
A primer on weak

recovery

conditions

Context

“Sparse Solution of Underdetermined Linear
Equations by Stagewise Orthogonal Matching
Pursuit” David L. Donoho, Yaakov Tsaig, Iddo
Drori, Jean-Luc Starck

“Sparse Nonnegative Solution of
underdetermined Linear Equations by Linear
Programming” David L. Donoho and Jared Tanner

“High-Dimensional Centrally-Symmetric
Polytopes With Neighborliness Proportional to
Dimension” David L. Donoho

Challenges

Seismic data recovery is extremely large scale

Strong recovery conditions are

! prohibitively expensive to calculate

! overly pessimistic

Need a framework for large data volumes

! feasible conditions for recovery

! qualitative tests for recovery

! quantitative test for recovery

Only hope for an approximate solution to the
recovery problem ...

Sparse recovery
[Candes, Donoho etc.]

Uniform uncertainty principles (UUP):

! strong conditions for inverting
underdetermined systems

! strong equivalence between l1 and l0

! valid for any sparsity vector

! unique solution in noise-free case

! pessimistic bounds

! unfeasible bounds for ‘large’ systems

Donoho proposes weak conditions under
the slogan:

noiseless underdetermined problems behave like
noisy well-determined problems ...

Related work

Seismic data interpolation methods are typically based on the inversion of a linear forward model

f = Kx0 +n, (2)

with f the complete data, K the synthesis matrix with the prototype waveforms on its columns and

n a noise term, accounting for possible errors. The unknown model is represented by the vector x0.

The recovery of seismic data consists of finding the model vector x0, given incomplete and noisy

data. The data is recovered data is obtained by applying the synthesis matrix to the estimated model.

The inverse problem for the model is typically cast into an unconstrained optimilization problem,

followed by a modeling step, i.e.,

x̂ = argminx
1
2‖P(d−Kx)‖2

2 +λJ(x)

f̂ = Kx̂.

(3)

In this expression, P is a diagonal matrix with ones at entries where there is data and zeros where

there is not. The functional J(x) is a penalty term that contains prior information on the model. The

importance of the prior information with respect to the quadratic misfit is determined by the param-

eter λ , known as the Lagrange multiplier. The symbol ˆ is reserved to indicate estimated quantities

obtained by solving an optimization problem that jointly minimizes the quadratic misfit between

observed and modeled data and the penalty term. The estimate for the recovered data is obtained by

synthesis, i.e., f̂ = Kx̂. The picking matrix formulation corresponds to a Dirac measurement basis.

The success of seismic recovery described in Eq. 3 depends on the choice of the synthesis ma-

trix, the penalty functional and the Lagrange multiplier. The penalty term contains prior information

and serves as a regularization for the recovery problem, which, as we will show, involves the inver-

sion of an underdetermined system of equations. Since the measurement basis is fixed for seismic

6

Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0).
Copyright (c) 2018 SINBAD consortium - SLIM group @ The University of British Columbia.

The problem

Linear system

with

and

! x the N-length sparsity vector (N>>n) with

! k non-zero entries

! y the n-length measurement vector

measurement vector y ∈ Rn with y = Ax0, by solving the following optimization problem

P1 :

x̂ = argminx ‖x‖1 subject to Ax = y

f̂ = SH x̂.

(9)

The synthesis matrix A ∈ Cn×N is composed of three matrices, namely, A := RMSH with SH the

sparsity matrix S := F with f the Fourier analysis or decomposition matrix; M := I the Dirac mea-

surement basis with I the idendity matrix and R a restriction matrix. This restriction matrix extracts

k rows from the N×N Fourier matrix since MSH = F. During the restriction, the columns of A are

normalized such that ‖ai}‖= 1 for i = 1 · · ·N.

The mathematical criteria for exact recovery, such as the !0-norm of the difference between the

original and the recovered sparsity vectors ‖x̂−x0‖0, is are unfortunately impossible because of the

finite precision in floating point arithmetic. Instead, we either call a recovery successful when an

entry is to within a small constant equal to the corresponding entry in x0 or we call the recovery

successful when the relative !2-error is smaller then some threshold, ‖x̂−x‖2/‖x0‖2 ≤ ε .

The main results of compressed sensing is that it predicts the number of measurements n that are

required to ’exacly’ recover an arbitrary sparsity vector x0 with k non-zero entries given a certain

choice for the measurement and sparsity matrices. For individual realizations of the sparsity and

measurement vector, these conditions are sharp. For instance, the recovery of a sinusiodal function

of length N = 1024 with k =? non-zero entries in x0 is succesful for a measurement vector y con-

sisting of n =??? elements and fails for n =???− 2 measurements. This behavior is numerically

illustrated in Fig. 1 and has also been observed by (35) for the spiky deconvolution.

Strong recovery conditions: An important result from the literature on compressed sensing states

that exact recovery from incomplete measurements is possible as long as the synthesis matrix A

13

measurement vector y ∈ Rn with y = Ax0, by solving the following optimization problem

P1 :

x̂ = argminx ‖x‖1 subject to Ax = y

f̂ = SH x̂.

(9)

The synthesis matrix A ∈ Cn×N is composed of three matrices, namely, A := RMSH with SH the

sparsity matrix S := F with f the Fourier analysis or decomposition matrix; M := I the Dirac mea-

surement basis with I the idendity matrix and R a restriction matrix. This restriction matrix extracts

k rows from the N×N Fourier matrix since MSH = F. During the restriction, the columns of A are

normalized such that ‖ai}‖= 1 for i = 1 · · ·N.

The mathematical criteria for exact recovery, such as the !0-norm of the difference between the

original and the recovered sparsity vectors ‖x̂−x0‖0, is are unfortunately impossible because of the

finite precision in floating point arithmetic. Instead, we either call a recovery successful when an

entry is to within a small constant equal to the corresponding entry in x0 or we call the recovery

successful when the relative !2-error is smaller then some threshold, ‖x̂−x‖2/‖x0‖2 ≤ ε .

The main results of compressed sensing is that it predicts the number of measurements n that are

required to ’exacly’ recover an arbitrary sparsity vector x0 with k non-zero entries given a certain

choice for the measurement and sparsity matrices. For individual realizations of the sparsity and

measurement vector, these conditions are sharp. For instance, the recovery of a sinusiodal function

of length N = 1024 with k =? non-zero entries in x0 is succesful for a measurement vector y con-

sisting of n =??? elements and fails for n =???− 2 measurements. This behavior is numerically

illustrated in Fig. 1 and has also been observed by (35) for the spiky deconvolution.

Strong recovery conditions: An important result from the literature on compressed sensing states

that exact recovery from incomplete measurements is possible as long as the synthesis matrix A

13

Strong recovery conditions
[Candes et al]

Prescribe recovery conditions for the

! measurement matrix

! sparsity matrix and vector

Recovery depends on
! mutual coherence

! compression of the sparsity vector

Guarantees recovery for every possible
restriction and sparsity vector

Recovery conditions impossible to compute &
pessimistic

UUP examples

Recovery conditions are

! pessimistic

! in practice much lower

! sharp for each experiment but different

Indication of a phase transition

! large systems with randomness

! UUP’s worked well with randomness in the
restriction and/or sparsity vector

Opens the way to study large systems in
probabilistic a framework.

Weak recovery conditions
[Donoho et al]

Approximate probabilistic framework:

! valid for typical sparsity vectors

! requires mixing (randomness)

! more accurate for larger systems

Mixing depends on

! randomness restriction matrix

! incoherence measurement-sparsity matrices

! randomness & compression of sparsity vector

Fast recovery possible for typical sparsity
vectors when

Gaussian approximation is valid ...

Gaussian approximation

Matched filter minus sparsity vector needs to be
Gaussian, i.e.,

 with

is Gaussian

! depends on the mixing

! can be tested qualitatively with QQ-plot

! related to digital communication theory

! easy to check for large systems

Example:
! Uniform Spherical Ensemble (random matrix

with normalized columns)

approximation requires the output of the matched filter,

x̃ = AHy, (17)

minus the sparsity vector, i.e., z = x̃−x0, to be sufficiently close distributed according to the Gaus-

sian. For instance for n and N large, this approximation is valid∗ for a Fourier measurement en-

semble of a sparse signal that consists of measurements taken at ’random’ times. We used quotes

because it remains a question whether these randomness assumptions are valid in practice. Under

the assumption that the randomness assumption holds, the recovery from incomplete data can be

interpreted in terms of a denoising problem. As shown below, optimization techniques based on

nonlinear thresholding allow for an (approximate) solution of Pε by either a descend-based cooling

technique (20) or by the method of stage-wise orthonormal matching pursuit (16). Both approaches

are based on a thresholding procedures that separate sparse signal from Gaussian noise (see e.g. 31,

and the references therein).

