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1. INTRODUCTION

1.1. The seismic imaging problem

The primary focus of seismic imaging is to locate singularities in the earth’s

elastic properties from seismic data recorded at the surface [1; 15; 44; 41; 2; 3]. A

seismic survey consists of multiple seismic experiments in which both the location

of the sources, s, and receivers, r, are varied along the surface. After linearization

and by ignoring the source and receiver signatures, the discretized forward model

that generates seismic data can be written as

d = Km + n. (1)

In this single-scattering expression, m(x) represents the (singular) fluctuations in

the earth’s acoustic properties with respect to an appropriately chosen smoothly

varying background velocity model (the density of mass is assumed constant) [15; 2].

These fluctuations are referred to as the model or reflectivity and seismic imaging

aims to recover both the locations and the relative amplitudes of the velocity fluctu-

ations from seismic data. The model is a sampled function of d-spatial dimensions

x = (x1, · · · , xd) and the discretized scattering matrix K generates the data vector,

which corresponds to a discretization of a (2(d− 1) + 1)-dimensional data volume,

sampled along the (d − 1)-dimensional source and receiver coordinates, s and r

and along the positive time axis t. The additive pseudo-random noise vector, n

accounts for possible measurement errors and is assumed to be given by Gaussian

white noise, n ∈ N(0,σ), with zero mean and σ standard deviation. The assump-

tion of white noise can be relaxed to colored noise. Without loss in generality, we

limit the discussion to imaging in two dimensions (d = 2), where the data vec-
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tor is a sampling of a three-dimensional data volume and where the model vector

represents a discretized two-dimensional seismic ‘image’.

The main purpose of this paper is to recover the relative amplitudes for the

image from seismic data that is contaminated with noise. The forward model given

in Eq. 1 is derived from a linearization of a data misfit functional. The Jacobian

of this functional [see e.g. 34] corresponds, in the noise-free case, to applying the

adjoint of the linearized scattering operator to the data vector (cf. Eq. 1), i.e.,

y = KT d (2)

with the symbol T denoting the matrix transpose. Because K is near unitary,

i.e., KT K ≈ I, the migrated image, y, is generally a good approximation to the

reflectivity.

With the increased demand for high-quality images, the above approximation

of KT K ≈ I is no longer justifiable because it may lead to amplitude errors. An

extensive literature has emerged to restoring the migration amplitudes by inverting

the Gram or normal matrix KT K. These approaches are known as ‘least-squares

migration’ [32; 10; 16; 27; 28; 34] and involve computation of the Moore-Penrose

pseudo inverse (denoted by the symbol †)

m =

ΨDO︷ ︸︸ ︷(
KT K

)−1
KT︸︷︷︸
FIO

d = K†d. (3)

of the scattering or demigration matrix K. In this expression, the amplitudes

are restored by inverting the Hessian also known as the Gram matrix or normal

operator.

Unfortunately, seismic data volumes are large (for d = 3 typically Tera to Peta

Bytes) making it difficult to calculate the inverse of the Hessian. In addition, the

Hessian it too big to be constructed explicitly and is too expensive to be evaluated

as part of an iterative Krylov-subspace solver to invert the Hessian [see e.g. 32].
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relating the slowness s(x) = c−1(x) with c(x) the compressional wavespeed [ms−1],

to the data d(s, r, t). The functional F[s] involves the solution of the acoustic

wave equation, followed by a restriction to measurements recorded at the surface

[see for details 34]. Formally, we are interested in the inverse of this functional

F−1[d] : d(s, r, t) → s(x). Following [43; 35; 34], this functional is linearized with

respect to a smooth background medium s̄ and a small (singular) perturbation. This

perturbation corresponds to the discretized image, m = s2− s̄2, and is proportional

to the reflectivity. The linearization coincides with the well-known single-scattering

(Born) approximation. After linearization, the migration operator and the Hessian

follow from the data misfit functional

J(s) =
1
2
‖d− F[s]‖22. (7)

The negation of the linearized Jacobian of this functional defines migration,

y = −∇mJ(m) = K[̄s]T d. (8)

The matrix K[̄s]T is the adjoint of the scattering matrix K[̄s] ∈ RL×M with L

and M the length of the data and image vectors. ∇m is the discretized gradient.

Explicit reference is made to the background slowness model, s̄, to illustrate the

nonlinear dependence of the scattering matrix and its adjoint on this model. Since

this background slowness is assumed to be known, this dependence is dropped for

notational convenience.

The process of migration is overdetermined because of the reduction in dimen-

sionality between the data and the image, e.g. for d = 2 the three-dimensional

data volume is mapped to a two-dimensional image. Consequently, the data vector

exceeds the size of the model, i.e., L & M . Despite this overdeterminism, seismic

images suffer from a degradation in the amplitudes, which can be corrected by

including the inverse of the Hessian,

m = −Ψ†∇mJ(m) (9)
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with Ψ := KT K ∈ RM×M . For an invertible Hessian and noise-free data, this

expression is equivalent to the least-squares migration result presented in Eq. (3).

