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ABSTRACT

Predictive multiple suppression methods consist of two main steps: a prediction
step, during which multiples are predicted from seismic data, and a primary-
multiple separation step, during which the predicted multiples are ’matched’
with the true multiples in the data and subsequently removed. This second
separation step, which we will call the estimation step, is crucial in practice:
an incorrect separation will cause residual multiple energy in the result or may
lead to a distortion of the primaries, or both. To reduce these adverse effects, a
new transformed-domain method is proposed where primaries and multiples are
separated rather than matched. This separation is carried out on the basis of dif-
ferences in the multiscale and multidirectional characteristics of these two signal
components. Our method uses the curvelet transform, which maps multidimen-
sional data volumes into almost orthogonal localized multidimensional prototype
waveforms that vary in directional and spatio-temporal content. Primaries-only
and multiples-only signal components are recovered from the total data volume
by a nonlinear optimization scheme that is stable under noisy input data. Dur-
ing the optimization, the two signal components are separated by enhancing
sparseness (through weighted `1-norms) in the transformed domain subject to
fitting the observed data as the sum of the separated components to within a
user-defined tolerance level. Whenever, during the optimization, the estimates
for the primaries in the transformed domain correlate with the predictions for
the multiples, the recovery of the coefficients for the estimated primaries will be
suppressed while for regions where the correlation is small the method seeks the
sparsest set of coefficients that represent the estimation for the primaries. Our
algorithm does not seek a matched filter and as such it differs fundamentally
from traditional adaptive subtraction methods. The method derives its stabil-
ity from the sparseness obtained by a non-parametric (i.e., not depending on a
parameterized physical model) multiscale and multidirectional overcomplete sig-
nal representation. This sparsity serves as prior information and allows for a
Bayesian interpretation of our method during which the log-likelihood function
is minimized while the two signal components are assumed to be given by a
superposition of prototype waveforms, drawn independently from a probability
function that is weighted by the predicted primaries and multiples. In this paper,
the predictions are based on the data-driven surface-related multiple elimination
(SRME) method. Synthetic and field data examples show a clean separation
leading to a considerable improvement in multiple suppression compared to the
conventional method of adaptive matched filtering. This improved separation
translates into an improved stack.
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INTRODUCTION

In complex areas, multiple suppression techniques based on move-out filtering fail
because the assumptions on the hyperbolic move-out in the CMP-offset domain are
not met. Furthermore, the occurrence of shallow, high-velocity layers can lead to
small move-out differences between primaries and multiples which are difficult to
interpret. These complications may result in unsatisfactory separation of primaries
and multiples.

In cases where move-out filtering based methods fail, ’wave-equation’-based pre-
dictive methods (Verschuur et al., 1992; Fokkema and van den Berg, 1993; Weglein
et al., 1997) have shown considerable improvements. Wave-equation methods consist
of two main steps: the multiple-prediction and the primary-multiple separation step.
The separation step is often referred to as adaptive subtraction, during which imper-
fections in the predictions, such as the water bottom reflectivity (see e.g. Berryhill
and Kim, 1986; Wiggins, 1988; Lokshtanov, 1999) or source and receiver character-
istics (Verschuur et al., 1992; Berkhout and Verschuur, 1997; Ikelle et al., 1997), are
absorbed by a matched-filtering procedure. This procedure is important because
predictions for surface-related as well as internal multiples based on two-dimensional
input data (see e.g. Verschuur et al., 1992; Berkhout and Verschuur, 1997; Coates and
Weglein, 1996) are often inaccurate in situations where the subsurface displays three-
dimensional complexity. Other complications determining the success of multiple
attenuation include source-receiver directivity, ghosts and the obliquity factor (which
gives rise to an effective directivity); unbalanced amplitudes of multiple predictions
that consist of mixtures of different-order multiples (Verschuur and Berkhout, 1997;
Chen et al., 2004) and incomplete data, e.g. due to missing near offsets or unequal
source and receiver spacing both of which may give rise to artifacts in the predicted
multiples (see Verschuur, 2006).

Several attempts have been made to improve multiple elimination by either in-
creasing the accuracy of the multiple predictions or by devising a more robust sub-
traction/separation methodology. Examples of the first approach are methods based
on model-driven time delays, as proposed by Ross (1997) and Ross et al. (1997), or
methods based on data-driven time delays by Ikelle and Yoo (2000). Decomposition
of the predicted multiples into coherent and incoherent components is an example of
the second approach (Kabir, 2003), where the incoherent signal component is assumed
to mostly contain diffracted multiples. In that approach, both components are simul-
taneously subtracted from the input data. Another example is the approach taken by
Wang (2003) who improves the adaptive subtraction by introducing additional local
time and phase shifts.

By allowing the matched filter to be nonstationary, yielding an estimated wavelet
that varies, significant improvements have been achieved in multiple suppression.
There are however limits on the performance of this nonstationary matched filtering
technique amongst which (i) the allowable degree of nonstationarity of the error in
the multiple prediction, i.e., the degree with which the matched filter is allowed to
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vary; (ii) the inability of the matched filter to handle different errors in the phase,
location, dip and frequency characteristics of the different multiple predictions and
its difficulty to handle situations where different predicted multiples overlap; (iii) the
presence of noise and possible edge effects on the estimates for the local matched filter
and (iv) the ability to stably apply this filter.

The primary goal of this paper is to present an alternative primary-multiple sep-
aration scheme that recovers both signal components from imperfect predictions for
the multiples and from noisy data. These imperfections may include shifts, phase ro-
tations and unknown nonstationarity of the source and receiver characteristics. With
the proposed method, we aim to (i) remove the sensitivity of matched filtering to the
accuracy of the predicted multiples; (ii) avoid the creation of spurious artifacts and
(iii) limit possible distortions of the estimated primaries.

This paper builds upon the extensive body of literature where sparsity of certain
signal representations is exploited (see for instance the seminal work by Claerbout
and Muir, 1973), a concept widely employed in the geophysical sciences with applica-
tions ranging from deconvolution (Oldenburg et al., 1981; Ulrych and Walker, 1982;
Levy et al., 1988; Sacchi et al., 1994) to filtering based on high-resolution Fourier
(Sacchi and Ulrych, 1996; Duijndan and Schonmeville, 1999) and Radon transforms
(Trad et al., 2003) and adaptive subtraction for multiple attenuation (Guitton and
Verschuur, 2004). In the Bayesian context, these methods correspond to invoking
long-tailed (Cauchy) distributions which also promote sparsity and lead to similar
formulations. Recent developments in the theory of stable signal recovery (Candès
et al., 2006b; Donoho et al., 2006; Donoho and Tsaig, 2004; Donoho, 2006), and sig-
nal separation by morphological component analysis (MCA) (Starck et al., 2004; Elad
et al., 2005) derive from the same principles and provide additional insights on the
conditions for recovery and signal separation and on new multiscale and multidirec-
tional transforms that are sparse. As with the MCA, our approach of signal-separation
derives from seeking a representation that is sparse for the two signal components. A
signal is considered sparse in a representation when the magnitude-sorted coefficients
in the transformed domain decay rapidly. It is shown that this sparsity not only
reduces the ’dimensionality’ of the problem but it also leads to a separation scheme
that is relatively insensitive to errors in the predicted signal components. The idea
of primary-multiple separation by nonlinear optimization dates back to earlier work
by the authors (see e.g. Herrmann and Verschuur, 2004, 2005) and can be seen as an
extension of the energy-norm based work of Nemeth and Bube (2001); Trad (2001)
to the nonlinear case. Our early results were based on thresholding in the curvelet
domain and this paper extends these results towards a formulation based on nonlinear
optimization.

