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Gradient optimization of designs w.r.t a normalizing flow loss enables 
experimental design in problems with…
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experimental design in problems with…


‣ large parameter designs (200,000 for medical imaging)
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Gradient optimization of designs w.r.t a normalizing flow loss enables 
experimental design in problems with…


‣ large parameter designs (200,000 for medical imaging)


‣ non-linear, expensive forward operators (wave equation for CO2 monitoring).
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1. Exact likelihood evaluation keeps normalizing flows relevant in this diffusion era.


SORA WHO????



Takeaways from presentation
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1. Exact likelihood evaluation keeps normalizing flows relevant in this diffusion era.


2. Simulation based inference is a general framework for Bayesian inference 
and downstream tasks i.e. experimental design. 

prior samples simulated observationsfluid simulator

SORA WHO????



Bayesian experimental design 
How should we collect data  over observable  to inform inference?
y u

7 Go, Jinwoo, and Tobin Isaac. "Robust expected information gain for optimal Bayesian experimental design using ambiguity sets." Uncertainty in Artificial Intelligence. PMLR, 2022.

y = M(u)



Bayesian experimental design 
How should we collect data  over observable  to inform inference?


Bayesians have a powerful answer: “Collect the data that maximizes the 
information gained” - where information gain is quantified by Kullback-
Leibler divergence:


y u
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Bayesian experimental design 
How should we collect data  over observable  to inform inference?


Bayesians have a powerful answer: “Collect the data that maximizes the 
information gained” - where information gain is quantified by Kullback-
Leibler divergence:


Expected information gain (EIG) averages over all possible 

y u

y

9 Go, Jinwoo, and Tobin Isaac. "Robust expected information gain for optimal Bayesian experimental design using ambiguity sets." Uncertainty in Artificial Intelligence. PMLR, 2022.

max
M

DKL(p(x |y) | |p(x))

max
M

EIG(M) = 𝔼p(y|M) [DKL(p(x |y) | |p(x))]

y = M(u)



Relation between EIG and posterior likelihood
Maximizing the expected information gain is equivalent to maximizing the

expected posterior likelihood


10

max
M

EIG(M) = 𝔼p(y|M) [DKL(pθ(x |y) | | p(x))]
= 𝔼p(y|M) [ 𝔼p(x|y) [log pθ(x |y) − log p(x)]]
= 𝔼p(y|M) [ 𝔼p(x|y) [log pθ(x |y)]]
= 𝔼p(x,y|M) [log pθ(x |y)] same as neural posterior objective!

Foster, Adam, et al. "A unified stochastic gradient approach to designing bayesian-optimal experiments.” PMLR, 2020.

Hoffmann, Till, and Jukka-Pekka Onnela. "Minimizing the Expected Posterior Entropy Yields Optimal Summary Statistics." arXiv preprint arXiv:2206.02340 (2022).




Relation between EIG and posterior likelihood
Maximizing the expected information gain is equivalent to maximizing the

expected posterior likelihood


Thus optimizing  under posterior learning objective will increase its EIGM

11 Foster, Adam, et al. "A unified stochastic gradient approach to designing bayesian-optimal experiments.” PMLR, 2020.

Hoffmann, Till, and Jukka-Pekka Onnela. "Minimizing the Expected Posterior Entropy Yields Optimal Summary Statistics." arXiv preprint arXiv:2206.02340 (2022).


same as neural posterior objective!

max
M

EIG(M) = 𝔼p(y|M) [DKL(pθ(x |y) | | p(x))]
= 𝔼p(y|M) [ 𝔼p(x|y) [log pθ(x |y) − log p(x)]]
= 𝔼p(y|M) [ 𝔼p(x|y) [log pθ(x |y)]]
= 𝔼p(x,y|M) [log pθ(x |y)]



Normalizing flows for posteriors
They learn to sample posterior by maximizing the posterior likelihood 
under training examples  


12 Radev, Stefan T., et al. "BayesFlow: Learning complex stochastic models with invertible neural networks." IEEE transactions on neural networks and learning systems 33.4 (2020):

max
θ

𝔼p(x,y) [ log pθ(x ∣ y)]



Normalizing flows for posteriors
They learn to sample posterior by maximizing the posterior likelihood 
under training examples  


e.g. Normalizing flows are trained as such

13 Radev, Stefan T., et al. "BayesFlow: Learning complex stochastic models with invertible neural networks." IEEE transactions on neural networks and learning systems 33.4 (2020):

max
θ

𝔼p(x,y) [ log pθ(x ∣ y)]

̂θ = arg max
θ

1
N

N

∑
n=1

(−∥fθ(x(n); y(n))∥2
2 + log det Jfθ )



Proposed method
Prepare posterior learning algorithm as typically:

• use prior samples and forward operator to make training pairs 




Instead of optimizing only network parameters:


{x(n), y(n)}N
i=1

14

̂θ = arg max
θ

1
N

N

∑
n=1

(−∥fθ(x(n); y(n))∥2
2 + log det Jfθ ) .



