
A primer on 

sparsity 

transforms: 

curvelets and 

wave atoms

Context
! “Fast Discrete Curvelet Transforms (FDCT)” by 

Candes, E., Demanet, L., Donoho, D., and Ying, 
L., explains the curvelet transform in detail

! “Wave Atoms and Sparsity of Oscillatory 
Patterns” by Demanet, and D., and Ying, L., 
explains the wave atom transform in detail

! 3-D curvelet extension by Ying.

! Courtesy Demanet (figures from his SIAM & 
IPAM talks)

! Check http://www.curvelet.org/ for curvelets

! Check for wave atoms http://
www.acm.caltech.edu/~demanet/software/
WaveAtom.tar.gz

Our Motivation

Devise a data representation scheme that

• is non-parametric/non-adaptive

• truly exploits the 3-D continuity 
along wavefronts in 

• is noise resilient

• exploits redundant frames

• is 

• deals with intermittent regularity!

d(r, s, t)

n log n

Phase space tilings

Need a representation that is 

! local in phase space (space-wave number)

! directional

Phase space is too big ... need a tiling & 
sampling

Many possibilities

Need to preserve directivity of wavefronts
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Phase space tilings
polar Fourier space
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Phase space tilings
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Phase space tilings
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Phase space tilings
physical space
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3-D extension
polar Fourier space
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Curvelet construction
Cartesian Fourier space

From Fast Digital Curvelet transform

Extenstion to 3-D
Cartesian Fourier space

[courtesy Demanet ‘05, Ying ‘05] 

Curvelets live in a wedge in the 3 D Fourier plane...

• Non-separable 

directional

•  Local in 2 & 3-D space

• Local in 2 & 3-D Fourier

• Anisotropic

• Multiscale

• Almost orthogonal

• Tight redundant frame

• Optimal approximation 

rates

• Released 

www.curvelet.org

Why curvelets
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localized in just a few coefficients. This can be
quantified. Simply put, there is no basis in which
coefficients of an object with an arbitrary singu-
larity curve would decay faster than in a curvelet
frame. This rate of decay is much faster than that
of any other known system, including wavelets.
Improved coefficient decay gives optimally sparse
representations that are interesting in image-
processing applications, where sparsity allows for
better image reconstructions or coding algorithms.

Beyond Scale-Space?
A beautiful thing about mathematical transforms
is that they may be applied to a wide variety of prob-
lems as long as they have a useful architecture. The
Fourier transform, for example, is much more than
a convenient tool for studying the heat equation
(which motivated its development) and, by exten-
sion, constant-coefficient partial differential equa-
tions. The Fourier transform indeed suggests a
fundamentally new way of organizing information
as a superposition of frequency contributions, a
concept which is now part of our standard reper-
toire. In a different direction, we mentioned before
that wavelets have flourished because of their 
ability to describe transient features more accu-
rately than classical expansions. Underlying this
phenomenon is a significant mathematical archi-
tecture that proposes to decompose an object 
into a sum of contributions at different scales and
locations. This organization principle, sometimes
referred to as scale-space, has proved to be very
fruitful—at least as measured by the profound 
influence it bears on contemporary science.

Curvelets also exhibit an interesting architecture
that sets them apart from classical multiscale rep-
resentations. Curvelets partition the frequency
plane into dyadic coronae and (unlike wavelets) 
subpartition those into angular wedges which 
again display the parabolic aspect ratio. Hence,
the curvelet transform refines the scale-space view-
point by adding an extra element, orientation, and
operates by measuring information about an 
object at specified scales and locations but only
along specified orientations. The specialist will rec-
ognize the connection with ideas from microlocal
analysis. The joint localization in both space and
frequency allows us to think about curvelets as 
living inside “Heisenberg boxes” in phase-space,
while the scale/location/orientation discretization
suggests an associated tiling (or sampling) of
phase-space with those boxes. Because of this 
organization, curvelets can do things that other sys-
tems cannot do. For example, they accurately model
the geometry of wave propagation and, more gen-
erally, the action of large classes of differential
equations: on the one hand they have enough 
frequency localization so that they approximately
behave like waves, but on the other hand they have

enough spatial localization so that the flow will 
essentially preserve their shape.