Instead of making (asymptotic) assumptions on the acquisition and the frequency

that yield approximations for the inverse Hessian, a formulation will be derived that

exploits an overcomplete signal representation to recover the amplitudes from noisy

migrated data

y = Ψm + e (10)

that contains contributions from the Hessian both on the ‘image’ as well as on the

noise. The expectation for the covariance of this noise term equals, Cov[e, e] :=

E{eeT } = σ2Ψ with E the expectation operators with respect to the probability

density function of n ∈ N(0,σ). This covariance is proportional to the Hessian. The

aim of this paper is to approximately invert the Hessian by diagonal preconditioning

in the curvelet domain.

Zero-order imaging operators. In the high-frequency limit, the scattering matrix

and the Hessian can under certain conditions on the medium and ray-geometry be

considered as discretized version of FIO’s [44]. Both K and KT are for d = 2

FIO’s of order 1
4 , while the leading behavior for their composition, the Hessian Ψ,

corresponds to that of an order-one invertible elliptic ΨDO. The action of the ΨDO

on a nice function f is given by

Tf(x) =
∫

eik·xa(x, k)f̂(k)dk. (11)

This operator is diagonal in the Fourier domain and involves a multiplication by the

space-spatial frequency dependent symbol a(x, k). Notice that this multiplication

corresponds to a nonstationary convolution.

To make this ΨDO amiable to an approximation by curvelets, the following sub-

stitutions are made for the scattering operator and the model: K "→ K (−∆)−1/2
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and m !→ (−∆)1/2 m with ((−∆)αf)∧(k) = |k|2α · f̂(k). After these substitutions1,

the Hessian Ψ becomes zero-order. Before detailing the approximate diagonaliza-

tion of the Hessian, we first discuss the sparsity of curvelets on seismic images.

Curvelet sparsity frames for seismic images. Seismic images (see e.g. Fig. 2)

contain singularities along piecewise smooth curves. This sort of images are difficult

to compress with respect to known orthonormal expansions such as Fourier and

discrete wavelet transforms [7; 17]. The prototype waveforms that make up these

transforms are not rich enough to sparsely represent seismic images, they either

lack a multiscale structure or directionality.

Recently developed curvelet transforms compose signals in terms of waveforms

that are multiscale and multidirectional. Because the rows of the transform contain

prototype waveforms that behave locally like ’little waves’, the curvelet transforms

obtains near optimal sparsity on the bandwith-limited2 imaged reflectivity. The

curvelet transform is overcomplete because the number of rows with waveforms

exceeds the number of samples in the image. By using the fast discrete curvelet

transform [FDCT by warping 5], the image is perfectly reconstructed after decom-

position by applying the adjoint of the curvelet transform, i.e., we have r = CT Cr

for arbitrary r. The curvelet transform matrix and its adjoint are given by C and

CT and these transforms define the sparsity synthesis and analysis matrices accord-

ing A := CT ∈ RM×N and AT := C. For this choice of curvelet transform, the

pseudo inverse equals the adjoint, i.e., CT = C†, which means that the FDCT by

warping is a numerical isometry, i.e., the collection of curvelets in the overcomplete

1Alternatively, the operators can be made zero-order by composing the data side with a 1/2-

order fractional integration along the time coordinate, i.e., K !→ ∂
−1/2
t K [see e.g. 2].

2Because of bandlimitation of the source, seismic data and hence seismic images are always

limited in bandwidth, yielding an imaged reflectivity that is relatively smooth in the direction

along the reflectors and oscillatory across.
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to our nonlinear formulation of the seismic amplitude recovery problem. As with

the wavelet-vaguelette decomposition (WVD) or quasi-SVD methods proposed by

[29; 22; 30], the fact that curvelets are near eigenfunctions of the Hessian is used

to invert the Hessian nonlinearly, using not only the invariance property but also

the near sparsity of curvelets on the model. Before deriving the recovery scheme,

we first briefly present the canonical denoising problem as a recovery problem.

3. STABLE SIGNAL RECOVERY

The denoising problem is first discussed for orthonormal basis and then for over-

complete sparsity representations.

3.1. The denoising problem

Separating a deterministic signal component from incoherent, typically Gaussian

noise, is the canonical inverse problem where one aims to recover the unknown

image m from noisy data given by

y = m + n (13)

with the noise term as defined before.