Outline

First, we discuss the canonical denoising problem for orthornormal and overcomplete
sparsity representations. We show that this denoising problem can be cast into an
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optimization problem that can be solved by iterative thresholding. During the opti-
mization, sparsity in the transformed domain is exploited by minimizing the `1-norm
on the coefficients of the transformed-domain vector, referred to as the sparsity vec-
tor. It is shown that the coherent signal component can be stably recovered from
the noise by virtue of sparsity. We show that this recovery can be generalized to
the problem of separating two coherent signal components in the presence of noise
given a prediction for these components. Again, sparsity is exploited leading to a
separation scheme that is stable and relatively insensitive to errors in the predicted
components. After formulating the separation problem in terms of a nonlinear opti-
mization problem, the appropriate domain for primary-multiple separation is selected
by comparing the performance in the physical, Fourier, wavelet and curvelet domains.
It is demonstrated that the curvelet transform not only obtains the best sparsity on
the two signal components but it is also shown that this transform leads to a sep-
aration based on the local multiscale and multidirectional characteristics of the two
signal components. We conclude by illustrating our algorithm on synthetic as well
as real data, while making comparisons with the conventional adaptive subtraction
method.

STABLE SIGNAL RECOVERY FROM OVERCOMPLETE
REPRESENTATIONS

Mathematically, the problem of primary-multiple separation corresponds to a joint
estimation of the primary and multiple signal components from noisy data

y = s1 + s2 + n, (1)

given a prediction s̆2 for the multiples. We used the symbol ˘ to denote predicted
quantities (as opposed to estimated quantities that are the output of the presented
separation procedure) that serve as input to our method. The recorded total dataset
includes the unknown primaries, s1, and multiples, s2, and is represented by y = s+n
with s := s1 + s2. The additional noise term, n, is included to allow for possible
deviations with respect to this signal model. These deviations can be caused by
measurement errors or by unmodeled signal components. The noise term is given
by a zero-centered discrete white Gaussian noise process, i.e. with for each sample
ni ∈ N(0, σ) with σ the standard deviation.

Our primary-multiple separation method derives from a generalization of the clas-
sical denoising problem, where the deterministic coherent signal component is recov-
ered from noisy data by exploiting sparsity in a transformed domain (see e.g. Candès
et al., 2006b; Donoho et al., 2006; Starck et al., 2004; Elad et al., 2005). Before
deriving our extenstion towards primary-multiple separation, we first describe non-
linear signal recovery for sparse orthonormal and later for sparse overcomplete signal
representations.
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Denoising by nonlinear optimization

Denoising aims to recover the unknown noise-free data M -vector∗, i.e., the s ∈ RM ,
from noisy data

y = s + n, (2)

with the noise term defined as before. Following recent developments in theoretical
signal processing, the noise-free data s can be recovered from noisy and possibly
incomplete measurements y when the data volume permits a sparse representation
with respect to some possibly overcomplete signal representation, i.e.,

y = Ax0 + n (3)

for a sparse vector x0 with its magnitude-sorted entries decaying rapidly. In this
expression, the sparsity vector is related to the data through the sparsity synthe-
sis or composition matrix A. The recovery of x0 involves the following nonlinear
optimization problem

P1 :

{
minx ‖x‖1 subject to ‖y −Ax‖2 ≤ ε

ŝ = Ax̂,
(4)

which is shown to be remarkable robust under noise and missing data (Candès et al.,
2006b; Elad et al., 2005; Donoho et al., 2006). The ’hat’ symbol ˆ is reserved for
estimates found through optimization. As long as the sparsity synthesis matrix A
adheres to certain conditions, the solution of this optimization problem lies within the
noise level (see e.g. Candès et al., 2006b; Elad et al., 2005). This optimization problem
P1 is the constrained variation of the basis-pursuit denoising algorithm (Chen et al.,
2001).

As part of the optimization, the sparsity vector is fitted within the tolerance ε.
This tolerance depends on the noise level given by the standard deviation of the noise
vector n. Since n1···M ∈ N(0, σ2), the probability of ‖n‖2

2 exceeding its mean by plus
or minus two standard deviations is small. The ‖n‖2

2 is distributed according the χ2-
distribution with mean M ·σ2 and variance

√
2M ·σ2. By choosing ε2 = σ2(M+ν

√
2M)

with ν = 2, we remain within the mean plus or minus two standard deviations.

Denoising with orthonormal sparsity representations

The nonlinear optimization problem P1 permits an explicit solution when the sparsity
matrix is orthonormal in which case the transpose of the sparsity matrix corresponds
to its inverse. Following Donoho (1995); Mallat (1997); Chen et al. (2001), P1 is
solved by an element-wise soft thresholding procedure

ŝ = ST Tλ (Sy) , (5)

∗Seismic data is represented in terms of vectors that contain the seismic data volumes lexico-
graphically sorted. The length of the M -vector corresponds to the total number of samples in the
seismic data volume.
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with
Tλ(x) := sgn(x) ·max(0, |x| − |λ|). (6)

This thresholding solves

ŝ = arg min
s
‖y − s‖2

2 + λ‖Ss‖1, (7)

which by virtue of the orthonormality is equivalent to{
minv ‖u− v‖2

2 + λ‖v‖1

ŝ = ST v̂,
(8)

with u := Sy and v := Ss. P1 is solved by setting the Lagrange multiplier λ to

λ =
√

ε2/(M + ν
√

2M) ·
√

2 log M = σ ·
√

2 log M (Donoho, 1995; Lee and Lucier,

2001; Daubechies et al., 2005).

Denoising with overcomplete sparsity representations

Denoising based on orthonormal transforms often does not give the most pleasing
results. Compared to decimated orthonormal wavelets, non-decimated wavelets are
known to give superior denoising results for functions with point-singularities (see
e.g. Coifman and Donoho, 1995; Starck et al., 2004). For non-decimated wavelets
which are translation invariant, the synthesis matrix contains more columns than
rows, i.e., A := S† = WT ∈ RM×N with N = M · log M � M is overcomplete.
The symbol † is used to denote the pseudo inverse, i.e., S† := (STS)−1ST with S
the redundant transform and ST its transpose. This property holds because the non-
decimated wavelet transform is a tight frame† that preserves energy and for which
we have STS = I. Conversely, SST is a projection – frames are redundant signal
representations – making it difficult to recover the unknown sparsity N-vector x0

from s = Ax0. The recovery problem becomes underdetermined and Eq.’s (7) and
(8) are no longer equivalent, an observation also made by Elad (2005).

Since the constrained optimization problem P1 extends to overcomplete represen-
tations, this formulation is used to recover the sparsity vector x0. Following Elad et al.
(2005), the optimization problem P1, is replaced by a series of simpler optimization
problems

Pλ :

{
minx ‖y −Ax‖2

2 + λ‖x‖1

ŝ = Ax̂.
(9)

These optimization problems depend on the Lagrange multiplier λ, which is not
known. A cooling method is used where Pλ is solved for a Lagrange multiplier λ
that is slowly decreased from a large starting value. The optimal x̂ is found for the
largest λ for which ‖y − Ax̂‖2 ≤ ε. During the optimization, the underdetermined

†A tight frame is a redundant signal representation that preserves energy.
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frame matrix A is inverted by imposing the sparsity promoting `1-norm. This norm
regularizes the inverse problem of finding the unknown coefficient vector (see also
Daubechies et al., 2005). We refer to Donoho et al. (2006) and Tropp (2006) for the
recovery conditions for Eq.’s (4) and (9).

Solution by the cooling method based on iterative threshold-
ing

Following Daubechies et al. (2005) and Elad et al. (2005) and ideas dating back to
Figueiredo and Nowak (2003), Eq. (9) is solved by an iterative thresholding technique
that derives from the Landweber descent method. After m iterations of the outer
cooling loop, during which the Lagrange multiplier is lowered, estimations for the
coefficient vector are computed for fixed λ by the following inner loop

xm+1 = Tλ

(
xm + AT (y −Axm)

)
, (10)

with λ = λm. As shown by Daubechies et al. (2005), this iteration for fixed λ converges
to the solution of the subproblem in Eq. (9) for m large enough and ‖A‖ < 1. The
cost of each iteration is a synthesis and subsequent analysis. The details of the cooling
algorithm are presented in Table. 1.

PRIMARY-MULTIPLE SEPARATION BY NONLINEAR OP-
TIMIZATION

A primer: primary estimation by thresholding

In earlier work by the authors (see e.g. Herrmann and Verschuur, 2004, 2005) ,
it was shown that thresholding in the curvelet domain with a threshold defined in
terms of the magnitude of predicted multiples leads to an effective primary-multiple
separation scheme. As shown below, curvelets transform seismic data volumes into
a representation that allows for a separation based on scale (dominant frequency),
location and angle. For those events in the data where the primaries and multiples
overlap, the algorithm separates on the basis of the magnitudes of the predicted
multiples in the transformed domain. These properties explain the early success of
our primary-multiple separator in which the primaries are estimated with

ŝ1 = ST Tw (Sy) , (11)

where S is the sparsity transform and Tw the soft thresholding operator with a thresh-
old w that varies element by element, i.e., T s

w(x) := sgn(x) ·max(0, |x| − w)).