For very large matrices A testing whether the Gaussian assumption holds is relatively straight-

forward. For a given choice of the restriction, measurement and sparsity matrices, we compute x̃ for

a vector y computed for a typical x0. This latter sparsity vector could be derived from a typical seis-

mic data volume while the restriction matrix is set according to the specific incomplete acquisition

geometry of the recovery problem at hand.

To test whether the Gaussian assumption holds, we need to test vector z for Gaussianity and

we do this by making so-called quantile-quantile plots (QQ-plot) for different sparsity levels ρ =

{.125, .1875, .250} for a fixed restriction and measurement matrix but for sparsity matrices that are

either made of the Fourier or discrete wavelet matrices (see 31, for detail on the construction of
∗(16) shows that the Gaussian approximation holds for a random Fourier measurement (cf. Eq.1). By duality of the

Fourier transform, the same argument holds for a random measurement in the time domain of a signal that is sparse in

the Fourier domain.

23

approximation requires the output of the matched filter,

x̃ = AHy, (17)

minus the sparsity vector, i.e., z = x̃−x0, to be sufficiently close distributed according to the Gaus-

sian. For instance for n and N large, this approximation is valid∗ for a Fourier measurement en-

semble of a sparse signal that consists of measurements taken at ’random’ times. We used quotes

because it remains a question whether these randomness assumptions are valid in practice. Under

the assumption that the randomness assumption holds, the recovery from incomplete data can be

interpreted in terms of a denoising problem. As shown below, optimization techniques based on

nonlinear thresholding allow for an (approximate) solution of Pε by either a descend-based cooling

technique (20) or by the method of stage-wise orthonormal matching pursuit (16). Both approaches

are based on a thresholding procedures that separate sparse signal from Gaussian noise (see e.g. 31,

and the references therein).

For very large matrices A testing whether the Gaussian assumption holds is relatively straight-

forward. For a given choice of the restriction, measurement and sparsity matrices, we compute x̃ for

a vector y computed for a typical x0. This latter sparsity vector could be derived from a typical seis-

mic data volume while the restriction matrix is set according to the specific incomplete acquisition

geometry of the recovery problem at hand.

To test whether the Gaussian assumption holds, we need to test vector z for Gaussianity and

we do this by making so-called quantile-quantile plots (QQ-plot) for different sparsity levels ρ =

{.125, .1875, .250} for a fixed restriction and measurement matrix but for sparsity matrices that are

either made of the Fourier or discrete wavelet matrices (see 31, for detail on the construction of
∗(16) shows that the Gaussian approximation holds for a random Fourier measurement (cf. Eq.1). By duality of the

Fourier transform, the same argument holds for a random measurement in the time domain of a signal that is sparse in

the Fourier domain.

23

QQ Plot

!!"# ! !"#

!!"!#

!

!"!#

$%!&#'()

*

%+),-./&,0,1,23

!!"# ! !"#

!!"!#

!

!"!#

$%!&#'()

*

%4),-./&,0,1,23

!!"# ! !"#

!!"!#

!

!"!#

$%!&#'()

*

%5),-./&,0,1,23

!!"# ! !"#

!!"!#

!

!"!#

$%!&#'()

*

%6),7./&,0,1,89

!!"# ! !"#

!!"!#

!

!"!#

$%!&#'()

*

%:),7./&,0,1,89

!!"# ! !"#

!!"!#

!

!"!#

$%!&#'()

*

%;),7./&,0,1,89

!!"# ! !"#

!!"!#

!

!"!#

$%!&#'()

*

%<),-7=&,0,1,>8

!!"# ! !"#

!!"!#

!

!"!#

$%!&#'()

*

%?),-7=&,0,1,>8

!!"# ! !"#

!!"!#

!

!"!#

$%!&#'()

*

%@),-7=&,0,1,>8

Figure 3: QQ plots comparing MAI with Gaussian distribution. Left column: k/n = .125, middle
column: k/n = .1875, right column: k/n = .25. Top row: USE, middle row: RSE, bottom row: URP.
The RSE and URP ensembles are discussed in Section 8. The plots all appear nearly linear, indicating
that the MAI has a nearly Gaussian distribution.

the coordinates j ∈ Is−1 are ignored at stage s - the residual in those coordinates is deterministically 0.
Empirically, residual MAI has also a Gaussian behavior. Figure 4 shows quantile-quantile plots for the

first few stages of the CFAR variant, comparing the residual MAI with a standard normal distribution.
The plots are effectively straight lines, illustrating the Gaussian approximation. Later, we provide
theoretical support for a perturbed Gaussian approximation to residual MAI.

3.4 Threshold Selection

Our threshold selection proposal is inspired by the Gaussian behavior of residual MAI. We view the
vector of correlations cs at stage s as consisting of a small number of ‘truly nonzero’ entries, combined
with a large number of ‘Gaussian noise’ entries. The problem of separating ‘signal’ from ‘noise’ in such
problems has generated a large literature including the papers [24, 27, 26, 1, 23, 37], which influenced
our way of thinking.

We adopt language from statistical decision theory [39] and the field of multiple comparisons [38].
Recall that the support I0 of x0 is being (crudely) estimated in the StOMPalgorithm. If a coordinate
belonging to I0 does not appear in IS , we call this a missed detection. If a coordinate not in I0 does
appear in IS we call this a false alarm. The coordinates in IS we call discoveries, and the coordinates
in IS\I0 we call false discoveries. (Note: false alarms are also false discoveries. The terminological
distinction is relevant when we normalize to form a rate; thus the false alarm rate is the number of false
alarms divided by the number of coordinates not in I0; the false discovery rate is the fraction of false
discoveries within IS .)

We propose two strategies for setting the threshold. Ultimately, each strategy should land us in a
position to apply Lemma 3.1: i.e. to arrive at a state where #IS ≤ n and there are no missed detections.
Then, Lemma 3.1 assures us, we perfectly recover: x̂S = x. The two strategies are:

• False Alarm Control. We attempt to guarantee that the number of total false alarms, across all
stages, does not exceed the natural codimension of the problem, defined as n− k. Subject to this,
we attempt to make the maximal number of discoveries possible. To do so, we choose a threshold
so the False Alarm rate at each stage does not exceed a per-stage budget.

• False Discovery Control. We attempt to arrange that the number of False Discoveries cannot exceed

7

linearity corresponds to Gaussianity

Gaussian approximation

Translates in seismic situation to

! source/receiver positions distributed uniformly

! random sampling is known to reduce the
adverse effects from under sampling

When valid there exists a fast approximate
solution for typical recovery problems.

Exist accurate recovery conditions (phase
diagrams) for medium size problems.

Allows design acquisition geometries.

Phase diagrams

Interested in two questions:

! How many measurements does one need to
take to recover typical seismic wavefields to
within a prescribed accuracy?

! To what accuracy can one reconstruct typical
seismic wavefields given a certain acquisition
grid and noise level?

Phase diagrams delineate regions for
successful (white) and unsuccessful
recovery(dark).

Phase diagrams

Define “measurement density”

as the ratio of the number of measurements
over the length of the sparsity vector

and “ sparsity density”

the ratio of the number of non-zero entries in
the sparsity vector over the number of
measurements

Phase diagrams tests the recovery for
combinations

• weaker recovery conditions (16) that lead to highly probable recovery of typical sparsity

vectors are sufficient, as opposed to strong conditions of recovery that hold for every possible

realization of the sparsity vector.

Therefore, we follow recent work by (16) and stablish recovery conditions empirically by con-

ducting a suite of recovery problems for realizations of typical measurement matrices and sparsity

vectors. To obtain reliable statistics, the recovery is repeated for several realizations of each re-

covery problem. The results from these experiments are summarized in a diagram recording the

number of successful recoveries. It appears that this diagram’s behavior is reminiscent to that of

phase diagrams, separating two distinct areas of parameter combinations that yield either success or

failure of the recovery.