Following recent developments in theoretical image processing, the image m can

be recovered from noisy and incomplete data (e.g. by considering only a subset [see

e.g. 9] of the measurement vector y) when the image permits a sparse representa-

tion, i.e.,

y = Ax0 + n (14)

for a sparsity vector x0 with its sorted entries decaying rapidly. This recovery

involves the solution of the following convex optimization program

P1 :


minx ‖x‖1 subject to ‖y −Ax‖2 ≤ ε

m̂ = Ax,

(15)
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which is remarkable robust under noise and missing data. As long as A adheres to

certain conditions, the solution of this unconstrained optimization problem lies to

within the noise level [see e.g. 9; 24]. The optimization problem P1 is known as the

constrained variation of the basis-pursuit denoising algorithm (BPDN) [11].

As part of the optimization, the sparsity vector is fitted within the tolerance

ε. This tolerance depends on the noise level given by the standard deviation of

the noise vector n. Since n1···M ∈ N(0,σ2), the probability of ‖n‖22 exceeding its

mean by plus or minus two standard deviations is small. The ‖n‖22 is distributed

according the χ2-distribution with mean n ·σ2 and variance
√

2M ·σ2. By choosing

ε2 = σ2(M + ν
√

2M) with ν = 2, we remain within the mean plus or minus two

standard deviations.

3.2. Orthonormal sparsity representation

In case m permits a sparse representation in an orthonormal basis, i.e., A := ST ,

P1 permits an explicit solution. For instance, this is the case when S = W with W

an orthonormal discrete wavelet transform. To establish this observation, we first

associate with this optimization problem the following unconstrained optimization

problem

m̂ = arg minm ‖y −m‖22 + λ‖Sm‖1 (16)

with λ =
√

ε2/(M + ν
√

2M) · √log 2M = σ · √log 2M [18; 11]. Because of the

orthonormality of S, Eq. (16) can also be written in the wavelet domain


minv ‖u− v‖22 + λ‖v‖1

m̂ = ST v̂

(17)

with u := Sy and v := Sm. This optimization problem can be solved by a single

soft-thresholding operation [see e.g. 30; 14]

m̂ = ST Ss
λ (Sy) , (18)
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P1 permits an explicit solution. For instance, this is the case when S = W with W

an orthonormal discrete wavelet transform. To establish this observation, we first

associate with this optimization problem the following unconstrained optimization

problem

m̂ = arg minm ‖y −m‖22 + λ‖Sm‖1 (16)

with λ =
√

ε2/(M + ν
√

2M) · √log 2M = σ · √log 2M [18; 11]. Because of the

orthonormality of S, Eq. (16) can also be written in the wavelet domain


minv ‖u− v‖22 + λ‖v‖1

m̂ = ST v̂

(17)

with u := Sy and v := Sm. This optimization problem can be solved by a single

soft-thresholding operation [see e.g. 30; 14]

m̂ = ST Ss
λ (Sy) , (18)
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with the soft thresholding operator given by

Ss
λ(x) :=


x− sign(x)λ |x| ≥ λ

0 |x| < λ.

(19)

3.3. Overcomplete sparsity transforms

Denoising based on orthonormal transforms often does not give the most pleasing

results. Compared to decimated orthonormal wavelets, non-decimated wavelets are

known to give superior denoising results for functions with point-singularities. For

non-decimated wavelets, the synthesis matrix contains more columns (wavelets)

than rows (data points), i.e., A := S† = WT ∈ RM×N with N = M · log M $ M

is overcomplete. The recovery of the sparsity vector becomes underdetermined and

Eq.’s (16) and (17) are no longer equivalent, an observation also made by [23].

Since the constrained optimization problem P1 extends to overcomplete repre-

sentations, this formulation is used to recover the sparsity vector x0. For seismic

images, the curvelet transform is arguably a good choice. By virtue of the tightness

of the FDCT, we have A := S† with S := C or A = CT .

Following [24], the constrained optimization problem (P1), is replaced by a series

of simpler unconstrained optimization problems

Pλ :


minx ‖y −Ax‖22 + λ‖x‖1

m̂ = Ax̂.

(20)

These optimization problems depend on the Lagrange multiplier λ, which is not

known. A cooling method is used where Pλ is solved for a Lagrange multiplier λ

that is slowly decreased from a large starting value. The optimal x̂ is found for the

largest λ for which ‖y−Ax̂‖2 ≤ ε. During the optimization, the underdetermined

frame matrix A is inverted by imposing the sparsity promoting #1-norm. This norm

regularizes the inverse problem of finding the unknown coefficient vector [see also

14]. We refer to [20; 45] for the recovery conditions for Eq.’s (15) and (20).
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3.4. Solution by the cooling method based on iterative thresholding

Following [14; 24] and ideas dating back to [25], Eq. (20) is solved by an iterative

thresholding technique that derives from the Landweber descend method. After m

iterations of the outer cooling loop, the estimated coefficient vector is computed for

fixed λ by the following inner loop

xm+1 = Ss
λ

(
xm + AT (y −Axm

)
(21)

with λ = λm. As shown by [14], this iteration for fixed λ converges to the solution of

Eq. (20) for m large enough and ‖A‖ < 1. The cost for each iteration is a synthesis

and subsequent analysis. The details of the cooling algorithm are presented in

Table. 1.