Even though the above estimator can not be expected to perform well for over-
complete signal representations for which Eq.’s 7 and 8 are no longer equivalent,
soft thresholding with a varying threshold corresponds to the first iteration of the
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iterative method defined earlier. This method solves P1 for a weighted `1-norm,
‖x‖1,w :=

∑
µ∈M |wµxµ|. For each element in the index set µ ∈ M of the coefficient

vector, the weighted `1-norm penalty behaves as

|wµxµ| ∝

{
|xµ|2 when xµ ∼ wµ

|xµ| when xµ � wµ.
(12)

This behavior corresponds to that of a `2-norm penalty whenever the coefficients for
the predicted multiples are close to those of the total data while the penalty term
acts as a `1-norm otherwise. The `2-norm penalizes the outliers while the `1-norm
promotes the outliers bringing out the primaries.

Sparsity-domain primary-multiple separation

Motivated by recent results on the stable signal recovery from overcomplete represen-
tations (see e.g. Starck et al., 2004; Elad et al., 2005), the primary-multiple separation
problem is formulated in terms of a nonlinear optimization problem. The solution of
this problem provides simultaneous estimates for the multiples and primaries given
predictions for the multiples. As in stable signal recovery, the method exploits spar-
sity in a transformed domain for both signal components. In that respect our method
differs fundamentally from matched filtering (see e.g. Verschuur and Berkhout, 1997),
since it exploits a representation that is sparse, i.e., a transform that leads to a rapid
decay for the magnitude-sorted coefficients in the sparsity vectors for the two signal
components.

Sparse signal model: Following the ideas of MCA (see e.g. Starck et al., 2004),
an augmented sparsity synthesis matrix is defined consisting of an inverse transform
for the synthesis of each of the two signal components in Eq. 1. Again the data is
described as a sparse superposition of now two sparsity matrices one for each signal
component,

y = Ax0 + n, (13)

with
A = [A1 A2] and x0 = [x01 x02]

T (14)

the augmented sparsity synthesis matrix and sparsity vector, respectively. In this
formulation, the subscripts 1 and 2 are reserved for primaries and multiples. The
above signal model with the coefficients of x0 sparse, forms the basis of MCA. Even
though MCA was initially designed to separate signal components that are sparse
in different sparsity representations, we show that this method can be extended to
signal components with similar characteristics. Because primaries and multiples are
both solutions of the wave equation, we can not expect to find a generic overcom-
plete signal representation that separates these two components without providing
prior information on the wave arrivals. We argue that these signal components can
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still be separated as long as there exist reasonable predictions for the signal compo-
nents. These predictions are used as weights that allow us to recover the two signal
components using the same signal representation for each component.

The weighted `1-norm optimization problem: If the two signal components
permit a sparse representation then the predicted multiples can be used as weights
in the sparsity promoting `1 norm. These weights drive the two signal components
apart during the optimization and x0 can be recovered to reasonable accuracy‡. The
w-weighted optimization problem becomes

Pw :


minx ‖x‖w,1 subject to ‖y −Ax‖2 ≤ ε

ŝ1 = A1x̂1 and ŝ2 = A2x̂2

given: s̆2 and w(y, s̆2)

(15)

with w = [w1, w2]
T the weighting vectors with strictly positive weights defined in

terms of the predicted multiples. The estimates for the primaries and multiples are
computed from the sparsity vector that minimizes Pw. During the optimization, the
sparsity vector is recovered by minimizing the weighted `1 norm subject to a recovery
that is within the tolerance.

The weights: The weighting vectors are based on an a-priori prediction for the
multiples, obtained by SRME prediction (see e.g. Berkhout and Verschuur, 1997) or
by other means. The corresponding prediction for the primaries is obtained through
simple subtraction. When the predicted multiples consist of surface-related multiples
only, the predicted primaries are computed according

s̆1 = y − s̆2. (16)

When different predictions, such as surface-related and internal multiples or multiples
of different order, are available, the predicted primaries are computed according

s̆1 = y −
P∑

p=1

s̆2,p, (17)

where the sum runs over the P > 1 different multiple contributions. The entries in
the weighting vectors are defined in terms of the predicted primaries, multiples and
the noise level (Donoho, 1995; Chen et al., 2001),{

w1 := max
(
σ ·
√

2 log N, C1|ŭ1|
)

w2 := max
(
σ ·
√

2 log N, C2|ŭ2|
)
.

(18)

‡For an orthonormal sparsity representation, this recovery can be expected to be within the
noise-level when the two sparsity vectors x01 and x02 are disjoint, i.e. x1,µ = 0 when x2,µ 6= 0 or
x2,µ = 0 when x1,µ 6= 0 for µ ∈M.
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The σ is set as before, while ŭ1 := max ({|x̆2,p|}p=1, ··· , P ) and ŭ2 := |x̆1| with the
transform-domain vectors given by x̆2,p := AT

2 s̆2,p and x̆1 := AT
1 s̆1. The constants

C1 and C2 normalize the `2-norms for the primaries and the multiples. The above
definition for the weights is designed to separate the primaries and multiples whenever
their predictions exceed the noise level. If the predicted coefficients are smaller then
the noise-level, the weights are set to remove the incoherent noise as during ordinary
denoising discussed before.

Solution by the block-relaxation method

Following Elad et al. (2005), the constrained optimization problem Pw is solved
through a series of simpler optimization problems. Because the synthesis matrix con-
sists of two parts, use is made of the block-relaxation method introduced by Bruce
(1998). Each signal component is recovered separately, while keeping the other com-
ponent fixed. As with the solution of P1, a cooling method is used where the Lagrange
multiplier is gradually lowered.

The outer loop: At each iteration of the outer loop the Lagrange multiplier is set
at λ = λm and the following optimization problems are solved

x̂j = arg min
xj

1

2
‖y −Ajxj −

∑
i6=j

Aixi‖2
2 + ‖xj‖1,λ·wj

j = 1, · · · , J, (19)

assuming the other components xi for i 6= j to be known. The λm is the cooling pa-
rameter after m iterations with λ1 > λ2 > · · · . For the primary-multiple separation,
J = 2, and each component is solved with the iterative Landweber descent method
(Vogel, 2002), supplemented with soft thresholding (Starck et al., 2004; Daubechies
et al., 2005).

The inner loop: At the mth iteration for the outer loop, the subproblem for the
jth component of the sparsity vector is solved (see Table 2) by iterations on

xm
j = Sλ·wj

(
xm

j + AT
j

(
s−Ajx

m
j −

∑
i6=j

Aixi

))
, (20)

with the threshold set by the jth-component of the weighting vector, i.e., wj. This
inner loop is repeated L times unless the stopping criterion is met.

Stopping criterion: Because signal separation is the primary goal, lowering the
Lagrange multiplier until the data is approximated to within the tolerance is not
sufficient. We therefore introduce an additional stopping criterion that measures the
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improvements in the degree of decorrelation. The algorithm proceeds as long as this
cross-correlation,

Rm(z1, z2) :=
zT

1 z2

‖z1‖‖z2‖
(21)

does not increase during the iterations. This expression measures the average degree
of correlation between the residues after m iterations, z1 := AT

1 (y − xm
2 ), and z2 :=

AT
2 (y − xm

1 ) in the transformed domain. R(z1, z2) equals unity when z1 = z2 and is
zero when the two signal components are disjunct, i.e., when z1,µ = 0 when z2,µ 6= 0
or z2,µ = 0 when z1,µ 6= 0 for µ ∈M.

The algorithm: First, the entries in the sparsity vector are initialized according
the predictions for the primaries and multiples, x0

1 = AT
1 s̆1 and x0

2 = AT
2 s̆2 as given

in equation 16 or 17. After each iteration in the outer loop, the cooling parameter
is decreased. The algorithm is completed when the degree of decorrelation between
the residues of the two signal components no longer increases, i.e., when Rm ≥ Rm−1.
The details of the algorithm are summarized in Table 2.