Phase diagram for the recovery of strictly sparse problems: Given the size and type of recovery

problems in seismology, modeling the transition from successful to failed recovery in terms of a

phase transition seems appropriate. The advantage of this approach is that we can actually compute

phase diagrams for small systems while we can obtain information on the behavior of large systems

by studying the statistical behavior of the matrix A.

Phase diagrams of this type measure the performance of sparse recovery as a function of two

ratios, namely the ratio of the number of measurements over the length of the sparsity vector δ =

n/N and the ratio of the number of non-zero entries in the sparsity vector over the number of

measurements ρ = k/n. These phase diagrams are formed by all pairs on the unit square, i.e.,

(δ ,ρ) ∈ [0,1]× [0,1]. When the size of the sparsity vector is fixed to N, the recovery for each

n depends on the number of non-zeros k. For large ρ (k large), recovery is unlikely by lack of

sparsity. Near exact recovery is possible for small ρ . For each n, there is a different critical number

of non-zeros in x0 for which recovery becomes possible. The larger the number of measurements,

15

Figure 5: Phase Diagram for !1 minimization. Shaded attribute is the number of coordinates of recon-
struction which differ from optimally sparse solution by more than 10−4. The diagram displays a rapid
transition from perfect reconstruction to perfect disagreement. Overlaid red curve is theoretical curve
ρ!1 .

4.2 Phase Diagram

A phase diagram depicts performance of an algorithm at a sequence of problem suites S(k, n,N). The
average value of some performance measure as displayed as a function of ρ = k/n and δ = n/N . Both of
these variables ρ, δ ∈ [0, 1], so the diagram occupies the unit square.

To illustrate such a phase diagram, consider a well-studied case where something interesting happens.
Let x1 solve the optimization problem:

(P1) min ‖x‖1 subject to y = Φx.

As mentioned earlier, if y = Φx0 where x0 has k nonzeros, we may find that x1 = x0 exactly when k
is small enough. Figure 5 displays a grid of δ − ρ values, with δ ranging through 50 equispaced points
in the interval [.05, .95] and ρ ranging through 50 equispaced points in [.05, .95]; here N = 800. Each
point on the grid shows the mean number of coordinates at which original and reconstruction differ by
more than 10−4, averaged over 100 independent realizations of the standard problem suite Sst(k, n,N).
The experimental setting just described, i.e. the δ − ρ grid setup, the values of N , and the number of
realizations, is used to generate phase diagrams later in this paper, although the problem suite being
used may change.

This diagram displays a phase transition. For small ρ, it seems that high-accuracy reconstruction is
obtained, while for large ρ reconstruction fails. The transition from success to failure occurs at different
ρ for different values of δ.

This empirical observation is explained by a theory that accurately predicts the location of the
observed phase transition and shows that, asymptotically for large n, this transition is perfectly sharp.
Suppose that problem (y, Φ) is drawn at random from the standard problem suite, and consider the event
Ek,n,N that x0 = x1 i.e. that !1 minimization exactly recovers x0. The paper [19] defines a function
ρ!1(δ) (called there ρW) with the following property. Consider sequences of (kn), (Nn) obeying kn/n→ ρ
and n/Nn → δ. Suppose that ρ < ρ!1(δ). Then as n→∞

Prob(Ekn,n,Nn)→ 1.

On the other hand, suppose that ρ > ρ!1(δ). Then as n→∞

Prob(Ekn,n,Nn)→ 0.

The theoretical curve (δ, ρ!1(δ)) described there is overlaid on Figure 5, showing good agreement between
asymptotic theory and experimental results.

9

• weaker recovery conditions (16) that lead to highly probable recovery of typical sparsity

vectors are sufficient, as opposed to strong conditions of recovery that hold for every possible

realization of the sparsity vector.

Therefore, we follow recent work by (16) and stablish recovery conditions empirically by con-

ducting a suite of recovery problems for realizations of typical measurement matrices and sparsity

vectors. To obtain reliable statistics, the recovery is repeated for several realizations of each re-

covery problem. The results from these experiments are summarized in a diagram recording the

number of successful recoveries. It appears that this diagram’s behavior is reminiscent to that of

phase diagrams, separating two distinct areas of parameter combinations that yield either success or

failure of the recovery.

Phase diagram for the recovery of strictly sparse problems: Given the size and type of recovery

problems in seismology, modeling the transition from successful to failed recovery in terms of a

phase transition seems appropriate. The advantage of this approach is that we can actually compute

phase diagrams for small systems while we can obtain information on the behavior of large systems

by studying the statistical behavior of the matrix A.

Phase diagrams of this type measure the performance of sparse recovery as a function of two

ratios, namely the ratio of the number of measurements over the length of the sparsity vector δ =

n/N and the ratio of the number of non-zero entries in the sparsity vector over the number of

measurements ρ = k/n. These phase diagrams are formed by all pairs on the unit square, i.e.,

(δ ,ρ) ∈ [0,1]× [0,1]. When the size of the sparsity vector is fixed to N, the recovery for each

n depends on the number of non-zeros k. For large ρ (k large), recovery is unlikely by lack of

sparsity. Near exact recovery is possible for small ρ . For each n, there is a different critical number

of non-zeros in x0 for which recovery becomes possible. The larger the number of measurements,

15

Figure 5: Phase Diagram for !1 minimization. Shaded attribute is the number of coordinates of recon-
struction which differ from optimally sparse solution by more than 10−4. The diagram displays a rapid
transition from perfect reconstruction to perfect disagreement. Overlaid red curve is theoretical curve
ρ!1 .

4.2 Phase Diagram

A phase diagram depicts performance of an algorithm at a sequence of problem suites S(k, n,N). The
average value of some performance measure as displayed as a function of ρ = k/n and δ = n/N . Both of
these variables ρ, δ ∈ [0, 1], so the diagram occupies the unit square.

To illustrate such a phase diagram, consider a well-studied case where something interesting happens.
Let x1 solve the optimization problem:

(P1) min ‖x‖1 subject to y = Φx.

As mentioned earlier, if y = Φx0 where x0 has k nonzeros, we may find that x1 = x0 exactly when k
is small enough. Figure 5 displays a grid of δ − ρ values, with δ ranging through 50 equispaced points
in the interval [.05, .95] and ρ ranging through 50 equispaced points in [.05, .95]; here N = 800. Each
point on the grid shows the mean number of coordinates at which original and reconstruction differ by
more than 10−4, averaged over 100 independent realizations of the standard problem suite Sst(k, n,N).
The experimental setting just described, i.e. the δ − ρ grid setup, the values of N , and the number of
realizations, is used to generate phase diagrams later in this paper, although the problem suite being
used may change.

This diagram displays a phase transition. For small ρ, it seems that high-accuracy reconstruction is
obtained, while for large ρ reconstruction fails. The transition from success to failure occurs at different
ρ for different values of δ.

This empirical observation is explained by a theory that accurately predicts the location of the
observed phase transition and shows that, asymptotically for large n, this transition is perfectly sharp.
Suppose that problem (y, Φ) is drawn at random from the standard problem suite, and consider the event
Ek,n,N that x0 = x1 i.e. that !1 minimization exactly recovers x0. The paper [19] defines a function
ρ!1(δ) (called there ρW) with the following property. Consider sequences of (kn), (Nn) obeying kn/n→ ρ
and n/Nn → δ. Suppose that ρ < ρ!1(δ). Then as n→∞

Prob(Ekn,n,Nn)→ 1.

On the other hand, suppose that ρ > ρ!1(δ). Then as n→∞

Prob(Ekn,n,Nn)→ 0.

The theoretical curve (δ, ρ!1(δ)) described there is overlaid on Figure 5, showing good agreement between
asymptotic theory and experimental results.

9

Phase diagrams
l1 solver [from Donoho et al]

In the white region

recovers exactly.

measurement vector y ∈ Rn with y = Ax0, by solving the following optimization problem

P1 :

x̂ = argminx ‖x‖1 subject to Ax = y

f̂ = SH x̂.

(9)

The synthesis matrix A ∈ Cn×N is composed of three matrices, namely, A := RMSH with SH the

sparsity matrix S := F with f the Fourier analysis or decomposition matrix; M := I the Dirac mea-

surement basis with I the idendity matrix and R a restriction matrix. This restriction matrix extracts

k rows from the N×N Fourier matrix since MSH = F. During the restriction, the columns of A are

normalized such that ‖ai}‖= 1 for i = 1 · · ·N.