Initialize:

m = 0; x0 = AT y;

Choose: L, λ1 > λ2 > · · ·

while ‖y −Axm‖2 > ε do

m = m + 1;

xm = xm−1;

for l = 1 to L do

xm = Ss
λm

`
xm + AT (y −Axm)

´{Iterative thresholding}

end for

end while

m̂ = Axm.

TABLE 1

The cooling method with λ1 > λ2 > · · · the series of decreasing

Lagrange multipliers. The inner loop is repeated L times.

4. SEISMIC AMPLITUDE RECOVERY BY NONLINEAR

OPTIMIZATION
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Figure 1: Denoising of a two-dimensional synthetic seismic dataset with colored noise (a) using

the iterative cooling method. The noise was colored with a band-pass filter with corner frequencies

at 0, 10, 50, 80Hz, resulting in a signal-to-noise ratio of 20dB. The denoised result in (b) shows a

drastic improvement without loss of signal as can be seen from the residue in (c). This residue does

not contain a significant contribution of the deterministic signal component.
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Lagrange multipliers. The inner loop is repeated L times.

4. SEISMIC AMPLITUDE RECOVERY BY NONLINEAR

OPTIMIZATION
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Let us now return to the seismic imaging problem by considering the normal

equation

y = Ψm + e, (22)

defining the input to our amplitude recovery algorithm. Compared to the above

denoising problem for orthonormal sparsity representations, there are two compli-

cations, namely, there is an operator involved and second the noise term e = KT n

is colored. It is shown that by preconditioning with an orthonormal basis the re-

covery of m can again be formulated as a thresholding problem. This formulation

forms the basis for our extension, valid for overcomplete curvelets.

4.1. Preconditioned formulation for orthonormal transform

To start the argument, suppose that Eq. (12) holds exactly for a sparsity repre-

sentation based on an orthonormal basis, say wavelets. In that case, we have on a

test vector r

Ψr = AAT r (23)

with A := WT Γ. Since A := S†, we find that

Ψ−1r = ST Sr (24)

for the diagonal elements in Γ sufficiently bounded away from zero and S = A† =

Γ−1W. This latter expression follows from the orthogonality of the wavelet trans-

form, i.e.,W† = WT , and the assumed invertability of the Γ. By making the

following substitutions for the modeling operator, K !→ F = KST , and the model,

m !→ x = AT m, a preconditioned normal equation is obtained

FT d = FT Fx + FT n

(25)

u = Iv + ñ.
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D R A F T February 17, 2006, 2:25pm D R A F T

22 FELIX J. HERRMANN ET. AL.

Let us now return to the seismic imaging problem by considering the normal

equation

y = Ψm + e, (22)

defining the input to our amplitude recovery algorithm. Compared to the above

denoising problem for orthonormal sparsity representations, there are two compli-

cations, namely, there is an operator involved and second the noise term e = KT n

is colored. It is shown that by preconditioning with an orthonormal basis the re-

covery of m can again be formulated as a thresholding problem. This formulation

forms the basis for our extension, valid for overcomplete curvelets.

4.1. Preconditioned formulation for orthonormal transform

To start the argument, suppose that Eq. (12) holds exactly for a sparsity repre-

sentation based on an orthonormal basis, say wavelets. In that case, we have on a

test vector r

Ψr = AAT r (23)

with A := WT Γ. Since A := S†, we find that

Ψ−1r = ST Sr (24)

for the diagonal elements in Γ sufficiently bounded away from zero and S = A† =

Γ−1W. This latter expression follows from the orthogonality of the wavelet trans-

form, i.e.,W† = WT , and the assumed invertability of the Γ. By making the

following substitutions for the modeling operator, K !→ F = KST , and the model,

m !→ x = AT m, a preconditioned normal equation is obtained

FT d = FT Fx + FT n

(25)

u = Iv + ñ.
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By virtue of the isometry FT F = I, which follows from Eq. (23) and the orthonor-

mality of W, this expression regains the form of the canonical denoising problem

discussed earlier. The orthonormality of W implies WKT KWT = Γ2 and from

that it follows that the noise term ñ = FT n is again white, i.e., Cov[ñ, ñ] = σ2I.

By setting λ as before, the sparsity vector and the amplitude-corrected image are

recovered by solving 
minv ‖u− v‖2

2 + λ‖v‖1

m̂ = (AT )†v̂.