When and why should this signal separation algorithm work?

Probabilistic interpretation: The above signal-separation by optimization ap-
proach derives from a signal model (cf. Eq. 13) given by a sparse superposition of
prototype waveforms corrupted by Gaussian noise. During the optimization, the mis-
match between the observations and reconstructed data is minimized in the `2 sense.
This quadratic term is known as the log-likelihood function. This function is jointly
minimized with the weighted `1-norm that serves as the prior. This weighted `1-norm
corresponds to a Laplace probability distribution for the coefficients in the sparsity
vector x. Each coefficient is drawn independently from a probability density func-
tion proportional to exp (−Const · |wmxm|). The Laplace distribution is known to
generate sparse sequences (Starck et al., 2004; Elad, 2005). This probability density
function is weighted by the predictions for the primaries and multiples and has the
tendency to reduce the probability of drawing an element for one signal component
if the prediction for the other component is large.

Estimation by an oracle attenuation: Consider the following stylized signal
separation problem

y = s + e (22)

with e a random colored Gaussian noise term. Following Mallat (1997), we can write

σ2
µ = E{‖eµ‖2} = 〈Kbµ, bµ〉 (23)

for the stochastic expectation (denoted by the E{}) for the variance of the colored
noise in an orthonormal basis B = {bµ}m∈M. This variance depends on the basis
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vectors and on the covariance K. By applying the following shrinkage,

ŝ =
∑
µ∈M

aµxµbµ (24)

with

aµ =
|xµ|2

|xµ|2 + σ2
µ

(25)

the expectation for the `2 error (the risk), i.e., the E{‖x− x̂‖2
2}, is minimized. Even

though the above estimator in Eq. 24 with so-called oracle attenuation attains a lower
bound for the error, its practical value is limited since it requires information on the
true coefficients xµ of the unknown signal s. A risk close to the minimal risk can be
achieved by applying a diagonal soft-thresholding procedure (see e.g. Mallat, 1997)

ŝ =
∑
µ∈M

Twµ (〈y, bµ〉)bµ = ST Tw (Sy) , (26)

with wµ = σµ

√
2 log N and Tw the soft-thresholding operation as defined earlier. This

estimator does not require knowledge of the coefficients xµ.

This diagonal formulation only works efficiently for signals s that are sparse in
the basis B and for colored noise terms that are nearly independent in the same
orthonormal basis. For a Gaussian e, a near diagonalization of the covariance is
enough to guarantee sufficient uncorrelated coefficients and the diagonal estimator
based on soft thresholding is close to optimal (see e.g. Mallat, 1997).

The above derivation translates to our seismic signal separation problem by

• assuming that multiples (primaries) present in the input data act as a coherent
Gaussian noise term (cf. Eq. 22) for the unknown model, i.e., the primaries
(multiples). This noise term is assumed to be diagonal in the transformed
domain.

• replacing the soft-thresholding, valid for orthonormal bases, to the weighted
minimization problems of the type Pλ (cf. Eq. 19). The close relationship
between soft thresholding, Pλ and the extension to overcomplete signal repre-
sentations was explained earlier;

As long as there exists a sparse representation for the two signal components (pri-
maries and multiples), our w-weighted formulation of the primary-multiple separation
problem (cf. Eq. 15) can be expected to perform well as long as there is not too much
overlap between the two signal components in the transformed domain.

The cooling: The above formulation for the primary-multiple separation is based
on a recovery alghorithm that exploits sparsity of a certain representation for the
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primaries and the multiples. This sparsity is promoted by the weighted `1-norm
penalty term on the sparsity vector. The algorithm starts with a large Lagrange
multiplier that emphasizes the prior. As a result, the recovered sparsity vector is
nearly empty and contains primarily separated signal components. As the Lagrange
multiplier is lowered, the penalty is relaxed and the sparsity vectors are allowed to
pick up more events to fit the data. Because of the weighting, the sparsity vectors
for each component are discouraged to pick up events from the other component.
Hence, the signal is separated. As the cooling parameter is lowered, there is less
emphasis on the prior and the two sparsity vectors will pick up more events in the
data which will lead to an increased cross-correlation between the two sparsity vectors.
To accommodate this aspect, the stopping criterion is based on the residues. Only
when the correlation between the residues in the transformed domain increases, the
algorithm will be terminated.

The sparsity: The algorithm’s performance depends on the degree of sparseness
achieved by the signal representation. This sparseness guarantees recovery and sepa-
ration. Not only the relative number of entries that need to be separated is reduced
but the probability of having two large entries at the same location in the two sparsity
vectors is also diminished. The attainable sparsity and hence the performance of the
algorithm depends on how well the transform is able to locally capture wavefronts,
which on its turn depends on how much the prototype waveforms locally look like
’little waves’. The capability to achieve high degrees of sparsity is intrinsically linked
to a near diagonalization of the signal’s covariance§ (Donoho, 1993; Mallat, 1997).
For instance, the discrete wavelet transform is known to be an unconditional basis for
certain function classes. Unconditional bases near diagonalize the covariance and are
also sparse. Since both signal components are sparse in the same basis, the separation
based on the thresholding (cf. Eq. (11)) corresponds to a shrinkage with an ’oracle’
given by the predicted signal component (Donoho, 1995; Mallat, 1997). Depending
on the accuracy of the prediction, shrinkage is near optimal in an unconditional basis.
Even though the concept of an unconditional basis does not apply to overcomplete
signal representations, we assume that some of its properties carry over to sparse
overcomplete signal representations. In that case, the single thresholding needs to be
replaced by an iterative method.

OVERCOMPLETE SPARSITY REPRESENTATIONS FOR
SEISMIC DATA

So far, our emphasis has been directed towards the formulation of a stable signal-
separation scheme based on the assumption that there exists a generic non data-
adaptive representation for primaries and multiples that is sparse and leads to a near

§In this case, we assume that the predictions for the primaries and multiples are drawn from a
random process.
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diagonalization of the covariance for these two signal components. Does such a rep-
resentation exist for data containing wavefronts? With other words, do the results
obtained with discrete wavelet transforms for piece-wise smooth one-dimensional func-
tions carry over to higher dimensions? We argue that the recently developed curvelet
transform (Candès and Donoho, 2000a, 2004) is definitely a candidate. We will show
that curvelets obtain high theoretical and empirical nonlinear approximation rates for
seismic data and we will also provide arguments why curvelets are the appropriate
choice for a seismic signal representation that does not contain any information on
the location and dips of the wave arrivals. Before comparing the performance of our
separation algorithm with different signal representations, including the Fourier and
wavelet transform, a brief introduction to the curvelet transform is given. For details
the reader is referred to the Appendix and to Candès et al. (2006a) and Ying et al.
(2005) for the numerical implementation of the curvelet transform.

The curvelet transform: the appropriate domain for seismic
data?

The key point of this paper is to separate primaries from multiples in a sparse non-
parametric transformed domain. With a non-parametric transform, we refer to a
transform that does not assume a-priori information, e.g. velocities or dips. Fur-
thermore, no assumptions will be made regarding the shape, direction and frequency
content of the arriving waveforms.

Until recently, defining a non-parametric transform that is sparse on seismic data
has been difficult. The wavefronts present in seismic data, that may include caus-
tics, lead to a slow decay for the Fourier coefficients and can also not be efficiently
represented by the discrete wavelet transform because wavelets are not directional by
construction. The prototype waveforms that make up these transforms are simply not
rich enough to sparsely represent seismic data, they either lack a multiscale structure
or directionality.

