wave Operator

- Substitution of \mathcal{A} by its decomposition is performed, and its composition operators is allowed to act on the signal vectors

$$
\partial_{3} \mathcal{Q}+j \mathcal{A} \mathcal{Q}=\mathcal{D}
$$

$$
\mathcal{A}=\mathcal{L H} \mathcal{L}^{-1}
$$

$$
\partial_{3} \boldsymbol{P}+j \mathcal{H} \boldsymbol{P}=\boldsymbol{S}+\boldsymbol{\Theta} \boldsymbol{P}
$$

One-way Wave Equation

Modal Decomposition

\square We still need to compute the actual $\mathrm{W}^{ \pm}$Operator

- this requires structure of \mathcal{H}_{1}

$$
\mathcal{H}_{2}=\mathcal{H}_{1} \mathcal{H}_{1}
$$

- with \mathcal{H}_{2} defined as

$$
\mathcal{H}_{2}=k^{2}(\boldsymbol{x})+\partial_{\mu} \partial_{\mu}
$$

- or, written as a numerical linear operator

$$
{\underset{\sim}{\mathbf{H}}}_{2}=\underset{\sim}{\mathbf{C}}+{\underset{\sim}{\mathbf{D}}}_{2} .
$$

Modal Decomposition

$$
\begin{aligned}
& \mathbf{H}_{2}=\underset{\sim}{\mathbf{C}}+\underset{\sim}{\mathbf{D}_{2}} . \quad \quad \mathbf{C}=\left(\begin{array}{cccc}
\left(\frac{\omega}{c_{1}^{\prime}}\right)^{2} & 0 & \cdots & 0 \\
0 & \left(\frac{\omega}{c^{\prime}}\right)^{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \left(\frac{\omega}{c_{M}^{\prime}}\right)^{2}
\end{array}\right), \text { Hermitrian } \\
& \text { Self-adjoint }
\end{aligned}
$$

$$
\mathbf{D}_{2}=\frac{1}{\Delta x_{1}^{2}}=\left(\begin{array}{cccccc}
-2 & 1 & 0 & \cdots & 0 & 0 \\
1 & -2 & 1 & \cdots & 0 & 0 \\
0 & 1 & -2 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & -2 & 1 \\
0 & 0 & 0 & \cdots & 1 & -2
\end{array}\right)
$$

The new definition is consistent with the standard "migration" model

$$
\mathrm{P}^{-}=\sum_{x_{3}>0} \mathrm{~W}^{-} \mathrm{R}^{+} \mathrm{W}^{+} \mathrm{s}^{+} \Delta x_{3}
$$

Solution to one-way wave equation now has the one-way wave operator defined as

$$
\mathcal{W}^{ \pm}\left(x_{3} ; x_{3}^{\prime}\right)=\exp \left(\mp j\left(x_{3}-x_{3}^{\prime}\right) \mathcal{H}_{1}\right)
$$

Modal Decomposition

\square Guaranteed existence of similarity transform decomposition

Modal Decomposition

Implicit Wavefield Propagation Algorithm

- bring signal into frequency domain
- for each frequency \& layer:
- construct ${\underset{\sim}{\mathbf{H}}}_{2}$ operator matrix
- obtain eigenvalue decomposition of ${\underset{\sim}{\mathbf{H}}}_{2}$
- transform monochromatic signal to eigenvector basis
- apply phase rotation $\exp \left\{\mp j\left(x_{3}-x_{3}^{\prime}\right) \simeq^{\frac{1}{2}}\right\}$
- backward transform signal to space basis
- combine monochromatic signal \& transform back to time domain

Modal Decomposition

\square From the structure of \mathbf{H}_{2} it is simple to deduce that it's "square root" can be computed as

$$
{\underset{\sim}{\mathbf{H}}}_{1}=\underset{\sim}{\mathbf{L}}{\underset{\sim}{\mid}}^{\frac{1}{2}}{\underset{\sim}{\mathbf{L}}}^{-1}=\underset{\sim}{\mathbf{L}}{\underset{\sim}{\boldsymbol{\sim}}}^{\frac{1}{2}}{\underset{\sim}{\mathbf{L}}}^{H}
$$

\square Linear algebra thus allows the propagator to be written in the form:
${\underset{\sim}{\mathbf{W}}}^{ \pm}\left(x_{3}, x_{3}^{\prime}\right)=\underset{\sim}{\mathbf{L}}\left(x_{3}^{\prime}\right) \exp \left\{\mp j\left(x_{3}-x_{3}^{\prime}\right){\underset{\sim}{\boldsymbol{\Lambda}}}^{\frac{1}{2}}\right\}{\underset{\sim}{\mathbf{L}}}^{H}\left(x_{3}^{\prime}\right)$

Modal Decomposition

\square For propagation examples, refer to Grimbergen et. al. 1998

- Shown to effortlessly handle lateral medium
 variations without tweaking

Modal Decomposition

\square simple 1-D space/time propagation example

propagated 1.5 km down

Motivation: Ideal Propagator?

\checkmark No Dip Limitation
\checkmark Handles Lateral Variations
\checkmark Unconditional Stability
\square Computational Speed

Motivation: Ideal Propagator?

\square spectrum of $\underset{\sim}{\boldsymbol{\Lambda}}$ dictates existence of evanescent wave modes \tilde{b} elonging to imaginary eigenvalues

Amplitude of these wave modes decay exponentially as a result

Motivation: Ideal Propagator?