The mathematical criteria for exact recovery, such as the !0-norm of the difference between the

original and the recovered sparsity vectors ‖x̂−x0‖0, is are unfortunately impossible because of the

finite precision in floating point arithmetic. Instead, we either call a recovery successful when an

entry is to within a small constant equal to the corresponding entry in x0 or we call the recovery

successful when the relative !2-error is smaller then some threshold, ‖x̂−x‖2/‖x0‖2 ≤ ε .

The main results of compressed sensing is that it predicts the number of measurements n that are

required to ’exacly’ recover an arbitrary sparsity vector x0 with k non-zero entries given a certain

choice for the measurement and sparsity matrices. For individual realizations of the sparsity and

measurement vector, these conditions are sharp. For instance, the recovery of a sinusiodal function

of length N = 1024 with k =? non-zero entries in x0 is succesful for a measurement vector y con-

sisting of n =??? elements and fails for n =???− 2 measurements. This behavior is numerically

illustrated in Fig. 1 and has also been observed by (35) for the spiky deconvolution.

Strong recovery conditions: An important result from the literature on compressed sensing states

that exact recovery from incomplete measurements is possible as long as the synthesis matrix A

13

fully sampled

sparse signal

fully sampled

rich signal

under sampled

sparse signal

fully sampled

rich signal

recovery

failed

recovery

Phase diagrams
[Donoho et al]

White area corresponds to successful recovery.

Dark area corresponds to unsuccessful
recovery.

Can be used to answer two main questions

! expensive to compute

! for large systems sharp transition

! theory applies to ideal matrices

How can these results be extended to large to
very large systems?

StOMP
[from Donoho et al]

Stage-wise Orthonormal Matching Pursuit:

Solves problem approximately for typical
problems ...

Matched Filter

!

"
T
r
s

Hard Thresholding/
Subset Selection

!

j : cs(j) > ts{ }

Set Union

!

I
s"1# J

s

Projection

!

"I s

T
"I s()

#1

"I s

T
y

Interference
Construction

!

"x
s

!

+

!

"
!

y

!

r
s

!

c
s

!

J
s

!

I
s

!

x
s

!

"x
s

!

ˆ x
S

!

I
s"1

Figure 1: Schematic Representation of the StOMP algorithm.

performance.

3.1 The Procedure

StOMPoperates in S stages, building up a sequence of approximations x0, x1, . . . by removing detected
structure from a sequence of residual vectors r1, r2, Figure 1 gives a diagrammatic representation.

StOMPstarts with initial ‘solution’ x0 = 0 and initial residual r0 = y. The stage counter s starts at
s = 1. The algorithm also maintains a sequence of estimates I1, . . . , Is of the locations of the nonzeros
in x0.

The s-th stage applies matched filtering to the current residual, getting a vector of residual correlations

cs = ΦT rs−1,

which we think of as containing a small number of significant nonzeros in a vector disturbed by Gaussian
noise in each entry. The procedure next performs hard thresholding to find the significant nonzeros; the
thresholds, are specially chosen based on the assumption of Gaussianity [see below]. Thresholding yields
a small set Js of “large” coordinates:

Js = {j : |cs(j)| > tsσs};

here σs is a formal noise level and ts is a threshold parameter. We merge the subset of newly selected
coordinates with the previous support estimate, thereby updating the estimate:

Is = Is−1 ∪ Js.

We then project the vector y on the columns of Φ belonging to the enlarged support. Letting ΦI denote
the n× |I| matrix with columns chosen using index set I, we have the new approximation xs supported
in Is with coefficients given by

(xs)Is = (ΦT
Is

ΦIs)
−1ΦT

Is
y.

The updated residual is
rs = y − Φxs.

We check a stopping condition and, if it is not yet time to stop, we set s := s + 1 and go to the next
stage of the procedure. If it is time to stop, we set x̂S = xs as the final output of the procedure.

Remarks:

4

StOMP
[from Donoho et al]

!"" #"" $"" %"" &"""
!&

!"'(

"

"'(

&
)*+,-*./012,345.16478

!"" #"" $"" %"" &"""
!&

!"'(

"

"'(

&
)9+,:*62,.061;0<52478

!"" #"" $"" %"" &"""
!&

!"'(

"

"'(

&

)/+,=>>6<?4@*.1,;<5A.4<7,?
&
B,CC?

&
,!,?

"
CC
!
,D,"'#&

!"" #"" $"" %"" &"""
!&

!"'(

"

"'(

&
)2+,-*./012,345.16478

!"" #"" $"" %"" &"""
!&

!"'(

"

"'(

&
)1+,:*62,.061;0<52478

!"" #"" $"" %"" &"""
!&

!"'(

"

"'(

&

)3+,=>>6<?4@*.1,;<5A.4<7,?
!
B,CC?

!
,!,?

"
CC
!
,D,"'&!

!"" #"" $"" %"" &"""
!&

!"'(

"

"'(

&
)8+,-*./012,345.16478

!"" #"" $"" %"" &"""
!&

!"'(

"

"'(

&
)0+,:*62,.061;0<52478

!"" #"" $"" %"" &"""
!&

!"'(

"

"'(

&

)4+,=>>6<?4@*.1,;<5A.4<7,?
E
B,CC?

E
,!,?

"
CC
!
,D,"'"!!

Figure 2: Progression of the StOMPalgorithm. Panels (a),(d),(g): successive matched filtering outputs
c1,c2, c3; Panels (b),(e),(h): successive thresholding results; Panels (c),(f),(i): successive partial solutions.
In this example, k = 32, n = 256, N = 1024.

specifically, if Φ is a matrix from the USE and if n and N are both large, then the entries in the MAI
vector z have a histogram which is nearly Gaussian with standard deviation

σ ≈ ‖x0‖2/
√

n. (3.2)

The heuristic justification is as follows. The MAI has the form

z(j) = x̃(j)− x0(j) =
∑

j !=!

〈φj ,φ!〉x0(#).

The thing we regard as ‘random’ in this expression is the matrix Φ. The term ξj
k ≡ 〈φj ,φk〉 measures the

projection of a random point on the sphere Sn−1 onto another random point. This random variable has
approximately a Gaussian distribution N(0, 1

n). For Φ from the USE, for a given fixed φj , the different
random variables (ξj

k : k (= j) are independently distributed. Hence the quantity z(j) is an iid sum of
approximately normal r.v.’s, and so, by standard arguments, should be approximately normal with mean
0 and variance

σ2
j = V ar[

∑

j !=!

ξj
!x0(#)] = (

∑

j !=!

x0(#)2) · V ar(ξj
1) ≈ n−1‖x0‖2

2

Setting σ2 = ‖x0‖2/n, this justifies (3.2).
Computational experiments validate Gaussian approximation for the MAI. In Figure 3, Panels (a),(d),(g)

display Gaussian QQ-plots of the MAI in the sparse case with k/n = .125, .1875 and .25, in the Uniform
Spherical Ensemble with n = 256 and N = 1024. In each case, the QQ-plot appears straight, as the
Gaussian model would demand.

Through the rest of this paper, the phrase Gaussian approximation means that the MAI has an
approximately Gaussian marginal distribution. (The reader interested in formal proofs of Gaussian
approximation can consult the literature of multiuser detection e.g. [46, 61, 12]; such a proof is implicit
in the proofs of Theorems 1 and 2 below. The connection between our work and MUD theory will be
amplified in Section 11 below).

Properly speaking, the term ‘MAI’ applies only at stage 1 of StOMP . At later stages there is residual
MAI, i.e. MAI which has not yet been cancelled. This can be defined as

zs(j) = x0(j)− φT
j rs/‖PIs−1φj‖2

2, j (∈ Is−1;

6

StOMP
[from Donoho et al]

4 2 0 2 4
2

1

0

1

2

N(0,1)

z

(a) Stage no. 1

4 2 0 2 4
2

1

0

1

2

N(0,1)

z

(b) Stage no. 2

4 2 0 2 4
2

1

0

1

2

N(0,1)

z

(c) Stage no. 3

4 2 0 2 4
2

1

0

1

2

N(0,1)

z

(d) Stage no. 4

4 2 0 2 4
2

1

0

1

2

N(0,1)

z

(e) Stage no. 5

4 2 0 2 4
2

1

0

1

2

N(0,1)

z

(f) Stage no. 6

Figure 4: QQ plots comparing residual MAI with Gaussian distribution. Quantiles of residual MAI at
different stages of StOMPare plotted against Gaussian quantiles. Near-linearity indicates approximate
Gaussianity.

a fixed fraction q of all discoveries, and to make the maximum number of discoveries possible subject
to that constraint. This leads us to consider Simes’ rule [2, 1].

