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Problem statement

consider the following (severely) underdetermined system of linear 
equations

is it possible to recover x0 accurately from y?

unknown

error

term

data
(measurements/

observations)

y A

x0

n= +
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! general answer is NO...

– infinitely many solutions

but

– least squares solution

! BUT, under some specific conditions on the matrix A and the 
solution x0, the answer is YES!
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Applications in geophysics

! manifold, e.g.

– data sampling & regularization

• Recovery of seismic data: practical considerations

(today 11:15 am)

– signal separation

• Stable recovery and separation of seismic data

(next talk)

• Primary-multiple separation by curvelet frames

(today 2:30 pm)

– imaging

• Compressed imaging

(tomorrow 11:15 am)

! appealing

– Stable Signal Recovery (SSR) theory provides explicit recovery condition.
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Agenda

! sparsity, compressibility & representations

! uncertainty principles and recovery

! stability
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Sparsity

! what is sparsity?

– the sparsity of a vector is defined as the 

number of its 0 entries

• sparse vector     (e.g. sparse spike train)

– sparseness corresponds to small l0 quasi-norm

! why using sparsity?

– powerful property (i.e. extra piece of information about the signal) that offers 

striking benefits

note:The idea of promoting sparsity for geophysical problems is commonly attributed to Claerbout and Muir in 1973. 

This was further developed e.g. by Oldenburg who proposed to deconvolve seismic traces for reflectivity as sparse 

spike trains. Although applications are successful in both cases, no explicit recovery condition is given.

x

‖x‖0 := # of nonzero entries

reproducible figure(s)
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Compressibility

! what is compressibility?

– x0 is compressible if its entries obey a power law

where |x0|(k) is the k-th largest value of x0 (e.g. wavelet coefficients of a piecewise 

smooth signal), Cr a constant, and r !1.

|x0|(k) ≤ Cr · k
−r

x

0

sorted x0

reproducible figure(s)
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Sparse & compressible representations

! seek

– simplicity (already forgot “Make it as simple as possible, but not simpler” by A. Einstein???)

• signal f0 is built as a linear combination of few atoms from dictionary D

– independence

• atoms used to construct f0 do not contain redundant information

– expressiveness

• each selected atom significantly contributes to the construction of f0 (i.e. 

energy of the signal f0 is concentrated in few significant coefficients)

coefficientssignal

x0

= D

dictionary

f0
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Example: sparse DCT representation

coefficientssignal x0= D

discrete

cosines

f0

reproducible figure(s)
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Perfect recovery

! conditions

– A obeys a type of uncertainty principle

– x0 is sufficiently sparse

! procedure

min
x

‖x‖1 subject to Ax = y

y A

x0

=
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Closer look at the conditions

! uncertainty principles

– Uniform Uncertainty Principle (UUP) is the most powerful

• all subsets of 4S or less columns of A behave like an orthonormal basis

! sparsity

– x0 is an S-sparse vector (i.e. x0 has at most S nonzero entries)

insight: suppose

- x0 is an S-sparse vector

- A obeys the UUP for sets of size 2S

compute y = Ax0. Is x0 the sparsest solution that explains y?

Consider another S-sparse vector x’0, then h = x’0 - x0 have at most 2S nonzeros and Ah = A(x’0 - x0) = 0. Since A 

obeys the UUP for sets of size 2S, A|T|<2S has no null space thus x’0 = x0. 

A

AT
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Closer look at the recovery procedure

! severely underdetermined system of linear equations

– infinitely many solutions

– want the sparsest that explains the data

! performance

– S-sparse vectors recovered from roughly on the order of S measurements (to within 
constant and log factors)

Note:

! sparsity measured using l0 quasi-norm however recovery procedure is combinatorial 
(intractable!!)

! l1 norm 

– is a convex sparsity-enhancing norm

– is, under some circumstances, equivalent to l0 quasi-norm for our recovery procedure

– makes the recovery procedure stable

RECOVERY PROCEDURE

min
x

‖x‖1

︸ ︷︷ ︸

sparsity

s.t. Ax = y
︸ ︷︷ ︸

perfect reconstruction
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Sparsity-enhancing norms

3.1 Sparse inversion 35
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Figure 3.2: Constrained minimization for two parameters: the ellipse is a contour of a
function whose minimum, depicted by the star, is sought and the shaded area represents the
area to which our solution is constrained by a model penalty function. (a) For the quadratic
or !2 model penalty the solution lies somewhere on the circle with both x1 and x2 non-zero,
i.e. a smooth solution. For the (b) absolute value or !1 and (c) Cauchy penalty functions
the solution is almost fully dependent on x2, i.e. a sparse solution.

yields the same estimator as Eq. (3.1.4) with a Cauchy model penalty function.
This last model weighting function is similar to the model weighting function used
by Abubakar et al. [2004], although in that paper it is derived from a multiplicative
objective function.