Proposed method
Prepare posterior learning algorithm as typically:

• use prior samples and forward operator to make training pairs 




Instead of optimizing only network parameters:


jointly optimize for design  as well:


{x(n), y(n)}N
i=1

M

15

̂θ, M̂ = arg max
θ, M

1
N

N

∑
i=1

(−∥fθ(x(n); M(y(n)))∥2
2 + log det Jfθ ) .

̂θ = arg max
θ

1
N

N

∑
n=1

(−∥fθ(x(n); y(n))∥2
2 + log det Jfθ ) .



Normalizing Flows



Normalizing flows

17

Likelihood-based generative models that:


‣ have exact likelihood evaluation


‣ scalable memory usage during training (more on this later)


‣ fast sampling 




ML4SeismicNormalizing flows
Learn distribution by mapping samples to simple distribution.


…
fθ0

(x) fθ1
(z1) fθn

(zn)
x z1 z

…
fθ0

(x) fθ1
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f −1
θ0
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…

f −1
θ1

(z2) f −1
θn

(z)

Mapping needs to be

• differentiable 

• invertible

Dinh, Laurent, Jascha Sohl-Dickstein, and Samy Bengio. "Density estimation using real nvp." arXiv preprint arXiv:1605.08803 (2016).18



ML4Seismic
Normalizing flow during training

19

Learn distribution by mapping samples to Normal distribution.

Louboutin, Mathias, et al. "Learned multiphysics inversion with differentiable programming and machine learning." The Leading Edge 42.7 (2023): 474-486.

fθ(x)

zxx

fθ(x)

fθ(x)

.

Epoch 1

Epoch 2

Epoch 64
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ML4Seismic
Normalizing flow during training

20

Learn distribution by mapping samples to Normal distribution.

Louboutin, Mathias, et al. "Learned multiphysics inversion with differentiable programming and machine learning." The Leading Edge 42.7 (2023): 474-486.

fθ(x)

zxx z ∼ 𝒩(0, I) x̃

f −1
θ (z)

fθ(x)
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. .
..
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Application: medical imaging



Magnetic Resonance Imaging (MRI)
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Established imaging modality for diagnosis in oncology, neurology and the 
muscoloskeletal system. 




Magnetic Resonance Imaging (MRI)
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Established imaging modality for diagnosis in oncology, neurology and the 
muscoloskeletal system. 


Observation process involves magnetic field that captures the spatial frequency 
and phase of cross-section through patient tissue: 


Fourier transform

observations ℂm×n

Magnetic pulses

patient



Accelerated Magnetic Resonance Imaging (MRI)

24

Process is lengthy (easily > 30 min), leads to low patient throughput, problems 
with patient comfort, artifacts from patient motion, and high exam costs.


Situation: accelerating MRI by subsampling data is important but…

all data selected locations accelerated data 



Accelerated Magnetic Resonance Imaging (MRI)
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Process is lengthy (easily > 30 min), leads to low patient throughput, problems 
with patient comfort, artifacts from patient motion, and high exam costs.


Situation: accelerating MRI by subsampling data is important but…


Problem: which data points should we measure for best image inference? 


Solution: experimental design


all data selected locations accelerated data 



Accelerated Magnetic Resonance Imaging (MRI)
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Due to noise and subsampling the imaging is ill-posed thus best solved with 
Bayesian framework: 


given observation  (acquired w/ our experimental design) the goal is to sample 
the posterior:


y

∼ p(x y = )∣
.
.
.