The False Alarm Control strategy requires knowledge of the number of nonzeros k or some upper
bound. False Discovery Control does not require such knowledge, which makes it more convenient for
applications, if slightly more complex to implement and substantially more complex to analyse [1]. The
choice of strategy matters; the basic StOMPalgorithm behaves differently depending on the threshold
strategy, as we will see below.

Implementation details are available by downloading the software we have used to generate the results
in this paper; see Section 10 below.

4 Performance Analysis by Phase Transition

When does StOMPwork? To discuss this, we use the notions of phase diagram and phase transition.

4.1 Problem Suites, Performance Measures

By problem suite S(k, n,N) we mean a collection of Sparse Solution Problems defined by two ingredients:
(a) an ensemble of random matrices Φ of size n by N ; (b) an ensemble of k-sparse vectors x0. By standard
problem suite Sst(k, n,N) we mean the suite with Φ sampled from the uniform spherical ensemble, with
x0 a random variable having k nonzeros sampled iid from a standard N(0, 1) distribution.

For a given problem suite, a specific algorithm can be run numerous times on instances sampled from
the problem suite. Its performance on each realization can then be measured according to some numerical
or qualitative criterion. If we are really ambitious, and insist on perfect recovery, we use the performance
measure 1{x̂S !=x0}. More quantitative is the !0-norm, ‖x̂S − x0‖0, the number of sites at which the two
vectors disagree. Both these measures are inappropriate for use with floating point arithmetic, which
does not produce exact agreement. We prefer to use instead !0,ε, the number of sites at which the
reconstruction and the target disagree by more than ε = 10−4. We can also use the quantitative measure
relerr2 = ‖x̂S − x0‖2/‖x0‖2, declaring success when the measure is smaller than a fixed threshold (say
ε).

For a qualitative performance indicator we simply report the fraction of realizations where the qual-
itative condition was true; for a quantitative performance measure, we present the mean value across
instances at a given k, n,N .

8

StOMP

Norm-one solvers are prohibitively
expensive:

with

! N length sparsity vector

! V=cost 1 matrix-vector multiplication

! S=10 the number of loops of StOMP

! number of lsqr iterations

Fast operators and StOMP save!

of nN flops. Next, it applies hard-thresholding to the residual correlations and updates the active set
accordingly, using at most 2N additional flops. The core of the computation lies in calculating the
projection of y onto the subset of columns ΦIs , to get a new approximation xs. This is implemented via
a Conjugate Gradient (CG) solver [34]. Each CG iteration involves application of ΦIs and ΦT

Is
, costing

at most 2nN + O(N) flops. The number of CG iterations used is a small constant, independent of n
and N , which we denote ν. In our implementation we use ν = 10. Finally, we compute the new residual
by applying Φ to the new approximation, requiring an additional nN flops. Summarizing, the total
operation count per StOMPstage amounts to (ν + 2)nN + O(N). The total number of StOMPstages,
S, is a prescribed constant, independent of the data; in the simulations in this paper we set S = 10.

Readers familiar with OMP have by now doubtless recognized the evident parallelism in the algorith-
mic structure of StOMPand OMP. Indeed, much like StOMP , at each stage OMP computes residual
correlations and solves a least-squares problem for the new solution estimate. Yet, unlike StOMP , OMP
builds up the active set one element at a time. Hence, an efficient implementation would necessarily main-
tain a Cholesky factorization of the active set matrix and update it at each stage, thereby reducing the
cost of solving the least-squares system. In total, k steps of OMP would take at most 4k3/3+knN+O(N)
flops. Without any sparsity assumptions on the data, OMP takes at most n steps, thus, its worst-case
performance is bounded by 4n3/3+n2N +O(N) operations. A key difference between StOMP and OMP
is that the latter needs to store the Cholesky factor of the active set matrix in its explicit form, taking
up to n2/2 memory elements. When n is large, as is often the case in 2- and 3-D image-reconstruction
scenarios, this greatly hinders the applicability of OMP. In contrast, StOMP has very modest storage
requirements. At any given point of the algorithm execution, one needs only store the current estimate
xs, the current residual vector rs, and the current active set Is. This makes StOMPvery attractive for
use in large-scale applications.

Table 2 summarizes our discussion so far, offering a comparison of the computational complexity of
StOMP , OMP and "1 minimization via linear programming (LP). For the LP solver, we use a primal-
dual barrier method for convex optimization (PDCO) developed by Michael Saunders [49]. The estimates
listed in the table all assume worst-case behavior. Examining the bounds in the dense matrix case closely,
we notice that StOMP is the only algorithm of the three admitting quadratic order complexity estimates.
In contrast, OMP and PDCO require cubic order estimates for their worst-case performance bound.
Therefore, for large scale problems StOMP can dominate due to its simple structure and efficiency. In
the case where fast operators are applicable, StOMPyet again prevails; it is the only algorithm of the
three requiring a constant number (S · (ν + 2)) of matrix-vector multiplications to reach a solution.

Algorithm Dense Matrices Fast Operators
StOMP S(ν + 2)nN + O(N) S(ν + 2) · V + O(N)
OMP 4n3/3 + n2N + O(N) 4n3/3 + 2n · V + O(N)
"1 min. with PDCO S(2N)3/3 + O(nN) 2N · V + O(nN)

Table 2: Worst-Case Complexity Bounds for StOMP , OMP and PDCO. S denotes the maximum number
of stages, ν denotes the maximum number of CG iterations employed per stage of StOMP, and V stands
for the cost of one matrix-vector product (implemented as a fast operator).

To convey the scale of computational benefits in large problems, we conduct a simple experiment in
a setting where Φ can be implemented as a fast operator. We consider a system y = Φx where Φ is
made from only n = δN rows of the Fourier matrix. Φ can be implemented by application of a Fast
Fourier Transform followed by a coordinate selection. Table 3 gives the results. Clearly the advantage
of StOMP is even more convincing.

Problem Suite (k,n,N) "1 OMP CFAR CFDR
SPFE (500,10000,20000) 237.69 53.64 2.07 3.16
SPFE (1000,20000,50000) 810.39 299.54 5.63 9.47

Table 3: Comparison of execution times (in seconds) in the random partial Fourier suite SPFE(k, n,N).
Because of the fast operator, StOMPoutperforms OMP.

12

ν

StOMP versus BP

Stage-wise Orthonormal Matching Pursuit:

! approximate

! good for sparse problems

! Order of magnitude faster

Figure 5: Phase Diagram for !1 minimization. Shaded attribute is the number of coordinates of recon-
struction which differ from optimally sparse solution by more than 10−4. The diagram displays a rapid
transition from perfect reconstruction to perfect disagreement. Overlaid red curve is theoretical curve
ρ!1 .

4.2 Phase Diagram

A phase diagram depicts performance of an algorithm at a sequence of problem suites S(k, n,N). The
average value of some performance measure as displayed as a function of ρ = k/n and δ = n/N . Both of
these variables ρ, δ ∈ [0, 1], so the diagram occupies the unit square.

To illustrate such a phase diagram, consider a well-studied case where something interesting happens.
Let x1 solve the optimization problem:

(P1) min ‖x‖1 subject to y = Φx.

As mentioned earlier, if y = Φx0 where x0 has k nonzeros, we may find that x1 = x0 exactly when k
is small enough. Figure 5 displays a grid of δ − ρ values, with δ ranging through 50 equispaced points
in the interval [.05, .95] and ρ ranging through 50 equispaced points in [.05, .95]; here N = 800. Each
point on the grid shows the mean number of coordinates at which original and reconstruction differ by
more than 10−4, averaged over 100 independent realizations of the standard problem suite Sst(k, n,N).
The experimental setting just described, i.e. the δ − ρ grid setup, the values of N , and the number of
realizations, is used to generate phase diagrams later in this paper, although the problem suite being
used may change.