(26)

Comparing these expressions with those in Eq.(17) shows that these expressions

are the same except for the inverse transform now defined through the pseudo

inverse. The solution of Eq. (26) can again be written in terms of a soft-thresholding

operation

m̂ =
(
AT

)†
Ss

λ (u) = SHSs
λ (Sy) , (27)

where the data is migrated with the preconditioned migration operator, u = FT d,

followed by a recovery through soft thresholding and a reconstruction by the pseudo

inverse. By virtue of Eq.(24), this sequence of operations is equivalent to decom-

posing the migrated data, y, with respect to the weighted sparsity transform S,

followed by the same soft-thresholding operation, and an inverse transform with

ST . According to Eq. (24), applying the weighted forward and inverse transforms

without the thresholding, corresponds to inverting the Hessian in two steps, namely,

by the weighted forward and inverse transforms. The inserted thresholding removes

the noise (cf. Eq. (18)). Even though the noise is initially colored, the thresholding

is still applicable because the weighted transform whitens the spectrum of e, i.e.,

Cov[Se, Se] = σ2I. This property holds by virtue of Eq.’s (23), (24) and the above

isometry.

Clearly, the above estimation is reminiscent of the WVD-based thresholding. Be-

cause the Hessian is zero-order the vaguelettes correspond to wavelets and Eq.(27)
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By analogy generalize to redundant curvelet frame.

Set 

and solve for the reflectivity with

Remains to estimate the diagonal.
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corresponds to the expression for the WVD estimator. The above thresholding

result was first presented in [26], as an approximate solution to the recovery of the

amplitudes in seismic images. These results were presented for non-orthonormal

curvelets and for the case where Eq. (23) only approximately holds. Even though,

thresholding techniques can still be applied to transforms other than orthonor-

mal [as shown by 23], diagonally-weighted overcomplete sparsity transforms are no

longer tight frames with normalized columns, requiring a different approach. In the

next section, a formulation is presented that replaces the thresholding by nonlin-

ear optimization, which accounts for the overcompleteness of the weighted curvelet

frame.

4.2. Preconditioned formulation for overcomplete curvelet frames

So far, it was established that the FDCT provides a transform well adapted to

seismic imaging. Not only are seismic images sparse in the curvelet domain, the

curvelets also remain curvelet like under the Hessian. Question now is how to in-

corporate these results in a formulation of the seismic amplitude recovery problem

given the inexact nature of Eq. (23) and the overcompleteness of the curvelet trans-

form. For reasons similar to the denoising problem, the coefficient vector can no

longer be recovered by thresholding. Instead, the recovery requires the solution of

a constrained optimization problem with the weighted synthesis matrix defined as

A := CT Γ, with a diagonal weighting Γ that may contain small entries on its di-

agonal. Both the overcompleteness and small entries result in a sparsity transform

matrix S, involving an pseudo inverse, that can no longer be stably calculated and

Eq. (24) no longer applies.

As demonstrated with the denoising problem, the recovery of the sparsity vector

for an orthonormal A corresponded to taking the forward transform, followed by ap-

plying a soft-thresholding operation and the inverse transform (cf. Eq. (18)). These

results carried over to thresholding the migrated data, by virtue of the precondition-
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ing and orthonormality of the sparsity transform (cf. Eq. (27)). By analogy with

the denoising problem, where the explicit solution by thresholding is replaced by

the unconstrained optimization problem for overcomplete transforms, we propose

to recover the amplitude-corrected image by solving the following unconstrained

optimization problem for decreasing λ’s

P′
λ :


minx ‖y −Ax‖2

2 + λ‖x‖1

m̂ =
(
AT

)† x̂.

(28)

The first line of this program corresponds to the "1-norm penalized inverse of A,

which can be associated with the weighted forward transform and thresholding in

Eq. (27). In both cases, the sparsity vector is recovered by minimizing the "1-norm

subject to that the data is matched in the "2-sense to within the tolerance ε. The

subsequent inverse transform by ST for the thresholding is analogous to the second

line in Eq. (28), where the inverse transform is computed via
(
AT

)†. The claim

is that P′
λ is analogous to the preconditioned system defined for the orthonormal

case. We use this correspondence as the primary motivation for our approximate

formulation of the amplitude recovery problem by nonlinear optimization of P′
λ.

The main assumption is that the curvelets remain approximately sparse for the

imaged data, i.e., the imaged data again permits a sparse representation y =

Ax0 + n with the sorted entries in x0 rapidly decaying. This sparsity vector only

exist if curvelets remain sufficiently invariant under the Hessian. Each of the two

steps – finding the sparsest set of coefficients and the subsequent reconstruction

– corrects for the amplitudes by approximately inverting the ’square-root’ of the

Hessian. The minimization of P′
λ only enhances the sparsity aspect of P. In the

next section, an additional continuity-promoting penalty functional is included that

removes possible artifacts.

