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Context

Linear least-squares data continuation and L1 
[Claerbout, 73-92]

Discrete & unequally sampled Fourier Transforms 
[Sacchi, 96; Schoneville, 01; Zwartjes, 04]

Inpainting with Morphological Component Analysis 
(MCA) using Redundant Directional Frames such as 
Curvelets [Candes; Donoho; Demanet; Ying, 05; Elad, 05]

Stable signal recovery with uniform uncertainty 
principles [Candes, Romberg and Tao 2004-2005]

Compressed sensing [Donoho 04-06]

Iterative thresholding  [Daubechies et al 2004]

A Hardy space for Fourier integral operators [Smit, 97]

Seismic recovery

Incomplete and noisy measurements:

y incomplete and noisy data 

m the unknown model

M measurement/modeling matrix

R restriction matrix

n noise

y =

Restriction︷︸︸︷
R M︸︷︷︸

Measurement

m + n

Our approach

Sparsity promotion by norm-one minimization.

Sparsity promoting transforms.

Seek a sparse representation for the model 
space.

Forward model:

with

y = Ax0

A = RMSH

restriction

matrix

measurement

matrix

sparsity

matrix
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Our approach

Sparsity representation:

! prototype waveforms that locally match

! redundant

Invert an underdetermined system.

Regularized by sparsity.

Machinery works when

! subset of columns act as an orthobasis

! there is sufficient mixing

Difference with existing methods

! seek sparsity transform

! provide conditions for recovery

Recovery
Include a sparsity matrix S:

or

Main challenge recover m-sparsity vector      
from noisy n-vector y for n<<m

• underdetermined problem

• depends on sparsity x, size y and properties A

y = R

multiscale modeling︷ ︸︸ ︷
MSH x0 + n

y = Ax0 + n

Use recent results from information theory.

x0

Prior information
on the model
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l2 in Dirac basis l1 in Dirac basis l1 in curvelet frame

Our program

Theoretical:

! selection of the appropriate sparsity & 
measurement matrices.

! conditions for recovery.

! measures for performance.

Applied:

! translate seismic problems into recovery 
framework

! tailor to seismic situation

! built computational framework

! test on real size problems

! apply to real data



Canonical problem

Suppose one would like to recover a 
sparse spike train

What would be the best strategy when we 
can measure by taking inner products?

Canonical problem

Could measure with a spike/Dirac basis

! would have to look everywhere

Could measure with complex exponentials 
(Fourier)

! would also have to measure everywhere

True when signal is recovered 
linearly ...

f = IT If

f = FT Ff

Nonlinear recovery

Candes, Tao, Romberg and Donoho show

reconstructs for specific A within the noise level

when                       

with S the # largest S entries in x and    the 
mutual coherence between M and S.

(P1) :






minx∈Rm ‖x‖1 subject to ‖y −Ax‖2 ≤ ε

m̂ = SH x̂

‖x̂− x0‖2 ≤ C3 · ε + C4 · S−r+1/2.

n ∝ µ2 · S
µ

Recovery conditions
Mutual coherence:

Success recovery depends on interplay

• Sparsity <-> compression rate

• Mutual coherence

Constants are known for certain combinations M & S.

µ(M,S) =
√

m max
(k,l)∈[1···m]×[1···m]

|〈mk, sl〉|

|xi∈I | ≤ Ci−r, r ≥ 1 and xI(1) ≥ xI(2) ≥ · · · ≥ xI(m)



Recovery example

Start with a spike train <-> Dirac basis = sparsity 
matrix

What would be a good measurement basis M?

NO! This implies                   look everywhere ....

Let’s take something completely different Fourier 
perhaps?

S = SH = I

M = I?

µ→
√

n

Framework

YES YES! Because incoherent Spike & Fourier give

Can EXACTLY recover for truly sparse x & no noise

Can approximately recover when noise and x 
compressible, i.e.

for large as possible r.

µ = 1

|xi∈I | ≤ Ci−r, r ≥ 1 and xI(1) ≥ xI(2) ≥ · · · ≥ xI(m)

!"" #"" $"" %"" &"" '"" ("" )"" *"" !"""
!!

!"+)

!"+'

!"+%

!"+#

"

"+#

"+%

"+'

"+)

!
,-./0123456

!"" #"" $"" %"" &"" '"" ("" )"" *"" !"""
!!

!"+)

!"+'

!"+%

!"+#

"

"+#

"+%

"+'

"+)

!
7/89:/-/;0123456

Experiment I:
Sharpness Of The Recovery Condition

Thanks to 

Romberg

Experiment I:
Sharpness Of The Recovery Condition

!"" #"" $"" %"" &"" '"" ("" )"" *"" !"""
!!

!"+)

!"+'

!"+%

!"+#

"

"+#

"+%

"+'

"+)

!
,-./0123456

!"" #"" $"" %"" &"" '"" ("" )"" *"" !"""
!!

!"+)

!"+'

!"+%

!"+#

"

"+#

"+%

"+'

"+)

!
7/89:/-/;0123456

Thanks to 

Romberg



Experiment II:
Compressibility vs Incoherency
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Questions
Given an incomplete seismic acquisition geometry 
how much can we recover and with what accuracy?

Given a certain accuracy, how much do we need to 
measure?

Can we convince management ....

Does the sharpness of the recovery tell us something?

Can the results from stable recovery with uniform 
uncertainty principles be extended to

� sparsity and measurement frames?

� migration-like sparsity frames?