This diagram displays a phase transition. For small ρ, it seems that high-accuracy reconstruction is
obtained, while for large ρ reconstruction fails. The transition from success to failure occurs at different
ρ for different values of δ.

This empirical observation is explained by a theory that accurately predicts the location of the
observed phase transition and shows that, asymptotically for large n, this transition is perfectly sharp.
Suppose that problem (y, Φ) is drawn at random from the standard problem suite, and consider the event
Ek,n,N that x0 = x1 i.e. that !1 minimization exactly recovers x0. The paper [19] defines a function
ρ!1(δ) (called there ρW) with the following property. Consider sequences of (kn), (Nn) obeying kn/n→ ρ
and n/Nn → δ. Suppose that ρ < ρ!1(δ). Then as n→∞

Prob(Ekn,n,Nn)→ 1.

On the other hand, suppose that ρ > ρ!1(δ). Then as n→∞

Prob(Ekn,n,Nn)→ 0.

The theoretical curve (δ, ρ!1(δ)) described there is overlaid on Figure 5, showing good agreement between
asymptotic theory and experimental results.

9

Figure 6: Phase diagram for CFAR thresholding. Overlaid red curve is heuristically-derived analytical
curve ρFAR (see Appendix B). Shaded attribute: number of coordinates wrong by more than 10−4

relative error.

4.3 Phase Diagrams for StOMP

We now use phase diagrams to study the behavior of StOMP . Figure 6 displays performance of StOMPwith
CFAR thresholding with per-iteration false alarm rate (n− k)/(S(N − k)). The problem suite and un-
derlying problem size, N = 800, are the same as in Figure 5. The shaded attribute again portrays
the number of entries where the reconstruction misses by more than 10−4. Once again, for very sparse
problems (ρ small), the algorithm is successful at recovering (a good approximation to) x0, while for less
sparse problems (ρ large), the algorithm fails. Superposed on this display is the graph of a heuristically-
derived function ρFAR, which we call the Predicted Phase transition for CFAR thresholding. Again the
agreement between the simulation results and the predicted transition is reasonably good. Appendix
B explains the calculation of this predicted transition, although it is best read only after first reading
Section 6.

Figure 7 shows the number of mismatches for the StOMPalgorithm based on CFDR thresholding
with False Discovery Rate q = 1/2. Here N = 800 and the display shows that, again, for very sparse
problems (ρ small), the algorithm is successful at recovering (a good approximation to) x0, while for less
sparse problems ρ large, the algorithm fails. Superposed on this display is the graph of a heuristically-
derived function ρFDR, which we call the Predicted Phase transition for CFDR thresholding. Again the
agreement between the simulation results and the predicted transition is reasonably good, though visibly
not quite as good as in the CFAR case.

5 Computation

Since StOMPseems to work reasonably well, it makes sense to study how rapidly it runs.

5.1 Empirical Results

Table 1 shows the running times for StOMP equipped with CFAR and CFDR thresholding, solving an
instance of the problem suite Sst(k, n,N). We compare these figures with the time needed to solve
the same problem instance via "1 minimization and OMP. Here "1 minimization is implemented using
Michael Saunders’ PDCO solver [49]. The simulations used to generate the figures in the table were all
executed on a 3GHz Xeon workstation, comparable with current desktop CPUs.

Table 1 suggests that a tremendous saving in computation time is achieved when using the StOMPscheme
over traditional "1 minimization. The conclusion is that CFAR- and CFDR- based methods have a large

10

StOMP
[from Donoho et al]

Figure 10: Phase Diagrams for CFAR thresholding when the nonzeros have nonGaussian distributions.
Panel (a) uniform amplitude distribution; Panel (b) Power law distribution x0(j) = c/j, j = 1, . . . , k.
Compare to Figure 6. Shaded attribute: number of entries where reconstruction misses by 10−4.

Figure 11: Performance of CFDR thresholding, noisy case. Relative !2 error as a function of indetermi-
nacy and sparsity. Performance at signal-to-noise ratio 10. Shaded attribute gives relative !2 error of
reconstruction. Signal-to-Noise ratio is ‖x0‖2/‖ΦT ξ‖2.

22

StOMP
[from Donoho et al]

Figure 10: Phase Diagrams for CFAR thresholding when the nonzeros have nonGaussian distributions.
Panel (a) uniform amplitude distribution; Panel (b) Power law distribution x0(j) = c/j, j = 1, . . . , k.
Compare to Figure 6. Shaded attribute: number of entries where reconstruction misses by 10−4.

Figure 11: Performance of CFDR thresholding, noisy case. Relative !2 error as a function of indetermi-
nacy and sparsity. Performance at signal-to-noise ratio 10. Shaded attribute gives relative !2 error of
reconstruction. Signal-to-Noise ratio is ‖x0‖2/‖ΦT ξ‖2.

22

Compressed imaging

position (km)

ti
m

e
 (

s
)

0 1 2 3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Compressed imaging

position (km)

ti
m

e
 (

s
)

0 1 2 3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250

0

20

40

60

80

100

120

H2 eigenvector index n = 1861

fr
e

q
u

e
n

c
y
 i
n

d
e

x

Compressed imaging Compressed imaging

position (km)

ti
m

e
 (

s
)

0 1 2 3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Use of phase diagram

How many measurements does one need to
to take to recover typical seismic
wavefields to within a prescribed accuracy?

! determine grid size of the problem N

! plots for nonlinear approximation rate => k

! phase diagram => n for which recovery is
feasible

Assumes knowledge of the decay of the
approximation error for a typical seismic data
set.

Use of phase diagram

Figure 6: Phase diagram for CFAR thresholding. Overlaid red curve is heuristically-derived analytical
curve ρFAR (see Appendix B). Shaded attribute: number of coordinates wrong by more than 10−4

relative error.

4.3 Phase Diagrams for StOMP

We now use phase diagrams to study the behavior of StOMP . Figure 6 displays performance of StOMPwith
CFAR thresholding with per-iteration false alarm rate (n− k)/(S(N − k)). The problem suite and un-
derlying problem size, N = 800, are the same as in Figure 5. The shaded attribute again portrays
the number of entries where the reconstruction misses by more than 10−4. Once again, for very sparse
problems (ρ small), the algorithm is successful at recovering (a good approximation to) x0, while for less
sparse problems (ρ large), the algorithm fails. Superposed on this display is the graph of a heuristically-
derived function ρFAR, which we call the Predicted Phase transition for CFAR thresholding. Again the
agreement between the simulation results and the predicted transition is reasonably good. Appendix
B explains the calculation of this predicted transition, although it is best read only after first reading
Section 6.

Figure 7 shows the number of mismatches for the StOMPalgorithm based on CFDR thresholding
with False Discovery Rate q = 1/2. Here N = 800 and the display shows that, again, for very sparse
problems (ρ small), the algorithm is successful at recovering (a good approximation to) x0, while for less
sparse problems ρ large, the algorithm fails. Superposed on this display is the graph of a heuristically-
derived function ρFDR, which we call the Predicted Phase transition for CFDR thresholding. Again the
agreement between the simulation results and the predicted transition is reasonably good, though visibly
not quite as good as in the CFAR case.

5 Computation

Since StOMPseems to work reasonably well, it makes sense to study how rapidly it runs.

5.1 Empirical Results

Table 1 shows the running times for StOMP equipped with CFAR and CFDR thresholding, solving an
instance of the problem suite Sst(k, n,N). We compare these figures with the time needed to solve
the same problem instance via "1 minimization and OMP. Here "1 minimization is implemented using
Michael Saunders’ PDCO solver [49]. The simulations used to generate the figures in the table were all
executed on a 3GHz Xeon workstation, comparable with current desktop CPUs.

Table 1 suggests that a tremendous saving in computation time is achieved when using the StOMPscheme
over traditional "1 minimization. The conclusion is that CFAR- and CFDR- based methods have a large

10

STABLE SEISMIC IMAGE RECOVERY 13

a) Marmoussi Model

50 100 150 200 250 300 350 400 450 500

100

200

300

400

500

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8
 b) Nonlinear Approximation Rate

Coefficient Percentage

N
o

rm
a

liz
e

d
 E

rr
o

r

Curvelet

Wavelet

Fourier

FIG. 2. Nonlinear approximation rate for the curvelet transform compared to the Fourier

and discrete wavelet transforms. (a) reflectivity of the EAGE Marmousi model; (b) nonlinear

approximation rate for curvelets (solid), Fourier (dashed) and discrete wavelets (dotted). The

decay for the curvelet transform clearly compares favorably to these other two transforms.

