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Motivation
 improve 

– multiple prediction and removal
– aliased ground roll removal
– imaging

 reduce acquisition cost & time
– acquire less data
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Approach
 look at seismic data in a geometrically correct way

– high dimensional
• typically 5D - i.e. time × source location × receiver location

– very strong geometrical structure (i.e. wavefronts)

 give robust sampling criteria for seismic data
– interpolation
– sparse sampling
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Spatial sampling: 12.5 m
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Seismic Laboratory for Imaging and Modeling

Spatial sampling: avg. 180 m
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From avg. 180 m to 12.5 m
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Spatial sampling: 5 m
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Spatial sampling: avg. 20 m
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From avg. 20 m to 2.5 m
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Agenda
 seismic data interpolation problem

– “classical” and Curvelet Reconstruction with Sparse Inversion (CRSI) 
approaches

– connection between CRSI and stable signal recovery (SSR) theory

 sampling & aliasing
– is there an “optimal” way of sampling seismic data?

 synthetic and real data examples
– comparison between CRSI and other interpolation methods available in 

Madagascar & Fourier Reconstruction with Sparse Inversion (FRSI) by P. 
Zwartjes

– uplift from 2D to 3D



Seismic data interpolation problem

acquired data ideal data

reproducible figure(s)*
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Forward and “classical” inverse problem
 (severely) underdetermined system of linear equations

– infinitely many solutions

 classical approaches
– minimize energy (i.e. quadratic constraint)

signal =

picking
matrix

y

f0

P + n noise

ideal data

f̃= argmin
f

1
2
‖y−Pf‖22
︸ ︷︷ ︸

data misfit

+λ ‖Lf‖22
︸ ︷︷ ︸

energy constraint
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Sparsity-promoting inversion
 reformulation of the problem

 severely underdetermined system of linear equations
– infinitely many solutions
– want the sparsest

combinatorial problem
(intractable!!)
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Just relax...
 CRSI

– convex problem

 underpinning SSR theory
– shows under which circumstances (P1) solves (P0)
– provides a recovery condition

Note:
FRSI imposes sparsity in the Fourier domain

(P1)


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Closer look at the curvelet weighting
 W (highly) penalizes or removes close to vertical curvelets

– similar to a minimum velocity constraint

W W
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CRSI, FRSI & SSR
 sparsity representation

– curvelets better exploit the very strong geometrical structure of seismic data than 
Fourier

 seismic sampling & curvelets

 CRSI thus features a weighted transform that 
– offers sparser representation for seismic data than Fourier
– has low mutual coherence with seismic sampling comparable with Fourier

t

trace

t

trace

W

reduces mutual coherence
between sparsity representation and 

measurement
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Sampling & aliasing

http://www.edi.lv/dasp-web/

 uniform sampling
– aliasing problem
– several sinusoids explain the data

 nonuniform sampling
– avoid aliasing
– unique sinusoid explains the data
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From aliasing to noise

 AN1. Nonuniform sampling 10 

 

Suppose that a spectrogram of a composite wideband signal (few sinusoids and noise) 

has to be estimated. The Figure 6 shows the spectrogram results obtained by very 

simple formula 

2
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)2exp(
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)( !
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#
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n

nn ftjxfS ! . The spectrograms given there display 

the spectrum of a noisy signal containing three sinusoidal components at the indicated 

frequencies. The Signal to Noise Ratio (SNR) is 10 dB. In periodic sampling 

( nTtn = ) case (Figure 6a) there are aliases for signal components. The second 

spectrogram (Figure 6b) was obtained simply by changing the sampling mode from 

uniform to additive nonuniform. As can be seen, nonuniformity of sampling in this 

case efficiently improves the spectrogram, allowing to determine true signal 

components at frequencies exceeding the half of mean sampling rate. 

The increased background noise level in the second spectrogram is the disadvantage 

of the use of nonuniform sampling. To suppress it the more complicated signal 

processing procedures should be applied for solving of spectral analysis tasks. 
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Figure 6. Example of spectrograms of composite noisy signal. a) uniform sampling; 

b) additive nonuniform sampling. 

  

S(t) 
dB 

S(t) 
dB 

True components 

                                                1                                                                           2                          f/fsampling 

 Nyquist frequency limit 

                                                1                                                                           2                          f/fsampling 

 Nyquist frequency limit 

 noisy 1D signal containing 
three sinusoidal components

– periodic sampling
• low noise level
• aliases for signal components

– nonuniform sampling
• noise level higher
• no aliases for signal 

components

http://www.edi.lv/dasp-web/
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Example: synthetic data (12.5 m)

reproducible figure(s)
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Example: synthetic data (25 m)
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Example: synthetic data (avg. 25 m)
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Example: synthetic data (50 m)

reproducible figure(s)



Seismic Laboratory for Imaging and Modeling

Example: synthetic data (avg. 50 m)
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Examples
 synthetic 1: “data from hell” courtesy CWP