Research in computational harmonic analysis 
involves the development of (1) innovative and
fundamental mathematical tools, (2) fast compu-
tational algorithms, and (3) their deployment in 
various scientific applications. This article essen-
tially focused on the mathematical aspects of the
curvelet transform. Equally important is the sig-
nificance of these ideas for practical applications.

Multiscale Geometric Analysis?
Curvelets are new multiscale ideas for data repre-
sentation, analysis, and synthesis which, from a
broader viewpoint, suggest a new form of multiscale
analysis combining ideas of geometry and multi-
scale analysis. Of course, curvelets are by no means
the only instances of this vision which perceives
those promising links between geometry and mul-
tiscale thinking. There is an emerging community
of mathematicians and scientists committed to 
the development of this field. In January 2003, for 
example, the Institute for Pure and Applied Mathe-
matics at UCLA, newly funded by the National Science
Foundation, held the first international workshop
on this topic. The title of this conference: Multiscale
Geometric Analysis.
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Some curvelets at different scales.
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Curvelet tiling
[Candes & Donoho ‘02-’05, Do ‘02, Demanet ‘05, Ying ‘05] 

Curvelet in the space domain Curvelet in the Fourier domain

Partitioning example
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Curvelets & Seismic Data
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Curvelet 
nonlinear approximation rate
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Extension to 3-D

Curvelets live in wedges in the 3 D Fourier plane... !"
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Empirical approximation rates

Other choices

[From Demanet ‘05][From Demanet ‘05]

Other choices
polar Fourier space

[From Demanet ‘05][From Demanet ‘05]



Other choices
different aspect ratios

~2−αj

2~ −βj
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~2 jβ

αj
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Figure 1: Essential support of a wave packet with parameters (α, β), in space (left), and in frequency
(right). The parameter α indexes the multiscale nature of the transform, from 0 (uniform) to 1
(dyadic). The parameter β measures the wave packet’s directional selectivity, from β = 0 (best
selectivity) to β = 1 (poor selectivity). Wave atoms are the special case α = β = 1/2. On the left,
the dots indicate the grid over which wave packets corresponding to the same wave number should
be translated. On the right, the different wedges correspond to wave vectors at different scales and
angles.

α
Gabor Ridgelets

Curvelets

Wavelets

0 1/2 1

1/2

1

β

Wave atoms

Figure 2: Identification of various transforms as (α, β) families of wave packets. The triangle
formed by wavelets, curvelets and wave atoms indicates the wave packet families for which sparsity
is preserved under diffeomorphisms. The range of allowable transforms presumably extends beyond
the limits shown.
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parabolic 

scaling 

space 

coordinates

parabolic 

scaling 

space 

coordinate & 

# oscillations

Curvelets

Collection of wave packets ϕµ(x),

x ∈ R2, indexed by the quadru-

ple of integers µ = (j, k1, k2, ").

ϕµ(x) " 23j/4ϕ(DjRθ!
x − k),

Dj =





2j 0

0 2j/2



 ,

θ" " " · 2−"j/2#.

Tight frame: f =
∑

µ〈f,ϕµ〉ϕµ.
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Physical Representation Fourier Spectrum Representation

Gabor tiling of the frequency plane

1
!

!2

28
[From Demanet ‘06]



Wavelet tiling of the frequency plane
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Wave Atom tiling of the frequency plane

1
!

2!

29
[From Demanet ‘06]

What are Wave Atoms

Collection of wave packets ϕµ(x),

x ∈ R2, indexed by the 5-uple of

integers µ = (j,m1,m2, n1, n2),

ϕµ(x) " 2jφ(2jx−n) cos(2jm·x)

Wave vector ξµ " 2jm, position

vector xµ " 2−jn. Note |m| "
2j .