Diagonal approximation of the Hessian. The approach we are taking to recover

the migration amplitudes revolves around the following approximation

Ψr ! CT Γ[r0]Γ[r0]Cr := AAT r (12)

for the Hessian on a proper3 test vector r. Suppose that this approximate relation

(denoted by the symbol !) holds for a particular test vector r to within the noise

level, then the above definitions for the sparsity synthesis and analysis matrices

(A := CT Γ and AT := ΓC) bring us in the position to formulate a stable recovery

scheme for the amplitudes of the seismic image. Not only, can the sparsity of

the curvelet transform be exploited but the above approximation also allows for a

stable approximate inverse for the Hessian. The recovery requires knowledge of the

3Not ’too far’ from the reference vector r0, used to compute the diagonal weighting matrix

Γ[r0].

D R A F T February 17, 2006, 2:25pm D R A F T

desired
accuracy

k

Fix N

n

Use of phase diagram

To what accuracy can one reconstruct
typical seismic wavefields given a certain
acquisition size, geometry and noise level?

! use N (grid size), n (# of measurements) to
determine recoverable k

! use k in the NLA plot to compute the recovery
error

! for noisy data use adapted phase diagram with
the relative recovery error

Assumes knowledge on the phase diagram.
Unattainable in practice ...

Use of phase diagram

Analytic results for the phase transition are
known for idealized matrices.

We will show empirically how far we can extend.

Remaining questions

! can analytic results be extended to other
matrices?

! can we come up with qualitative and
quantitative recovery conditions for large
problems?

! MAI may provide perspective ...

!"" #"" $"" %"" &"" '"" ("")"" *"" !"""
!!

!"+&

"

"+&

!

Stage6 : SpikeTrain, asz, and Res. Analysis

x

!"" #"" $"" %"" &"" '"" ("")"" *"" !"""
!!

!"+&

"

"+&

!

a
s
z

& !" !& #" #& $" $& %" %& &" && '"
!!

!"+&

"

"+&

!

r
e
s

 A:"FourierBad", N=1024, n=60, k=10

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

100

200

300

400

500

600

700

800

900

Kurtosis Test, A:"FourierBad", N=1024, n=60, k=10

StOMP Solving Stages

K
u
r
t
o
s
i
s

(
a
s
z
)

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
2.5

3

3.5

4

4.5

5

Kurtosis Test, A:"FourierBad", N=1024, n=60, k=10

StOMP Solving Stages

K
u
r
t
o
s
i
s

(
r
e
s
)

!! !" # " !
!"

!$

#

$

"

N(0,1)

Z

(a)Iter No.1

!! !" # " !
!"

!$

#

$

"

N(0,1)

Z

(b)Iter No.2

!! !" # " !
!"

!$

#

$

"

%

Z

(c)Iter No.3

!! !" # " !
!"

!$

#

$

"

%

Z

(d)Iter No.4

!! !" # " !
!"

!$

#

$

"

MAI Test vs. Stages, A:"FourierBad", N=1024, n=60, k=10

Z

(e)Iter No.5

!! !" # " !
!"

!$

#

$

"

%

Z

(f)Iter No.6

!"" #"" $"" %"" &"" '"" ("")"" *"" !"""
!!

!"+&

"

"+&

!

Stage6 : SpikeTrain, asz, and Res. Analysis

x

!"" #"" $"" %"" &"" '"" ("")"" *"" !"""
!!

!"+&

"

"+&

!

a
s
z

!" #" $" %" &" '" (")" *" !""
!!

!"+&

"

"+&

!

r
e
s

 A:"FourierBad", N=1024, n=100, k=10
1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
4

6

8

10

12

14

16

18

Kurtosis Test, A:"FourierBad", N=1024, n=100, k=10

StOMP Solving Stages

K
u
r
t
o
s
i
s

(
a
s
z
)

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
2

2.5

3

3.5

4

4.5

5

5.5

Kurtosis Test, A:"FourierBad", N=1024, n=100, k=10

StOMP Solving Stages

K
u
r
t
o
s
i
s

(
r
e
s
)

!! !" # " !
!"

!$

#

$

"

N(0,1)

Z

(a)Iter No.1

!! !" # " !
!"

!$

#

$

"

N(0,1)

Z

(b)Iter No.2

!! !" # " !
!"

!$

#

$

"

%

Z

(c)Iter No.3

!! !" # " !
!"

!$

#

$

"

%

Z

(d)Iter No.4

!! !" # " !
!"

!$

#

$

"

MAI Test vs. Stages, A:"FourierBad", N=1024, n=100, k=1

Z

(e)Iter No.5

!! !" # " !
!"

!$

#

$

"

%

Z

(f)Iter No.6

!"" #"" $"" %"" &"" '"" ("")"" *"" !"""
!!

!"+&

"

"+&

!

Stage6 : SpikeTrain, asz, and Res. Analysis

x

!"" #"" $"" %"" &"" '"" ("")"" *"" !"""
!!

!"+&

"

"+&

!

a
s
z

#" %" '")" !"" !#" !%" !'" !)" #""
!!

!"+&

"

"+&

!

r
e
s

 A:"FourierBad", N=1024, n=200, k=10

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

50

100

150

200

250

300

Kurtosis Test, A:"FourierBad", N=1024, n=200, k=10

StOMP Solving Stages

K
u
r
t
o
s
i
s

(
a
s
z
)

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

2

4

6

8

10

12

14

16

18

20

Kurtosis Test, A:"FourierBad", N=1024, n=200, k=10

StOMP Solving Stages

K
u
r
t
o
s
i
s

(
r
e
s
)

!! !" # " !
!"

!$

#

$

"

N(0,1)

Z

(a)Iter No.1

!! !" # " !
!"

!$

#

$

"

N(0,1)

Z

(b)Iter No.2

!! !" # " !
!"

!$

#

$

"

%

Z

(c)Iter No.3

!! !" # " !
!"

!$

#

$

"

%

Z

(d)Iter No.4

!! !" # " !
!"

!$

#

$

"

MAI Test vs. Stages, A:"FourierBad", N=1024, n=200, k=1

Z

(e)Iter No.5

!! !" # " !
!"

!$

#

$

"

%

Z

(f)Iter No.6

!"" #"" $"" %"" &"" '"" ("")"" *"" !"""
!!

!"+&

"

"+&

!

Stage6 : SpikeTrain, asz, and Res. Analysis

x

!"" #"" $"" %"" &"" '"" ("")"" *"" !"""
!!

!"+&

"

"+&

!

a
s
z

#" %" '")" !"" !#" !%" !'" !)" #""
!!

!"+&

"

"+&

!

r
e
s

 A:"FourierBad", N=1024, n=200, k=30
1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

50

100

150

200

250

300

350

400

Kurtosis Test, A:"FourierBad", N=1024, n=200, k=30

StOMP Solving Stages

K
u
r
t
o
s
i
s

(
a
s
z
)

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
2

2.5

3

3.5

4

4.5

5

Kurtosis Test, A:"FourierBad", N=1024, n=200, k=30

StOMP Solving Stages

K
u
r
t
o
s
i
s

(
r
e
s
)

!! !" # " !
!"

!$

#

$

"

N(0,1)

Z

(a)Iter No.1

!! !" # " !
!"

!$

#

$

"

N(0,1)

Z

(b)Iter No.2

!! !" # " !
!"

!$

#

$

"

%

Z

(c)Iter No.3

!! !" # " !
!"

!$

#

$

"

%

Z

(d)Iter No.4

!! !" # " !
!"

!$

#

$

"

MAI Test vs. Stages, A:"FourierBad", N=1024, n=200, k=3

Z

(e)Iter No.5

!! !" # " !
!"

!$

#

$

"

%

Z

(f)Iter No.6

!"" #"" $"" %"" &"" '"" ("")"" *"" !"""
!!

!"+&

"

"+&

!

Stage6 : SpikeTrain, asz, and Res. Analysis

x

!"" #"" $"" %"" &"" '"" ("")"" *"" !"""
!!

!"+&

"

"+&

!

a
s
z

&" !"" !&" #"" #&" $"" $&" %""
!!