The recently developed curvelet transform (see e.g. Candès and Donoho, 2004)
compose signals in terms of waveforms that are multiscale and multidirectional. Be-
cause the rows of the transform contain prototype waveforms that behave locally
like ’little waves’, the curvelet transform obtains near optimal sparsity on bandwith-
limited¶ seismic data (Candès et al., 2006a; Hennenfent and Herrmann, 2006). The
curvelet transform is overcomplete because the number of rows with waveforms ex-
ceeds the number of samples in the image. By using the fast discrete curvelet trans-
form (FDCT by wrapping, see e.g. Candès et al., 2006a; Ying et al., 2005), data is
perfectly reconstructed after decomposition by applying the adjoint of the curvelet
transform, i.e., we have r = CTCr for arbitrary r. The computational cost of the

¶Because of bandlimitation of the source, seismic data volumes are always limited in bandwidth
containing ’wavefronts’ that are relatively smooth in the direction along the wave arrivals and oscil-
latory across.
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FDCT is of the same order as the FFT. The curvelet transform matrix and its adjoint
are given by C and CT and these transforms define the sparsity synthesis and analysis
matrices according A := CT ∈ RM×N and AT := C as described in the preceding
section. For this choice of curvelet transform, the pseudo inverse equals the adjoint,
i.e., CT = C†, which means that the FDCT by wrapping is a numerical isometry,
i.e., the collection of curvelets in the overcomplete signal representation A forms a
tight frame with moderate redundancy (a factor of roughly 8 in two dimensions).
Even though the energy is preserved, i.e., ‖r‖ = ‖Cr‖, the curvelet representation is
overcomplete (N >> M) and hence CCT is a projection, which makes it difficult to
recover the sparsity vector x0 from r = CTx0. The `1-norm linear programs presented
earlier overcome this underdetermination problem leading to a stable recovery of the
unknown x0, provided this vector is sufficiently sparse. Besides these properties, what
makes curvelets the appropriate domain for seismic signal separation?

Curvelet properties: Curvelets are directional frames that represent a tiling of
the two-/three-dimensional frequency plane into multiscale and multi-angular wedges
(see Fig. 1). Because the directional sampling increases every-other scale doubling,
curvelets become more and more anisotropic for finer and finer scales. They become
’needle-like’ as illustrated in Fig. 1. Curvelets are localized in both domains and
are oscillatory in one and smooth in the other direction. Even though curvelets are
not of compact support (non-zero over a finite interval) in the physical domain, they
are of rapid decay with an effective support given by ellipsoids parameterized by a
width ∝ 2j/2, length ∝ 2j and angle θ = 2πl2bj/2c with j the scale and l the angular
index with the number of angles doubling every other scale doubling (see Fig. 1).
Curvelets are indexed by the multi-index µ := (j, l, k) ∈M with M the multi-index
set running over all scales, j, angles, l, and positions k (see for details Candès et al.,
2006a; Ying et al., 2005).

By virtue of their anisotropic shape, curvelets are well adapted to detect wave-
fronts because locally-aligned curvelets strongly correlate with wavefronts. This align-
ment leads to large curvelet coefficients and a concentration of the wavefield’s energy
in the transformed domain. As the examples included in Fig’s. 2 and 3 suggest,
this alignment property holds even in real-data situations, where the smoothness as-
sumption along the wavefronts may be violated. In the marine setting, the lack of
smoothness seems less of an issue because of the “wave-front healing” that occurs as
the wavefield travels through the water column.

Nonlinear approximation rates: The above construction accomplishes near op-
timal nonlinear approximation rates for functions with wavefronts (see e.g. Candès
and Donoho, 2004; Hennenfent and Herrmann, 2006). These compression rates mea-
sure the asymptotic decay of the `2-norm difference between the original data and a
partial reconstruction from the largest coefficients. Theoretically, in two dimensions,
Fourier only attains, besides log-like terms, a decay rate for the error with the largest
K coefficients of O(K−1/2) for functions that are twice-differentiable except for wave-
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fronts‖ situated along piece-wise twice differentiable curves. For comparison curvelets
obtain the near optimal rate∗∗ O(K−2).

Plots for the empirical decay rates for the magnitude-sorted coefficients for the
primaries, s1, multiples, s2 and total dataset, s are included in Fig. 4. These plots
clearly show that the curvelet coefficients decay the fastest amongst the different
transforms. There is also not much difference between the decay rates for the different
signal components for curvelets whereas there are observable differences amongst the
signal components for the other transforms.

Curvelets and waves: Because of their second dyadic partitioning (cf. Fig. 1)
– the partitioning of the dyadic coronae into angular wedges (Stein, 1993; Smith,
1997; Candès and Demanet, 2005; Candès et al., 2006a) and their parabolic scaling
relation – curvelets are known to remain invariant under high-frequency asymptotic
wave propagation. This invariance means that primaries as well as multiples are
sparse. This property gives rise to a near dispersion-free propagation of curvelets and
supports the claim that the covariance matrices for the two signal components are
nearly diagonal in the curvelet domain. As shown earlier, this property underlies the
weighting that produces the signal separation.

Comparison sparsity domains for primary-multiple separation

The following transforms in two dimensions are compared: the orthonormal Dirac,
i.e., AT

1 = AT
2 = S := Id; the orthonormal discrete Fourier transform, S := F; the

orthonormal discrete wavelet transform, S := W, and the overcomplete FDCT with
wrapping S := C.

Fig. 5 includes cross-plots for the normalized absolute values of the transform-
domain coefficients of the true primaries and multiples pertaining to a two-dimensional
synthetic dataset. Not only does the curvelet parameterization by scale, location and
angle(s) help to separate the signal components but the transform also decorrelates,
i.e., the cross plots for the coefficients of the primaries and multiples are more con-
centrated along the axes for curvelets than for the other transforms as shown in
Fig. 5. This property makes it easier to separate the coefficients through iterative
thresholding.

Comparisions between the performance of the proposed separation method are
summarised in Fig. 6 for a synthetic two-dimensional data example. These results are
obtained by running the outer loop of the block-relaxation method for five decreasing
Lagrange multipliers and with L = 1 for the inner loop (see Table 2). The decreasing
Langrange multipliers are kept the same for the estimations based on the different

‖Wavefronts correspond to singularities and are not differentiable.
∗∗For singularities on two-dimensional surfaces in three dimensions these numbers are up to log

factors O(K−1/3) for Fourier and O(K−1) for curvelets (Demanet, 2005).
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Figure 1: Spatial and frequency representation of curvelets. (a) Four different
curvelets in the spatial domain at three different scales. (b) Dyadic partitioning
in the frequency domain, where each wedge corresponds to the frequency support of
a curvelet in the spatial domain. This figure illustrates the micro-local correspondence
between curvelets in the physical and Fourier domain. Curvelets are characterized
by rapid decay in the physical space and of compact support in the Fourier space.
Notice the correspondence between the orientation of curvelets in the two domains.
The 90◦ rotation is a property of the Fourier transform.
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(a) (b)

(c) (d)

Figure 2: Illustration of the nonlinear approximation by the curvelet representation
for idealized synthetic data. (a) original idealized synthetic data; (b-d) approxima-
tions of the data in (a) with p = 1, 5, 10% of the total number of curvelet coefficients.
The reconstruction with > 1 % barely adds more detail.
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(a) (b)

(c) (d)

Figure 3: Illustration of the nonlinear approximation by the curvelet representation
for complex real data. (a) original real data; (b-d) approximations of the data in
(a) with p = 1, 5, 10% of the total number of curvelet coefficients. Observe that
the partial curvelet reconstruction for the real data performs almost as well as the
synthetic data example.
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Figure 4: This plot shows the empirical decay rates for the total data s, the true
primaries s1 and the true multiples s2 in the transformed domains defined by the Dirac
Id, discrete wavelet W, Fourier F bases and the curvelet frame C. The overcomplete
curvelet transform decays the fastest.
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Figure 5: Cross plots of the absolute values of the coefficients for the true primaries
and multiples in the different transformed domains. (a) True coefficients in the
curvelet domain. (b) True coefficients in the wavelet domain. (c) True coefficients in
the Dirac domain. (d) True coefficients in the Fourier domain. Notice the improved
decorrelation for the curvelet coefficients which are predominantly aligned with the
axes as opposed to the Dirac, Fourier and to a lesser extend the wavelet coefficients.
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transforms. The improved performance for the curvelet transform is already apparent
in this example even though the algorithm was not run to convergence. Besides visible
improvement, there is also an improved performance in the degree of decorrelation
achieved by the algorithm, i.e., the R(x̂1, x̂2), and in the relative `2-norm difference
between the estimated and true signal components. The results are listed in Table 3
and confirm the visible improvements of the results presented in Fig. 6.