Graphical comparison between minimum norm and sparse inversion

How the functions in Table 3.1 and Fig. 3.1 favor a sparse solution over a smooth
one is shown graphically in Fig. 3.2 for a two parameter problem. Given a convex
function, the objective is to find the minimum, which is depicted by a star. The
model is constrained by a penalty term ρ(x) ≤ K in Eq. (3.1.4), where ρ(x) is a
penalty function as in Table 3.1 and K is some constant. In Fig. 3.2 this means
that the solution must lie within or on the edge of the gray shaded area. The closest
point near the minimum of the convex function, given the constraint on the model,
lies on the contour of the shaded area. With an "2 model constraint the solution
lies on a circle and is most likely to consist of non-zero values for both x1 and x2

(see Fig. 3.2a). With a constraint given by an "1 norm or a Cauchy function, the
solution is more likely to be in terms of either x1 or x2, hence a sparse solution (see
Figs. 3.2b,c).

Robust sparse inversion

So far the data-misfit or noise has been assumed to be normally distributed. In real
data large noise bursts are not uncommon. Estimating a model from data with large
noise burst can be performed with robust regression. When combined with a desire

Figures courtesy P. Zwartjes
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Figure 3.1: The functions ρ(x) listed in Table 3.1, with influence function ψ(x) = ∂ρ
∂x and

weight function C−1
x = ψ(x)

x . The x-coordinate runs along the horizontal axis, the dotted
lines represent the zero axes.

solution using the conjugate gradient scheme is presented in Section 3.3.1.

The vectors p and p̃ are a Fourier transform pair and change in one automatically
involves a change in the other. However, we will refer to p̃ as the parameter vector of
Fourier coefficients that describes the data and is constrained by a prior information
in the inversion. This constitutes an abuse of notation we will accept for the sake of
convenience.

The objective function can also be defined with a quadratic constraint on the
model parameters which are weighted by a model weight matrix such as defined
in Table 3.1. In minimizing this objective function the model weight matrix Cp̃ is
taken as independent of p̃, meaning that its derivative with respect to p̃ is not taken
in the minimization. For instance, Eq. (3.1.1) with the quadratic penalty term and
the model weight matrix

C−1/2
p̃,ii =

1
√

|p̃i|
(3.1.7)

would yield the same estimator as Eq. (3.1.4) with the absolute value function as
model penalty function. And

C−1/2
p̃,ii =

1
√

p̃2
i + 1

(3.1.8)
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in Table 3.1. In minimizing this objective function the model weight matrix Cp̃ is
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Example: perfect recovery

y x0

A= *

9
0

512

min
x

‖x‖1 s.t. Ax = y

key facts:

- S = 20

- ~ 90 observations required to perfectly recover

- more than 1:5 underdetermined

reproducible figure(s)
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Example: recovery of comp. signals

y x0

A= *

9
0

512

min
x

‖x‖1 s.t. Ax = y

key facts:

- r = 1.1

- ~ 90 observations

- more than 1:5 underdetermined

reproducible figure(s)
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General setting

reproducible figure(s)

! f0 is not sparse/compressible but f0 has a sparse/compressible 
representation, i.e. f0 = SH x0.

A := RMS
H

restriction

measurement

sparsity

signal of

interest

data

f0

y A

x0

= with
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General recovery condition

! performance

with µ the mutual coherence between M and S.

Note:

! mutual coherency measures the similarity of the columns of M and S.

! general recovery key factors:

– mutual coherency

– sparsity/compressibility of x0

(# observations) ∝ µ
2
· (# nnz entries of x0)

18
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Example: general perfect recovery

key facts:

- S = 1

- ~5 observations required to perfectly recover

- more than 1:100 underdetermined

signal of

interest
f0

data

recovered 

signal

reproducible figure(s)
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Stability

! recovery conditions

– x0 is an S-sparse vector

– A obeys the UUP for sets of size 4S

! procedure

! performance

– similar to noise-free but recovery error is on the order of the noise

error

term
y A

x0

n= +

min
x

‖x‖1 s.t. ‖Ax − y‖2 ≤ ε
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Example: recovery from noisy data

key facts:

- S = 1

- ~10 observations (SNR~8.3 dB)

- more than 1:50 underdetermined

signal of

interest
f0

noisy

data

recovered 

signal

reproducible figure(s)
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Conclusions

! sparsity & compressibility are powerful properties (i.e. extra 
piece of information about the signal) that offer striking benefits

! stable signal recovery theory provides

– robust sampling criteria as a function of

• sparsity/compressibility

• mutual coherence

– a stable & tractable recovery procedure via l1 minimization
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