FASTMRI pairs of high quality images  and fully sampled k-space data :
x(i) y(i)

MRI experimental design with normalizing flows

27 Zbontar, Jure, et al. "fastMRI: An open dataset and benchmarks for accelerated MRI." arXiv preprint arXiv:1811.08839 (2018).

x(1) x(2) x(1800)

. . . . . .

y(1) y(2) y(1800)



FASTMRI pairs of high quality images  and fully sampled k-space data :


Jointly train normalizing flow and subsampling pattern:


x(i) y(i)

MRI experimental design with normalizing flows

28 Zbontar, Jure, et al. "fastMRI: An open dataset and benchmarks for accelerated MRI." arXiv preprint arXiv:1811.08839 (2018).

max
θ, M

1
N

N

∑
i=1

(−
1
2

∥fθ(x(i); A⊤M ⊙ y(i))∥2
2 + log det Jfθ ) .

x(1) x(2) x(1800)

. . . . . .

y(1) y(2) y(1800)



FASTMRI pairs of high quality images  and fully sampled k-space data :


Jointly train normalizing flow and subsampling pattern:


Problem: how do you optimize binary mask?


x(i) y(i)

MRI experimental design with normalizing flows

29 Zbontar, Jure, et al. "fastMRI: An open dataset and benchmarks for accelerated MRI." arXiv preprint arXiv:1811.08839 (2018).

max
θ, M

1
N

N

∑
i=1

(−
1
2

∥fθ(x(i); A⊤M ⊙ y(i))∥2
2 + log det Jfθ ) .

x(1) x(2) x(1800)

. . . . . .

y(1) y(2) y(1800)



FASTMRI pairs of high quality images  and fully sampled k-space data :


Jointly train normalizing flow and subsampling pattern:


Problem: how do you optimize binary mask?


Solution: reinterpret mask as a sampling density.

x(i) y(i)

MRI experimental design with normalizing flows

30 Zbontar, Jure, et al. "fastMRI: An open dataset and benchmarks for accelerated MRI." arXiv preprint arXiv:1811.08839 (2018).

max
θ, M

1
N

N

∑
i=1

(−
1
2

∥fθ(x(i); A⊤M ⊙ y(i))∥2
2 + log det Jfθ ) .

x(1) x(2) x(1800)

. . . . . .

y(1) y(2) y(1800)



Sampling density for receiver placement

31
Wu, Sixue, Dirk J. Verschuur, and Gerrit Blacquière. "Automated seismic acquisition geometry design for optimized illumination at the target: A linearized approach." IEEE 
Transactions on Geoscience and Remote Sensing 60 (2021)

Bengio, Yoshua, Nicholas Léonard, and Aaron Courville. "Estimating or propagating gradients through stochastic neurons for conditional computation.” arXiv:1308.3432 (2013).

Instead of optimizing for binary mask 
M ∈ ℤm×n : Mi,j = {0,1}



Instead of optimizing for binary mask 


optimize for sampling density 


M ∈ ℤm×n : Mi,j = {0,1}

w ∈ ℝm×n

Sampling density for receiver placement

32
Wu, Sixue, Dirk J. Verschuur, and Gerrit Blacquière. "Automated seismic acquisition geometry design for optimized illumination at the target: A linearized approach." IEEE 
Transactions on Geoscience and Remote Sensing 60 (2021)

Bengio, Yoshua, Nicholas Léonard, and Aaron Courville. "Estimating or propagating gradients through stochastic neurons for conditional computation.” arXiv:1308.3432 (2013).



Instead of optimizing for binary mask 


optimize for sampling density 


M ∈ ℤm×n : Mi,j = {0,1}

w ∈ ℝm×n

Sampling density for receiver placement

33
Wu, Sixue, Dirk J. Verschuur, and Gerrit Blacquière. "Automated seismic acquisition geometry design for optimized illumination at the target: A linearized approach." IEEE 
Transactions on Geoscience and Remote Sensing 60 (2021)

Bengio, Yoshua, Nicholas Léonard, and Aaron Courville. "Estimating or propagating gradients through stochastic neurons for conditional computation.” arXiv:1308.3432 (2013).

M(w) := 1w<u

binarize with indicator

where u ∼ U(0,1) .



FASTMRI pairs of high quality images  and fully sampled k-space data :


Jointly train normalizing flow and sampling density:


x(i) y(i)

MRI experimental design with normalizing flows

34 Zbontar, Jure, et al. "fastMRI: An open dataset and benchmarks for accelerated MRI." arXiv preprint arXiv:1811.08839 (2018).