– SLIMpy interpolation “app” demo (tomorrow 2:45 pm)
– comparison between and other interpolation methods available in Madagascar

 synthetic 2: Delphi’s primary-multiple dataset
– comparison between CRSI, Plane Wave Destruction (PWD) and FRSI
– uplift from 2D to 3D (time × source location × receiver location) interpolation

 real 1: Gippsland courtesy ExxonMobil
– SSE raw stack
– use SLIMpy interpolation “app”

 real 2: Friendswood courtesy ExxonMobil
– land data
– use SLIMpy interpolation “app”
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Increasing spatial sampling 1:5
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Increasing spatial sampling 1:5
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Increasing spatial sampling 1:5
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Seismic Laboratory for Imaging and Modeling

Increasing spatial sampling 1:5
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From avg. 21 m to 12.5 m

60% traces
remaining

18.8 dB 10.4 dB

22.6 dB

CRSI FRSI

PWD

avg. spatial
sampling: 

21 m



From avg. 31.25 m to 12.5 m

40% traces
remaining

avg. spatial
sampling: 
31.25 m

12.7 dB

CRSI

11.3 dB

PWD

4.7 dB

FRSI
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Model

slice of study

spatial sampling:  12.5 m
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slice of study

20% traces
remaining

avg. spatial sampling:  62.5 m
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80% traces
remaining

interpolation (2D) interpolation (3D)data

32.45 dB 39.14 dB

60% traces
remaining

interpolation (2D) interpolation (3D)data

21.64 dB 28.51 dB

avg. spatial sampling:  ~16 m

avg. spatial sampling:  ~21 m
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40% traces
remaining

interpolation (2D) interpolation (3D)data

12.93 dB 21.85 dB

20% traces
remaining

interpolation (2D) interpolation (3D)data

4.30 dB 6.80 dB

avg. spatial sampling:  31.25 m

avg. spatial sampling:  62.5 m
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From 62.5 m to 12.5 m
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From 62.5 m to 12.5 m
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From 62.5 m to 12.5 m
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From 62.5 m to 12.5 m
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From 84 m to 12.5 m

reproducible figure(s)*



Seismic Laboratory for Imaging and Modeling

From 84 m to 12.5 m

9.73 dB
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From 84 m to 12.5 m
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From 180 m to 12.5 m

reproducible figure(s)*



Seismic Laboratory for Imaging and Modeling

From 180 m to 12.5 m

5.64 dB
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From 180 m to 12.5 m
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Amplitude recovery with nb. of iterations
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Amplitude recovery with 25 iterations
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Amplitude recovery with 50 iterations
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Amplitude recovery with 75 iterations

reproducible figure(s)*



Seismic Laboratory for Imaging and Modeling

Amplitude recovery with 100 iterations
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Amplitude recovery with 200 iterations

reproducible figure(s)*



Seismic Laboratory for Imaging and Modeling

Amplitude recovery with 300 iterations
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Amplitude recovery with 400 iterations
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Amplitude recovery with 500 iterations
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Experiment 1

CRSI

model
(5 m)

data
(avg. 20 m)

interpolated result
(2.5 m)

FK
filtering

filtered interpolated
result
(5 m)

comparison
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Spatial sampling: avg. 20 m
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From avg. 20 m to 2.5 m
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CRSI followed by FK filtering
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Model
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Experiment 2

CRSI

model
(5 m)

data
(avg. 20 m)

interpolated result
(2.5 m)

FK

filtering

filtered interpolated
result
(5 m)

CRSI + 
FK 

filtering

filtered interpolated
result
(5 m)

reproducible figure(s)*



Spatial sampling: avg. 20 m
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CRSI followed by FK filtering
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CRSI combined with FK filtering
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Model

reproducible figure(s)*



Seismic Laboratory for Imaging and Modeling

Experiment 3

model
(5 m)

CRSI +

FK filtering

filtered interpolated
result
(1 m)
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Model: 5 m
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CRSI combined with FK filtering: 1m
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Conclusions
 curvelets exploit the very strong geometrical structure of seismic data
 sparsity & stable signal recovery theory provide robust sampling 

criteria (in progress)
 CRSI performs well

– synthetic 1: “data from hell”
• SLIMpy demo works(!)
• CRSI performs well even in the challenging case of regularly missing traces

– synthetic 2: Delphi’s primary-multiple dataset
• CRSI outperforms FRSI & PWD
• significant uplift from 2D to 3D

– real 1: Gippsland
• from 180 m to 12.5 m

– real 2: Friendswood
• CRSI interpolates both signal & noise (i.e. ground roll)
• CRSI can also remove noise as part of the interpolation
• from 20 m to 2.5 m
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Future work
 assess CRSI’s performance based on

– ground roll removal
– multiple prediction and removal

 implementation
– fast large-scale sparsity-enhancing solver

 theory
– robust sampling criteria
– is there an “optimal” sparse sampling scheme?

 interpolation of truly irregularly sampled data
– Nonuniform Fast Discrete Curvelet Transform (NFDCT) - the “seismic 

curvelets” (this afternoon 4:15 pm)
– CRSI with NFDCT
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