!"+&

"

"+&

!

r
e
s

 A:"FourierBad", N=1024, n=400, k=10

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

100

200

300

400

500

600

700

Kurtosis Test, A:"FourierBad", N=1024, n=400, k=10

StOMP Solving Stages

K
u
r
t
o
s
i
s

(
a
s
z
)

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
1

2

3

4

5

6

7

8

9

10

Kurtosis Test, A:"FourierBad", N=1024, n=400, k=10

StOMP Solving Stages

K
u
r
t
o
s
i
s

(
r
e
s
)

!! !" # " !
!"

!$

#

$

"

N(0,1)

Z

(a)Iter No.1

!! !" # " !
!"

!$

#

$

"

N(0,1)

Z

(b)Iter No.2

!! !" # " !
!"

!$

#

$

"

%

Z

(c)Iter No.3

!! !" # " !
!"

!$

#

$

"

%

Z

(d)Iter No.4

!! !" # " !
!"

!$

#

$

"

MAI Test vs. Stages, A:"FourierBad", N=1024, n=400, k=1

Z

(e)Iter No.5

!! !" # " !
!"

!$

#

$

"

%

Z

(f)Iter No.6

!"" #"" $"" %"" &"" '"" ("")"" *"" !"""
!!

!"+&

"

"+&

!

Stage6 : SpikeTrain, asz, and Res. Analysis

x

!"" #"" $"" %"" &"" '"" ("")"" *"" !"""
!!

!"+&

"

"+&

!

a
s
z

& !" !& #" #& $" $& %"
!!

!"+&

"

"+&

!

r
e
s

 A:"Fourier", N=1024, n=40, k=10
1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

2.7

2.75

2.8

2.85

2.9

2.95

3

3.05

Kurtosis Test, A:"Fourier", N=1024, n=40, k=10

StOMP Solving Stages

K
u
r
t
o
s
i
s

(
a
s
z
)

!! !" # " !
!"

!$

#

$

"

N(0,1)

Z

(a)Iter No.1

!! !" # " !
!"

!$

#

$

"

N(0,1)

Z

(b)Iter No.2

!! !" # " !
!"

!$

#

$

"

%

Z

(c)Iter No.3

!! !" # " !
!"

!$

#

$

"

%

Z

(d)Iter No.4

!! !" # " !
!"

!$

#

$

"

MAI Test vs. Stages, A:"Fourier", N=1024, n=40, k=10

Z

(e)Iter No.5

!! !" # " !
!"

!$

#

$

"

%

Z

(f)Iter No.6

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
1.5

2

2.5

3

3.5

4

Kurtosis Test, A:"Fourier", N=1024, n=40, k=10

StOMP Solving Stages

K
u
r
t
o
s
i
s

(
r
e
s
)

!"" #"" $"" %"" &"" '"" ("")"" *"" !"""
!!

!"+&

"

"+&

!

Stage6 : SpikeTrain, asz, and Res. Analysis

x

!"" #"" $"" %"" &"" '"" ("")"" *"" !"""
!!

!"+&

"

"+&

!

a
s
z

& !" !& #" #& $" $& %" %& &"
!!

!"+&

"

"+&

!

r
e
s

 A:"Fourier", N=1024, n=50, k=15

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
2.6

2.65

2.7

2.75

2.8

2.85

2.9

2.95

3

Kurtosis Test, A:"Fourier", N=1024, n=50, k=15

StOMP Solving Stages

K
u
r
t
o
s
i
s

(
a
s
z
)

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
2

2.5

3

3.5

4

4.5

5

5.5

Kurtosis Test, A:"Fourier", N=1024, n=50, k=15

StOMP Solving Stages

K
u
r
t
o
s
i
s

(
r
e
s
)

!! !" # " !
!"

!$

#

$

"

N(0,1)

Z

(a)Iter No.1

!! !" # " !
!"

!$

#

$

"

N(0,1)

Z

(b)Iter No.2

!! !" # " !
!"

!$

#

$

"

%

Z

(c)Iter No.3

!! !" # " !
!"

!$

#

$

"

%

Z

(d)Iter No.4

!! !" # " !
!"

!$

#

$

"

MAI Test vs. Stages, A:"Fourier", N=1024, n=50, k=15

Z

(e)Iter No.5

!! !" # " !
!"

!$

#

$

"

%

Z

(f)Iter No.6

!"" #"" $"" %"" &"" '"" ("")"" *"" !"""
!!

!"+&

"

"+&

!

Stage6 : SpikeTrain, asz, and Res. Analysis

x

!"" #"" $"" %"" &"" '"" ("")"" *"" !"""
!!

!"+&

"

"+&

!

a
s
z

!" #" $" %" &" '" (")" *" !""
!!

!"+&

"

"+&

!

r
e
s

 A:"Fourier", N=1024, n=100, k=50
1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

2.95

3

3.05

3.1

3.15

3.2

3.25

3.3

3.35

Kurtosis Test, A:"Fourier", N=1024, n=100, k=50

StOMP Solving Stages

K
u
r
t
o
s
i
s

(
a
s
z
)

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
3.3

3.4

3.5

3.6

3.7

3.8

3.9

4

Kurtosis Test, A:"Fourier", N=1024, n=100, k=50

StOMP Solving Stages

K
u
r
t
o
s
i
s

(
r
e
s
)

!! !" # " !
!"

!$

#

$

"

N(0,1)

Z

(a)Iter No.1

!! !" # " !
!"

!$

#

$

"

N(0,1)

Z

(b)Iter No.2

!! !" # " !
!"

!$

#

$

"

%

Z

(c)Iter No.3

!! !" # " !
!"

!$

#

$

"

%

Z

(d)Iter No.4

!! !" # " !
!"

!$

#

$

"

MAI Test vs. Stages, A:"Fourier", N=1024, n=100, k=50

Z

(e)Iter No.5

!! !" # " !
!"

!$

#

$

"

%

Z

(f)Iter No.6

!"" #"" $"" %"" &"" '"" ("")"" *"" !"""
!!

!"+&

"

"+&

!

Stage6 : SpikeTrain, asz, and Res. Analysis

x

!"" #"" $"" %"" &"" '"" ("")"" *"" !"""
!!

!"+&

"

"+&

!

a
s
z

&" !"" !&" #"" #&" $"" $&" %""
!!

!"+&

"

"+&

!

r
e
s

 A:"Fourier", N=1024, n=400, k=100

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
2.75

2.8

2.85

2.9

2.95

3

3.05

3.1

3.15

3.2

3.25

Kurtosis Test, A:"Fourier", N=1024, n=400, k=100

StOMP Solving Stages

K
u
r
t
o
s
i
s

(
a
s
z
)

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

Kurtosis Test, A:"Fourier", N=1024, n=400, k=100

StOMP Solving Stages

K
u
r
t
o
s
i
s

(
r
e
s
)

!! !" # " !
!"

!$

#

$

"

N(0,1)

Z

(a)Iter No.1

!! !" # " !
!"

!$

#

$

"

N(0,1)

Z

(b)Iter No.2

!! !" # " !
!"

!$

#

$

"

%

Z

(c)Iter No.3

!! !" # " !
!"

!$

#

$

"

%

Z

(d)Iter No.4

!! !" # " !
!"

!$

#

$

"

MAI Test vs. Stages, A:"Fourier", N=1024, n=400, k=100

Z

(e)Iter No.5

!! !" # " !
!"

!$

#

$

"

%

Z

(f)Iter No.6

Conclusions

For the good Fourier, i.e. mixing matrix

! if kurtosis of MAI & residue are app. 3 then
likely recovery

! when close to non-recoverable region then
behavior difficult to predict

! if both kurtosi are far from >> 3 then no
recovery likely

For the bad Fourier, i.e. no mixing matrix

! difficult to predict

! recoverable region is much smaller

! kurtosis is not a good indicator

Outlook

StOMP is orders of magnitude faster then BP

Weak recovery conditions better suited for

Test for Gaussianity and detectability may be
feasible for given

! typical sparsity vector (e.g. permutation of
histogram)

! typical acquisition geometry

! sparsity matrix

Findings are an extension of known matched
filter arguments (randomness = good)

May lead to feasible tests for recovery.

Outlook

Applications discussed during the meeting

! event detection (Mohhammad)

! compressed imaging (Tim)

! NFFT’s (Sastry)

Extension to large systems

Relation to other solvers

Monte-Carlo sampling for the phase diagram
with sparse recovery?