5. CONTINUITY-ENHANCED SEISMIC IMAGE RECOVERY

D R A F T February 17, 2006, 2:25pm D R A F T



Exploit smoothness of the symbol of the pseudo.

Solve a regularized Least-squares problem w.r.t. d[
CHdiag r0

Q

]
d =

[
KHKr0

0

]
with

Q =

λ1Dx

λ2Dy

λ3Dθ


and r0 an appropriate reference vector. The weighting matrix is given

Γ2 := diag d̂.
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Solve for x

Exploit sparsity and continuity.

P :


minx J(x) subject to ‖y −Ax‖2 ≤ ε

m̃ = (AH)†x̃

with

J(x) =

sparsity︷ ︸︸ ︷
α‖x‖1 +β ‖Λ1/2

(
AH

)†
x‖p︸ ︷︷ ︸

continuity

.
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Initialize:

m = 0;

x0 = AHy;

y = KHd;

Choose:

M and L

λ1 > λ2 > · · · > λM

while ‖y −Ax̂‖2 > ε and m < M do

xm = xm−1;

m = m + 1;

for l = 1 to L do

xm = Sλm

`
xm + AH (y − xm)

´{Iterative thresholding}

end for

µm = arg minµ
1
2‖y −Ax‖2

2 + λα‖x‖1 + µβJc(x){Line search};

xm = xm − µJc(x
m);

end while

m̂ =
`
AH

´†
x̂.

TABLE 2

Sparsity-and continuity-enhancing recovery of seismic amplitudes.
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Amplitudes are partially recovered

Spurious artifacts remain due to 

• side-band effects (Candes)

• instabilities due to bad illumination

Exploit smoothness along wavefronts via 
anisotropic norm.

Use smoothed migrated image (reference vector).



Solve for x

Exploit sparsity and continuity.

P :


minx J(x) subject to ‖y −Ax‖2 ≤ ε

m̃ = (AH)†x̃

with

J(x) =

sparsity︷ ︸︸ ︷
α‖x‖1 +β ‖Λ1/2

(
AH

)†
x‖p︸ ︷︷ ︸

continuity

.
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FIG. 6. Gradient for the smoothed migrated image (white ↑’s). The direction perpendicular

to the gradient defines the tangent direction allong which the additional anisotropic smoothing is

applied.

with α, β ≥ 0. The Js(x) = ‖x‖1,w :=
∑N

j=1 |wjxj | is the weighted #1-norm with

wj ≥ 0, j = 1 · · ·N , which is used to account for limitations in the acquisition,

limiting the spatial frequency content of the image. Instabilities related to this

limitation are removed by heavily penalizing the entries in x that correspond to

the locations where the diagonal entries of Γ are small. The weights of w are set

according to wj = ∞ for j ∈ M0 and wj = 1 otherwise with M0 = {j : Γj ≤ δ}
with δ a small threshold value.

The second term in the penalty term is given by Jc(x) = ‖Λ1/2
(
AT

)† x‖p with

p = 1 or p = 2. This term corresponds to Eq. (29) and includes a synthesis with the

pseudo inverse of AT , because the optimization is carried out over x and not over

the model vector m. This pseudo inverse is calculated with the LSQR-algorithm

[33] and typically requires only a few iterations. The scaling term µ is determined

by a line search and depends on the emphasis of the sparsity #1-norm penalty term

with respect to the continuity penalty term.

The above nonlinear optimization problem (P) is again solved with a cooling

method as discussed in section 3.1. This method consists of a series of thresh-
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with α, β ≥ 0. The Js(x) = ‖x‖1,w :=
∑N

j=1 |wjxj | is the weighted #1-norm with

wj ≥ 0, j = 1 · · ·N , which is used to account for limitations in the acquisition,

limiting the spatial frequency content of the image. Instabilities related to this

limitation are removed by heavily penalizing the entries in x that correspond to

the locations where the diagonal entries of Γ are small. The weights of w are set

according to wj = ∞ for j ∈ M0 and wj = 1 otherwise with M0 = {j : Γj ≤ δ}
with δ a small threshold value.

The second term in the penalty term is given by Jc(x) = ‖Λ1/2
(
AT

)† x‖p with

p = 1 or p = 2. This term corresponds to Eq. (29) and includes a synthesis with the

pseudo inverse of AT , because the optimization is carried out over x and not over

the model vector m. This pseudo inverse is calculated with the LSQR-algorithm

[33] and typically requires only a few iterations. The scaling term µ is determined

by a line search and depends on the emphasis of the sparsity #1-norm penalty term

with respect to the continuity penalty term.