COMPARISON CURVELET-BASED SIGNAL SEPARATION
AND MATCHED FILTERING

In this section, we study the performance of our curvelet-based primary-multiple
separation by means of a series of stylized examples. First, we study the case of a one-
dimensional medium yielding strong correlations between the primaries and multiples
where the prediction is accurate but where the separation is a challenge. The second
example describes the situation where the prediction is inaccurate which corresponds
to the situation where two-dimensional predicted multiples are used for data with
three-dimensional structure. The next synthetic example is included to demonstrate
our algorithm with the three-dimensionsional curvelet transform. We conclude by
applying the method to a real dataset with the three-dimensional curvelet transform.

Synthetic two-dimensional examples

First, we return to the data set presented earlier in Fig. 6, which concerns a two-
dimensional shot record with surface-related multiples generated by a horizontally-
layered medium with 7 layers as plotted in Fig. 7. Estimations for the primaries by
matched filtering and curvelet-based separation are presented in Fig. 8 and compared
with the true primaries. The primary signal component is estimated from the total
dataset plotted in Fig. 8 (a) using the SRME prediction for the multiples as plotted in
Fig. 8 (c). For comparison, plots for the true multiples and primaries are also included
in Fig. 8 (b,d). The results for the matched-filter and curvelet-based estimations are
included in Fig. 8 (e-f).

This example can be considered as a worst-case scenario for the traditional wave-
equation based prediction and adaptive subtraction methods, because the section is
generated by a laterally invariant velocity model where at the near-offset primaries
and multiples correlate in the physical domain. Indeed, these difficulties are re-
flected in the estimates obtained by matched filtering plotted in Fig. 8 (c). In this
matched-filter result, with filters estimated within overlapping time-offset windows,
clear distortions in the estimated primaries can be observed as well as remnants from
multiples, when compared to the true primaries plotted in Fig. 8 (d). The arrows
in Fig. 8 (e) point to remaining multiple energy. Correlations between the primaries
and multiples are apparently the main cause of these distortions. As can be observed
from Fig. 8 (f), the nonlinear curvelet-based separation result in Fig. 8 (f) is much
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Figure 6: Comparison of the primary estimation performance for the synthetic dataset
of Fig. 8, based on the curvelet transform (C) and the orthonormal Dirac basis
(Id), the discrete wavelet (W) and Fourier (F) transforms. The input data for the
algorithm are the total data (Fig. 8 (a)) and the predicted multiples (Fig. 8 (b)). The
comparisons are made for the iterative block relaxation method with fixed settings
for the parameters. (a) estimate for the primaries using curvelets, (b) wavelets, (c)
Dirac, and (d) Fourier. Visual inspection of these estimates for the primaries confirm
the findings listed in Table 3.



Herrmann et.al. 25 Geophysics

better and resembles the true primaries very well, in particular near the arrows.

We included Fig. 9, to illustrate the robustness of our separation method for noisy
input data. The multiple prediction is the same as in Fig. 8 and the weighting vector is
defined according to Eq. 18. Estimates for the primaries and multiples from the noisy
input data, Fig. 9 (a) with signal-to-noise ratio of 23dB, are plotted in Fig. 9 (b)
and (c). The estimate for the incoherent noise, given by the residue r̂ = y − ŝ is
included in Fig. 9 (d). These results demonstrate the robustness of the separation
method under Gaussian noise. Each signal component, the primaries, multiples and
the incoherent noise, are recovered. The estimated noise contains very little coherent
energy. Compared to the noise-free case, the degree of correlation R(x̂1, x̂1) = 0.069
and the relative errors in the estimated primaries and multiples , ε(s1) = 0.1836
and ε(s2) = 0.1788. These errors are close to the values obtained for the noise-free
example (see Table 3). The results for the relative errors are even better than for the
noise-free case because the algorithm is run to convergence in this case.
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Figure 7: Vertical cross-sections of a horizontally layered acoustic model used to
generate seismic reflection data. (a) Velocity profile. (b) Density profile.

To further illustrate the performance of curvelet-domain primary-multiple sepa-
ration, we include an example where two multiples overlap with one primary (see
Fig. 10(a)) and where the prediction for one of the multiple events has a erroneous
moveout. In that situation, the primary-multiple separation will be difficult and the
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Figure 8: Two-dimensional noise-free synthetic example, based on the medium plotted
in Fig. 7. (a) Input data with all multiples. (b) True surface-related multiples.
(c) SRME predicted multiples. (d) True data without surface-related multiples.
(e) The predicted primaries with matched filtering. (f) The predicted primaries
with curvelet-based separation. Notice the significant improvement obtained with
the curvelet-based method.
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Figure 9: Two-dimensional noisy synthetic example, based on the medium plotted in
Fig. 7 and the predicted multiples plotted in Fig. 8. (a) Noisy input data with all
multiples and signal-to-noise ratio of 23 dB. (b) Estimated primaries. (c) Estimated
multiples. (d) The estimated noise according to the residue r̂ = y− ŝ with ŝ = ŝ1+ ŝ2.
The example clearly demonstrates that primaries and multiples can be separated in
the presence of Gaussian noise, provided there is a reasonable accurate prediction for
the multiples.
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result for the matched filtering with local windows leads to substantial residual mul-
tiple energy and dimming of the primary amplitudes (Fig. 10(c)). Soft thresholding
(cf. Eq. 11 with λ = 1.4 ), on the other hand, leads to a clear separation with moderate
loss of primary energy (see Fig. 10(d).

The two-dimensional synthetic examples discussed so far demonstrate the robust-
ness of transformed-domain nonlinear thresholding techniques to errors in the pre-
dicted multiples and noise. Not only is our method robust under moderate shifts and
phase rotations, it also handles errors in the moveout of the predicted multiples. This
behavior is a direct consequence of the multiscale and multidirectional behavior of
the prototype waveforms that define the transform. In particular, the locality of the
waveforms allows for an improved adaptation difficult to accomplish with matched
filtering.

The examples also showed that we have control over the separation by varying
the Lagrange multiplier (the threshold, see Fig. 10(e)-10(f)) and the expected noise
level σ. Finally, there is also the possibility to add the estimated noise (the residue
defined by the difference of the total data and the sum of the estimated primaries
and multiples) after completion of the algorithm. This noise term is nonlinear in the
parameters and may contain spurious primary energy.

Synthetic three-dimensional example

The performance of our algorithm on three-dimensional data volumes is demonstrated
for data generated by a subsurface velocity model with two-dimensional inhomo-
geneities as plotted in Fig. 11. This velocity model consists of a high-velocity layer,
which represents salt, surrounded by sedimentary layers and a water bottom that is
not completely flat. Using an acoustic finite-difference modeling algorithm, 361 shots
with 361 receivers are simulated on a fixed receiver spread with receivers located
from 0 to 5400 m with steps of 15 m. The complete prestack dataset can be repre-
sented as a three-dimensional volume along the shot, receiver and time coordinates
(see Fig. 12). From this data volume, surface-related multiples are predicted and
subsequently removed with the iterative matched-filter method introduced by one of
the authors (Verschuur and Berkhout, 1997).

Comparison of the final result, obtained after three iterations, shows good suppres-
sion of the multiples in the shot records before and after matched filtering as shown
Fig. 13 (a) and (b), respectively. These results, however, suffer from small residuals
due to the property that least-squares subtraction always has the tendency to reduce
the multiple energy towards the noise level. As a consequence small residuals remain
in situations where the multiple prediction is not perfect. Because of limitations in
the acquisition (e.g. limited aperture), predictions for the multiples will unfortunately
always contain errors that lead to residual multiple energy.

Because the data volumes in shot, receiver and time coordinates contain wave-
fronts with continuity along all three coordinate directions, a separation algorithm is
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(a) (b)
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(e) (f)

Figure 10: Example of primary-multiple separation through soft thresholding in the
curvelet domain for predicted multiples with moveout errors. (a) the total data with
primaries and multiples. (b) the true multiples used for the prediction. (c) the result
obtained with least-squares adaptive subtraction with localized windows. (d-f) the
result obtained with a single curvelet-domain soft thresholding with λ = 1.8, 1.4, 2.2.