- Our W operator will inevitably be "pseudorestricted" with a part of the operator having diminished amplitude

Motivation: Ideal Propagator?

\square This causes problems with inverse propagation, defined as Hermitian adjoint $W^{T} W x$

- Evanescent wave modes are not accounted
- Results in frequency-limited artifact

Inverse propagated wave signal (should resemble source's perfect spike shape)

Motivation: Ideal Propagator?

SLIM

Motivation: Ideal Propagator?

\square Inverse propagation can instead be treated as a least squares problem to reduce artifact

$$
\hat{x}=\left(A^{T} A+\epsilon I\right)^{-1} A^{T} y
$$

\square However this must be solved iteratively since the Hessian $\left(A^{T} A\right)$ is ill-conditioned
\square This adds a factor of $\mathbf{1 0 x} \mathbf{\sim} \mathbf{2 0 x}$ to the computing cost of each propagation

Motivation: Ideal Propagator?

\square However, least-squares do not completely solve the problem of inverse propagation

Motivation: Ideal Propagator?

\square Furthermore, the modal decomposition method is inherently costly

- synthesis cost:

requires solving a full eigenvalue problem with the H 2 matrix, which could be $\mathbf{O}\left(\mathbf{n}^{3}\right)$ with n being the number of detectors

- operation cost:
requires a FFT in addition to vector-matrix multiplications which is $\mathbf{O}\left(\mathbf{n}^{2}\right)$, with Isqr contributing a factor of $10 \sim 20$ to this cost

Inspiration: Wave Modes of H2

- The wave modes of ${\underset{\sim}{\mathbf{H}}}_{2}$ very much resembles a Fourier transform operator's wave modes!
(Grimbergin et. al., 1998)

```
Wave modes for invariant medium is identical to that of a cosine
transform
```


Sram mocems

Propagation via L1-recovery

\square We can actually directly ignore evanescent wave modes and call it "conveniently restricted out"
\square Result is clean spikes without artifacts caused by "incomplete" propagation

From UUP we know that it takes only ~5 Fourier wave modes to recover one point spike (disregarding log-like factors)
Fourier basis is known to be a good measurement basis for sparse recovery due to strong incoherence with Dirac basis
(E. Candes, D.L. Donoho)

Propagation via L1-recovery

\qquad
\qquad

Propagation via L1-recovery

Restricted Wave Propagation Algorithm

- Decompose signal into freq \& H2 wave mode
- Delete (restrict) most of the signal, for practical cases usually ~90\%
- Construct a much smaller Implicit Wavefield Propagation Algorithm and apply it to restricted signal
- Use a fast L1-solver to recover the full propagated signal in space/time domain

Restricted Wave Propagation Algorithm

Restricted Wave Propagation Algorithm
estricted signal in H2 domain

Propagation via L1-recovery

\square Restriction index keeps track of restricted signal

Computational Savings

What about the L1-recovery?

\square Reduction in synthesis cost

- a fully restricted frequency eliminates one full eigenvalue problem
- partially restricted frequencies gain a reduction in the size of the eigenvalue (10% of original size)
\square Reduction in computation cost
- Applying the operator now is only $O(n)$, with a factor that is proportional to the fraction of signal surviving restriction
\square L1-recovery isn't free, which is why we need a fast solver
\square StOMP can be utilized as a fast approximate L1 solver
\square But in reality, any L1 solver can be used as long as it is fast

Experimental Results

\square StOMP is approximately equal to $2 \sim 5 x$ of an iterative Isqr problem. But:

- i.e., Operating on a signal 10% of the original size will take about 10% of the time taken by a full operator
\square StOMP will usually be faster than Isqr provided that we restrict more than 80% of the signal

Recoverability Phase Diagrams

\square Invariant Medium, 1 km down

Hard Problems

\square What do we expect when we inverse-propagate in a "hard" medium?

\square Guided wave modes will probably affect recoverability, but hard to predict
\square See separate effects of frequency vs. H2 wave mode restriction

Recoverability Phase Diagrams

- Rapidly Varying Medium, 1 km down, freq restriction

Choosing Restrictions

\square Choice of restrictions in frequency and H 2 modes

Recoverability Phase Diagrams

\square Rapidly Varying Medium, 1km down, H2 restriction

Savings on Eigenvalue Problem

\square We additionally save time by computing only a small percentage of eigenvalues

Future Directions

\square Optimal Restriction
\square Multi-layer Propagation
\square Working in curvelet sparsity

Optimal Restriction

\square Restricting whole frequencies eliminate entire eigenvalue problems, but give less predictable results
\square Pure random restriction gives predictable results but still require solving eigenvalues

[^0]
Multi-Layer Propagation

\square Multi-Layer propagation is the only way to deal with vertical velocity variations
\square Decaying evanescent waves make deep propagations through many layers difficult

Curvelet Sparsity

\square Stop working in broadband and start working in Curvelet sparsity
\square Utilizing Curvelet sparsity is possible by incorporating FDCT into the operator

Maintain signal sparsity with new sparsity basis

Possible non-linear inv. propagation using L1 Solvers

Conclusions

Thanks for your time!
\square Reformat inverse propagation and therefore imaging as a sparse recovery problem

- Remove problem with evanescent wave modes
\square Faster (or at least as fast) to compute as Isqr
\square Loosened memory requirements
\square Improves with future fast L1 solver

[^0]: An optimal restriction scheme is proposed to exist