The above nonlinear optimization problem (P) is again solved with a cooling

method as discussed in section 3.1. This method consists of a series of thresh-
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∑N

j=1 |wjxj | is the weighted #1-norm with

wj ≥ 0, j = 1 · · ·N , which is used to account for limitations in the acquisition,

limiting the spatial frequency content of the image. Instabilities related to this

limitation are removed by heavily penalizing the entries in x that correspond to

the locations where the diagonal entries of Γ are small. The weights of w are set

according to wj = ∞ for j ∈ M0 and wj = 1 otherwise with M0 = {j : Γj ≤ δ}
with δ a small threshold value.

The second term in the penalty term is given by Jc(x) = ‖Λ1/2
(
AT

)† x‖p with

p = 1 or p = 2. This term corresponds to Eq. (29) and includes a synthesis with the

pseudo inverse of AT , because the optimization is carried out over x and not over

the model vector m. This pseudo inverse is calculated with the LSQR-algorithm

[33] and typically requires only a few iterations. The scaling term µ is determined

by a line search and depends on the emphasis of the sparsity #1-norm penalty term

with respect to the continuity penalty term.

The above nonlinear optimization problem (P) is again solved with a cooling

method as discussed in section 3.1. This method consists of a series of thresh-

D R A F T February 17, 2006, 2:25pm D R A F T

28 FELIX J. HERRMANN ET. AL.

Smoothed Reflectivity

x [m]

y
 [

m
]

200 400 600 800 1000 1200 1400 1600 1800

200

400

600

800

1000

1200

1400

1600

1800

2000

FIG. 6. Gradient for the smoothed migrated image (white ↑’s). The direction perpendicular

to the gradient defines the tangent direction allong which the additional anisotropic smoothing is

applied.

with α, β ≥ 0. The Js(x) = ‖x‖1,w :=
∑N

j=1 |wjxj | is the weighted #1-norm with

wj ≥ 0, j = 1 · · ·N , which is used to account for limitations in the acquisition,

limiting the spatial frequency content of the image. Instabilities related to this

limitation are removed by heavily penalizing the entries in x that correspond to

the locations where the diagonal entries of Γ are small. The weights of w are set

according to wj = ∞ for j ∈ M0 and wj = 1 otherwise with M0 = {j : Γj ≤ δ}
with δ a small threshold value.

The second term in the penalty term is given by Jc(x) = ‖Λ1/2
(
AT

)† x‖p with

p = 1 or p = 2. This term corresponds to Eq. (29) and includes a synthesis with the

pseudo inverse of AT , because the optimization is carried out over x and not over

the model vector m. This pseudo inverse is calculated with the LSQR-algorithm

[33] and typically requires only a few iterations. The scaling term µ is determined

by a line search and depends on the emphasis of the sparsity #1-norm penalty term

with respect to the continuity penalty term.

The above nonlinear optimization problem (P) is again solved with a cooling

method as discussed in section 3.1. This method consists of a series of thresh-
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Anisotropic continuity-promoting norm

with

p=2 <=> anisotropic diffusion

p=1 <=> anisotropic TV
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to the reflecting surface. This rotation matrix depends either on the smooth back-

ground velocity model, (b̄ := c̄ = s̄−1), or on the smoothed reference vector b̄ := r0

and is given by

Λ[b̄] =
1

‖∇db̄‖22


 D2b̄

−D1b̄

 (
D2b̄ −D1b̄

) . (30)

with Di the discretized derivative in the ith coordinate direction. For p = 2,

the penalty term in Eq. 29 corresponds to anisotropic diffusion [4], penalizing the

!2-norm of the rotated discrete gradient on the image. For p = 1, the penalty

functional corresponds to an anisotropic TV, which penalizes the !1-norm of the

gradient in the direction along the reflectors. Both penalty terms are active only in

the tangential direction and differ from conventional norms that penalize fluctua-

tions in the normal direction. In our case, those penalties could potentially remove

the imprint of the fine-structure of the Earth’s reflectors by eliminating the oscil-

lations. The two approaches differ in the sense that anistropic diffusion tends to

smooth jumps in the amplitude along the reflections while anistropic TV preserves

these discontinuities. In this paper, we will limit ourselves in the examples to p = 2.

6. SPARSITY- AND CONTINUITY-ENHANCED SEISMIC

IMAGE RECOVERY

By combining the two different penalty terms that promote sparsity as well

as continuity, we finally arrive at our approximate formulation for the seismic-

amplitude recovery problem

P :


minx J(x) subject to ‖y −Ax‖2 ≤ ε

m̂ =
(
AT

)† x

(31)

in which the compound penalty term J(x) is given by

J(x) = αJs(x) + βJc(x), α + β = 1 (32)
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The above formulation provides a stable framework for the approximate recovery

of the amplitudes for seismic images m without the necessity of multiple evalu-

ations of the Hessian. Of course, this recovery is only accurate when Eq. (12)

provides a sufficiently accurate approximation to the Hessian. The accuracy of this

approximation depends on the complexity of the background model, the acquisition

geometry and the closeness of the reference r0 to the actual unknown model m.