Herrmann et.al. 30 Geophysics

used which employs the three-dimensional curvelet transform. This three-dimensional
transform has the distinct advantage that it (i) exploits the continuity of the wave-
fronts that make up the primary and multiple arrivals in all three coordinate di-
rections; (ii) separates the signal components on the basis of scale, two angles and
location in three dimensions and (iii) exploits the theoretical near optimality of the
nonlinear approximation rate of curvelets for functions that contain wavefronts along
piece-wise smooth sheets.

For data with imprints of lateral velocity variations, our separation approach will
take advantage of differences in the three-dimensional structure in the wavefields for
the primaries and multiples. As the shot records plotted in Fig. 13 (c) suggest, the
curvelet-based result improves the result obtained by matched filtering in Fig. 13 (b).
The estimated primaries are much cleaner, without a noticeable distortion of the
primaries. Note that the internal multiples are preserved as well during the seperation,
as indicated by the arrows in Fig. 13. This preservation of the internal multiples is
consistent because this component was not predicted and should not be removed at
this stage. To appreciate the three-dimensional aspects of curvelet-based separation,
time slices are included in Fig. 14 along the horizontal dashed line depicted in Fig. 12
and 13.
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Figure 11: Two-dimensional subsurface model used to generate synthetic shot records
with an acoustic finite difference modeling algorithm.

Real three-dimensional Gulf data example

To demonstrate the potential of the separation method for multiple suppression, a
real-data example is included involving prestack field data from a two-dimensional
line acquired at the Mississippi Canyon in the Gulf of Mexico. Results after stack-
ing on the data volumes with multiples, the stack after matched filtering and after
curvelet-based separation are presented in Fig. 15. Surface-related multiples were es-
timated from this line which is represented as a three-dimensional data volume, i.e.,
a shot-offset-time volume. These predicted multiples were used by the least-squares
matched filtering technique in the shot domain as well as by our nonlinear separation
algorithm. Application of matched filtering to the prestack data results in an accept-
able multiple suppression as can be seen in Fig. 15 (b). However, these results are not
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Figure 12: Shot records modeled in the subsurface model of Fig. 11. The data is
generated with a fixed receiver spread of 361 receivers, resulting in a 361 by 361 cube
of traces.
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Figure 13: Comparison of curvelet-based separation and matched filtering for the
middle shot record of the dataset in Figure 12. (a) Input shot with all multiples.
(b) Result with adaptive subtraction. (c) Result with curvelet-based separation.
The arrows point at internal multiples that should not be removed. The dashed line
indicates the location of the time slice (Fig. 12).
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Figure 14: Comparison of curvelet-based separation and matched filtering for a time
slice of the dataset in Figure 12. (a) Input shot with all multiples. (b) Result with
adaptive subtraction. (c) Result with curvelet-based separation.
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optimal because of three-dimensional effects in the subsurface, which lead to erroneous
predictions for the multiples utilizing a two-dimensional prediction algorithm. These
imperfections result in residual multiples in the output section and consequently in
the stack. Curvelet-based separation is less susceptible to these prediction errors and
leads to a better multiple suppression result for the stack in Fig. 15 (c). As opposed
to matched filtering in the time domain, the performance of our algorithm derives
from a direct exploitation of the full three-dimensional spatio-temporal character of
the primary and multiple wavefields. This property lies at the heart of the noticeable
improvement for the multiple suppression.

The improvements for the separation are also visible in the prestack domain as
can be seen from Fig. 16, which includes the data volumes for the input data, pre-
dicted multiples and the output generated by matched filtering and curvelet-based
separation. Again notice in Fig. 16 (d) improvements for the residual multiple energy
and better recovery of primary reflections, especially in the area around shot 800 -
1000 below 4.5 seconds.

For a final comparison between the two methods, time slices at 4.7 seconds, as
indicated by the dashed line in Fig. 16, are plotted in Fig. 17 for these four datasets
before stack. Again, clutter can be observed in the subtraction results for matched
filtering included in Fig. 17 (c). Curvelet-based separation, on the other hand, is
much cleaner as can be seen from Fig. 17 (d). The arrows point at primaries that are
recovered from multiple interference.

Even though the curvelet-based results appear cleaner, some dimming of primary
energy may be observed in areas where the primaries and multiples exactly over-
lap in the curvelet domain. So far, our results were based on only one iteration of
the block-relaxation method for three-dimensional curvelets and this dimming is ex-
pected. When the iterative procedure is carried out to convergence the results are
expected to improve.

CONCLUSIONS

The success of separating coherent signal components with a generic non-parametric
transform depends largely on the sparsity of the to-be-separated components in the
transformed domain. We argued that curvelets, which decompose multidimensional
data into multiscale and multidirectional prototype waveforms, are the appropriate
domain for primary-multiple separation, given predictions for the multiples that may
contain errors. We showed that primaries and multiples can be separated by solving
a nonlinear optimization problem during which the weighted `1-norms for the two
signal components are jointly minimized. This weighted `1-norm optimization prob-
lem corresponds for orthonormal transforms to a simple element-wise thresholding
with an ’oracle’ defined in terms of the predicted signal component. Thresholding
corresponds in this case, to Wiener shrinkage which is arguably optimal when the
transform is optimally sparse. We showed that the curvelet transform obtains the
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Figure 15: Field data from the gulf of Mexico. (a) Stack with multiples. (b) Stack
after surface-related multiple suppression in the prestack domain. (c) Stack after
curvelet-based primary-multiple separation. Note that the curvelet-based results show
considerably less multiple energy, while retaining the primaries (including all diffrac-
tions around 6 seconds).
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Figure 16: Comparison of adaptive subtraction and curvelet-based separation in the
prestack domain. As the two-dimensional prestack data can be represented as a three-
dimensional shot-offset-time volume, the curvelet-based separation can take advan-
tage of all axes to discriminate between the primaries and the multiples. (a) Input
data with multiples. (b) Predicted multiples. (c) Adaptive subtraction result. (d)
Curvelet-based separation result. Note that the curvelet-based result has less residual
noise, while retaining the primaries.
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Figure 17: Time slices through the prestack volumes as shown in Figure 16. The
dashed line indicates the source-offset area displayed in Figure 16.

best nonlinear approximation rate for primaries as well as for multiples.

A simpler more intuitive explanation why the proposed algorithm works is that
curvelets look like ’little’ localized waves indexed by scale, orientation and location
allowing for a localized separation based on differences in the spatial as well frequency
content of the two signal components. Because our method is non-adaptive, it differs
fundamentally from matched filtering algorithms, which aims at separating the signal
components by adapting the predicted signal components locally with respect to the
true signal components. In our method there is no such adaptation and our algorithm
derives its stability from the multiscale and multi-dimensional structure of curvelets.

Application of our algorithm to synthetic and real data examples demonstrates a
noticeable improvement. Not only are the primaries and multiples better separated
but our algorithm also proved to be insensitive to Gaussian noise and to errors in the
prediction. This stability is a well-documented feature of transforms that are sparse
and allows for a stable signal recovery from noisy and incomplete data.

The performance of the algorithm depends on the degree of correlation between
the two to-be-separated signal components in the transformed domain. In cases where
the two signal components overlap in the transformed domain a slight dimming of the
reconstructed desired signal (i.e. the primaries) may occur. This dimming becomes
less prominent when the algorithm is iterated sufficiently many times. In particular,
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the algorithm led to good results when using the three-dimensional curvelet transform.
The separation can take advantage of the full three-dimensional structure of the
primary and multiple wavefields. Since our method is generic, it can be used to
separate arbitrary signal components as long as there is a reasonable prediction for
one of the signal components and a transform that is sparse.

Furthermore, the method can handle non-stationary errors in the predicted multi-
ples, e.g. by neglecting out-of-plane events in multiple prediction. Whereas matched-
filtering techniques have problems separating the signal components, curvelet-based
separation is less sensitive to these errors and this leads to a noticeable improvement
in both the prestack domain as well as after stacking.
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Initialize:
m = 0; x0 = ATy;
Choose: L, λ1 > λ2 > · · ·
while ‖y −Axm‖2 > ε do

m = m + 1;
xm = xm−1;
for l = 1 to L do

xm = Tλm

(
xm + AT (y −Axm)

)
{Iterative thresholding}

end for
end while
ŝ = Axm.