Tight frame: f =
∑

µ〈f,ϕµ〉ϕµ.
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Wave Atoms

 

 

Physical Representation Fourier Spectrum Representation
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Seismic data (shot)

carsonyarham, Tue Aug 22 18:00

curvelets
wave atoms
wavelets

Fourier

Imaged reflectivity

carsonyarham, Tue Aug 22 18:00

curvelets
wave atoms
wavelets

Fourier

Seismic shot with GR

carsonyarham, Tue Aug 22 18:00

curvelets

wave atoms
wavelets

Fourier
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original Fourier recon

wavelet recon w. atom recon



curvelet recon original model

Fourier recon Wavelet recon



curvelet recon W. atom recon

Observations

Different tilings of phase space

Given the multiscale and multidirection behavior 
of seismic data and images

! multiscale partitioning

! multidirectional partitioning

Invariance under FIO’s (high-freq. solution 
operators of the wave equation)

! parabolic scaling principle

! two candidates
" curvelets

" wave atoms

How does this work?

Wavelets do not work

[From Demanet ‘05][From Demanet ‘05]



Ridgelets do not work

[From Demanet ‘05][From Demanet ‘05]

Curvelets & waves
homogeneous medium

impulse response curvelet response

Curvelets & waves
homogeneous medium

wavelet response curvelet response

Curvelets & waves
heterogeneous medium

Smooth model
Smooth Model
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Curvelets & waves
heterogeneous medium

“Hard” model
Sharp Model
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Movies for wave atoms

Curvelets & Hessian
[Demanet ‘05, H & M, 03-05]

Hessian               for “Hard” model
Sharp Model
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A curvelet
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Fast Discrete Curvelet 

Transforms (FDCT)

• FDCT’s assume regularly 
sampled data

Casting irregularly 
sampled data to regular 
grid destroyed continuity 
along wavefronts

[Hennenfent & Herrmann, 2005]

NFDCT
Curvelet transform for unstructured data

FDCT’s

NFDCT

5

NFDCT on 2-D regular grid

256 by 256
FDCT 0.85 s NFDCT 0.85 s
IFDCT 0.82 s ANFDCT 0.85 s
Accuracy 4.10−16 Accuracy 7.10−2

512 by 512
FDCT 2.25 s NFDCT 2.45 s
IFDCT 2.20 s ANFDCT 2.45 s
Accuracy 4.10−16 Accuracy 5.10−2

1024 by 1024
FDCT 15.90 s NFDCT 16.30 s
IFDCT 16.10 s ANFDCT 16.95 s
Accuracy 4.10−16 Accuracy 3.10−2

NFDCT on 2-D unstructured grid (1-D regular & 1-D un-
structured)

ϕ grid Fourier grid TNFDCT TANFDCT

256 by 100 256 by 256 0.87 s 0.82 s
256 by 200 256 by 256 0.88 s 0.82 s
512 by 200 512 by 512 2.39 s 2.20 s
512 by 300 512 by 512 2.25 s 2.30 s
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Figure 1: Sample of an unequispaced curvelet

CONCLUSION

In this report, I presented the first 2-D fast discrete curvelet transform at non equi-
spaced knots (NFDCT) along one axis and regular points along the other axis. The
transform is an extension to the 2-D fast discrete curvelet transform (Candes et al.,
2005a). I have presented an very efficient implementation based on the fast Fourier
transform at non equispaced knots (Kunis and Potts, 2002). The generalization of

C := TBsBt

FFT’s

CN := TB̆sBt

NFFT FFT

[Hennenfent & Herrmann, 2005]

12

Figure 7: Incoherent noise removal through shrinkage (cf. Eq.’s 6 and 12). (a) noisy
unstructured data plotted in a regular grid and with SNR of 0 dB; (b) denoised data
including binning (see Eq. 12). Notice the significant improvement reflected into the
SNR listed in Table 1.

Observations

Curvelets are sparse on distinct high-frequency 
wavefronts

Wave atoms are sparse on oscillatory wavefronts 

Both redundant with fast relative decay

Wave atom simpler to implement & less redundant.

Both can unstructured.

Which one will perform better?

! seismic data holds middle between high-freq. and 
“single” frequency

! subsurface contains distinct singularities

Both invariant under FIO’s/migration ...



Data
data
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recovered data
recovered recovered
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