Since we do not have control over either of these factors, the issue remains how

to limit spurious curvelet artifacts. These artifacts are either related to so-called

“pseudo Gibb’s” phenomena (or better side-band effects [8], inherent to the curvelet

or other harmonic transforms), or to instabilities caused by small entries in the diag-

onal of Γ. These small entries are typically due to lack of insonification, i.e. source-

/receiver combinations in the data that do no lead to wave paths that reach every

point in the subsurface.

To reduce these spurious artifacts, the sparsity enhancing penalty functional in

Eq. (28) is complemented with a penalty functional that enhances the continuity

of the image along the imaged reflectors. For this purpose, a ’wavefront-set’ en-

hancing penalty functional is introduced. This functional exploits the predominant

relative (piece-wise) smoothness of reflectors in the tangential direction. To pro-

mote this feature and to preserve the oscillatory behavior in the normal direction,

an anisotropic smoothing technique is proposed that differs from commonly used

edge-preserving penalty functionals such as total variation (TV) [see e.g. 12; 37].

Instead, an anisotropic smoothing technique is used that penalizes fluctuations in

the tangential direction only. This anistropic smoothing is performed by defining

the following anisotropic penalty term as part of the optimization,

Jc(m) = ‖Λ1/2∇dm‖p (29)

with ∇d the discretized gradient matrix. The matrix Λ is location dependent (see

Fig. 6 for an example) and rotates the gradient towards the approximate tangent
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FIG. 6. Gradient for the smoothed migrated image (white ↑’s). The direction perpendicular

to the gradient defines the tangent direction allong which the additional anisotropic smoothing is
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with α, β ≥ 0. The Js(x) = ‖x‖1,w :=
∑N

j=1 |wjxj | is the weighted #1-norm with

wj ≥ 0, j = 1 · · ·N , which is used to account for limitations in the acquisition,

limiting the spatial frequency content of the image. Instabilities related to this

limitation are removed by heavily penalizing the entries in x that correspond to

the locations where the diagonal entries of Γ are small. The weights of w are set

according to wj = ∞ for j ∈ M0 and wj = 1 otherwise with M0 = {j : Γj ≤ δ}
with δ a small threshold value.

The second term in the penalty term is given by Jc(x) = ‖Λ1/2
(
AT

)† x‖p with

p = 1 or p = 2. This term corresponds to Eq. (29) and includes a synthesis with the

pseudo inverse of AT , because the optimization is carried out over x and not over

the model vector m. This pseudo inverse is calculated with the LSQR-algorithm

[33] and typically requires only a few iterations. The scaling term µ is determined

by a line search and depends on the emphasis of the sparsity #1-norm penalty term

with respect to the continuity penalty term.

The above nonlinear optimization problem (P) is again solved with a cooling

method as discussed in section 3.1. This method consists of a series of thresh-
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olded Landweber iterations that solve a series of unconstrained subproblems for

decreasing λ. Since this method only requires knowledge on the Jacobians at each

iteration, it is relatively straightforward to include the Jacobian of the additional

continuity-enhancing penalty functional Jc(x).

For data given by y = Ax0 + n, the iterations of the cooling method for a

particular cooling parameter λ consist of the following three main steps:

Step 1: Update of the Jacobian of 1
2‖y −Ax‖22:

x← x + AT (y −Ax) ; (33)

Step 2: projection onto the "1 ball S = {‖x‖1 ≤ ‖x0‖1} by soft thresholding

x← Ss
λw(x); (34)

Step 3: projection onto the anisotropic diffusion ball C = {x : J(x) ≤ J(x0)} by

x← x− µ∇xJc(x) (35)

with

∇xJc(x) = 2A†∇ ·
(
Λ∇

((
AT

)†
x
))

. (36)

Remember that steps 1 & 2 for ‖A‖ ≤ 1 converge to the solution of Eq. (28) for

a fixed λ. Because a solution based on these steps only, may contain additional

entries compared to x0, the continuity-enhancing penalty is minimized as well.

This additional anisotropic penalty term, removes artifacts related to regions in

the curvelet space that are badly illuminated, i.e., those regions that correspond

to small entries in the diagonal Γ, or to side-band effects. During step 3, the

coefficients are updated according to the gradient of the anisotropic diffusion norm.

The µ is found by conducting a line search

min
µ

1
2
‖y−A(x−µ∇xJc(x))‖22 +λα‖x−µ∇xJc(x)‖1 +λβJc(x−µ∇xJc(x)). (37)
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