Table 1: The cooling method with λ1 > λ2 > · · · the series of decreasing Lagrange
multipliers. The inner loop is repeated L times.
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Initialize: x0
1 = AT

1 s̆1, x0
2 = AT

2 s̆2, m = 0, R0 = 1;
Choose: L, λ1 ≥ λ2 ≥ · · ·
while ‖y −Axm‖2 > ε and Rm < Rm−1 do

m = m + 1, l = 0;
xm = xm−1;
w1 := max (λ · σ, C1,s|ŭ1|) ,w2 := max (λ · σ, C2,s|ŭ2|) {Set the weights}
Rm(z1, z2) =

zT
1 z2

‖z1‖‖z2‖ ;{Compute decorrelation}
while l ≤ L and ε and Rm < Rm−1 do

l = l + 1;
s2 = A2x

m
2 ;{Synthesize}

r1 = y − s2; {Calculate residual}
xm

1 = xm
1 + AT

1 (r1 −A1x
m
1 ); {Descent update}

xm
1 = sign(xm

1 ) ·max (0, |xm
1 | − |λm ·w1|); {Soft threshold}

s1 = A1x
m
1 ; {Synthesize}

r2 = y − s1; {Calculate residual}
xm

2 = xm
2 + AT

2 (r2 −A2x
m
2 ); {Descent update}

xm
2 = sign(xm

2 ) ·max (0, |xm
2 | − |λm ·w2|); {Soft threshold}

end while
end while

Table 2: The primary-multiple separation by optimization algorithm.

APPENDIX A

Curvelet properties

Curvelets correspond to a partitioning of the two- or three-dimensional Fourier plane
by highly anisotropic elements that obey a parabolic scaling principle (Smith, 1997;
Candès and Donoho, 2000b; Do and Vetterli, 2002; Candès et al., 2006a; Ying et al.,
2005) width ∝ length2. In this appendix, we limit ourselves to discussing the two-
dimensional curvelet transform only. Compared to ordinary separable†† discrete
wavelets, which have location, scale and gender indices, curvelets have indices that
discretize the scale, a, 0 < a < 1; orientation θ, θ ∈ [−π/2, π/2] and location b ∈ R2.
Consequently, discrete curvelets represent a family of directional prototype waveforms
that are made out of a combination of translations, rotations and parabolic scalings.
These three operations take a directional wavelet, ϕ(x), which contains a bump in

††Separable transforms are multidimensional transforms that are made off one-dimensional trans-
forms along each coordinate direction independently. See e.g. Mallat (1997).



Herrmann et.al. 42 Geophysics

Separation Basis R(x̂1, x̂2) ε(s1) ε(s2)
Dirac (Id) 0.97163 3.2846 10.9635
Fourier (F) 0.02586 0.7937 0.6208
wavelet (W) 0.01025 0.3518 0.4622
curvelet (C) 0.00415 0.2172 0.3129

Table 3: Performance of the signal-separation for the Dirac, Fourier and wavelet bases
and for the overcomplets curvelet frame. These numbers are computed for the two-
dimensional synthetic example depicted in Fig. 6. Curvelet frames clearly score better
on all fronts, including the estimation error in terms of the normalized `2-difference
between the predicted and true signal components, ε1,2(s) := ‖s−ŝ‖

‖s‖ .

one direction and wavelet-like‡‡ oscillations in the other, to a three-index family

ϕµ(x) ≈ ϕ (DaRθ (x− b)) . (A-1)

The index-set µ = {j, l,k} rules the discretization of the scale, a = 2−j, scale-
dependent orientation, θj,l = 2πl2bj/2c and location, Rθj,l

bj,l
k with Rθ denoting a

rotation over θ radians and Da a parabolic scaling yielding,

ϕa(x) ≈ ϕ (Dax) with Da =

(
1/a 0
0 1/

√
a

)
. (A-2)

With this sampling of the two-dimensional frequency plane, also known as a second
dyadic partitioning (Stein, 1993; Smith, 1997), a redundant tight frame is created
that is

• multiscale with elements living in different dyadic corona in the two-dimensional
Fourier plane, i.e. k ∈ [2j, 2j+1] with j the dyadic scale and k the wave number
(dual of the space variable x).

• multi-directional with elements living on wedges oriented according θ = πl2−j/2

with l = 0, 1, 2, . . . , 2bj/2c − 1 the index for the angles. Within each corona the
number of orientations doubles every other scale, yielding orientations ∝ 1√

scale
.

See Fig. 1.

• highly anisotropic, obeying the following scaling law width ∝ length2 with
width ∝ 2−j/2 and length ∝ 2−j .

• strictly localized in the Fourier domain with each curvelet located in the sym-
metric wedge

Wj,l =
{
±k, 2j ≤ |k| ≤ 2(j+1), |θ − θj| ≤ πl2−bj/2c} . (A-3)

‡‡Curvelets are like Meyer wavelets with infinite vanishing moments in the direction of the oscil-
lations.
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• localized (rapid decay) and smooth in space.

and for which

• fast O(N log N) algorithms (see Candès et al., 2006a; Ying et al., 2005, for
detail on the numerical implementation of the two- and three-dimensional Fast
Curvelet Transform, the FDCT) exist that decompose two-or three-dimensional
sampled images which are lexicographically stored in a M -sample vector s, i.e.

x = {〈s, ϕµ〉}µ∈M := Cs, (A-4)

with the brackets 〈·, ·〉 denoting the discrete inner product. In this expression,
C ∈ RN×M is a rectangular matrix with N � M . This matrix represents the
implementation of the FDCT with curvelets on its rows.

• an explicit construction exits for the adjoint that equals the pseudo inverse, i.e.,
CT = C† yielding the following composition

s =
∑
µ∈M

〈s, ϕµ〉ϕµ := CTCs. (A-5)

Because the frame is numerically tight there is also conservation of the energy,
i.e., ‖s‖2

2 = ‖x‖2
2.

Theoretical nonlinear approximation rates for curvelet frames

Optimality of a signal representation refers to accomplishing (close to) optimal nonlin-
ear approximation rates for a certain class of functions. The nonlinear approximation
error is given by the energy difference between the original function and its recon-
struction using the largest K entries in the sorted sparsity vector. The faster this
error decays as a function of the number of largest entries, the higher the nonlinear
approximation rate.

Nonlinear approximation rates measure the asymptotic decay of the L2-norm dif-
ference between the original function and the partial reconstruction from the K largest
coefficients. For example, wavelets obtain optimal nonlinear approximation rates
for models that are represented by one-dimensional Bounded Variation functions,
i.e. f ∈ BV[0, 1] if ‖f‖BV :=

∫
|f ′|(t)|dt < ∞. For these functions, the K-term

approximation
fW

K = WTxIK
(A-6)

decays as
‖f − fW

K ‖2
2 ∝ K−2 (A-7)

as opposed to a decay of K−1 for linear approximations based on the Fourier transform
(see e.g. Mallat, 1997). In this equation, x = Wf , represents a vector with the wavelet
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coefficients of the function f , IK is the index set of the first K largest coefficients
({IK : xI(1) ≥ xI(2) ≥ · · · ≥ xI(K)) and WT is the transpose = inverse of the
orthonormal discrete wavelet transform. For the above function space, this decay
rate proves to be optimal.

For two-dimensional functions with singularities on piece-wise C2 curves, the non-
linear approximation rates are sub optimal for both Fourier and separable wavelets
(Candès and Donoho, 2000b,a),

‖f − fF
K‖2

2 ∝ K− 1
2 (A-8)

and
‖f − fW

K ‖2
2 ∝ K−1, (A-9)

compared to the rate obtained by adaptive triangulation

‖f − fO
K‖2

2 ∝ K−2. (A-10)

Recently introduced curvelets (Candès and Donoho, 2000a,b) obtain

‖f − fC
K‖2

2 ∝ CK−2(log K)3, (A-11)

with C a constant. This rate is close to the above optimal rate. This rate for the
infinite dimensional case, f is a continuous-valued function, is expected to carry over
to the finite-dimensional case for sampled functions. Indeed, the empirical nonlinear
approximation rates for seismic data suggest that curvelets are optimal for data with
multidimensional wavefronts.