̂θ, ŵ = argmax
θ, w

1
N

N

∑
i=1

(−
1
2

∥fθ(x(i); A⊤M(w) ⊙ y(i))∥2
2 + log det Jfθ ) .



FASTMRI pairs of high quality images  and fully sampled k-space data :


Jointly train normalizing flow and sampling density:


Binarize during training and enforce budget  

x(i) y(i)

s = 0.025

MRI experimental design with normalizing flows

35 Zbontar, Jure, et al. "fastMRI: An open dataset and benchmarks for accelerated MRI." arXiv preprint arXiv:1811.08839 (2018).

̂θ, ŵ = argmax
θ, w

1
N

N

∑
i=1

(−
1
2

∥fθ(x(i); A⊤M(w) ⊙ y(i))∥2
2 + log det Jfθ ) .

M(w) := 1s w
w <u

where u ∼ U(0,1) .



Optimized experimental design

36

optimal density baseline full dataoptimal binary



We conclude our optimized density is:

1. centered     -> prioritizes low frequencies

2. ellipsoid      -> prioritizes vertical elements in k-space

3. asymmetric -> learns to exploit Hermitian symmetry 


Optimized experimental design

37

optimal density baseline full dataoptimal binary



Posterior sampling w/ optimal design
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Baseline posterior samples:




Posterior sampling w/ optimal design
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Our posterior samples 
w/ optimal design:


Baseline posterior samples:




Posterior sampling w/ optimal design
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Our posterior samples 
w/ optimal design:


Baseline posterior samples:


Reference image




Posterior statistics
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Fast sampling w/ normalizing flow to efficiently estimate statistical moments 
i.e. mean, standard deviation:


Mean SSIM=0.57 Standard deviation 

Reference image 

Error NMSE=0.105 



Posterior statistics
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Fast sampling w/ normalizing flow to efficiently estimate statistical moments 
i.e. mean, standard deviation:


Mean SSIM=0.57 Error NMSE=0.105 Standard deviation 

Error NMSE=0.022 Standard deviation Mean SSIM=0.68 Reference image 



Evaluation on leave-out test set

43

Posterior sampler generalizes to many observations thus can evaluate on 
many (100) test examples. 


uncertainty is reduced



Evaluation on leave-out test set
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Posterior sampler generalizes to many observations thus can evaluate on 
many (100) test examples. 


uncertainty is reduced error is reduced



Note on scalability

45

Normalizing flows give you crucial memory efficiency for free…


Orozco, R., Witte, P., Louboutin, M., Siahkoohi, A., Rizzuti, G., Peters, B., & Herrmann, F. J. (2023). InvertibleNetworks. jl: A Julia package for scalable normalizing flows. arXiv:2312.13480.



Note on scalability

46

Normalizing flows give you crucial memory efficiency for free…


if you actually take advantage of it. 

Orozco, R., Witte, P., Louboutin, M., Siahkoohi, A., Rizzuti, G., Peters, B., & Herrmann, F. J. (2023). InvertibleNetworks. jl: A Julia package for scalable normalizing flows. arXiv:2312.13480.



Application: monitoring carbon dioxide for 
mitigating climate change



State and future of climate change

48

Forecasts say it is not enough to reduce CO2 emissions


we need to have negative CO2 emissions i.e. take out CO2 already in 
atmosphere… 


but where do we store it?


Ringrose, P. 2020. How to store CO2 underground: Insights from early-mover CCS Projects, volume 129. Springer.




Underground carbon dioxide storage

49

3.3 Framework for Managing the Storage Site 93

100m 

1000m 

Marine environment 

Overburden 

Storage complex 

CO2 plume 

Spill point level 
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Offshore facilities 
Monitoring surveys 

Migration pathway 

Leakage pathway 

Fig. 3.4 Illustration of what is meant by the storage complex (for an offshore storage setting).
Leakage concerns CO2 flux out of the storage complex, while migration refers to CO2 fluxes within
the storage complex

A major difference between CO2 injection projects and gas or oil production
projects, is that for CO2 storage there is generally much less well control (e.g. 1
or 2 injection wells) and yet there needs to be some level of confidence about the
CO2 remaining within the storage domain (well away from the wells). In some of
the early research pilot projects, such as Otway in Australia (Sharma et al. 2011;
Jenkins et al, 2017) and Ketzin in Germany (Ivanova et al. 2012; Martens et al.
2014), dedicated monitoring wells were drilled to check how the CO2 behaved in the
subsurface. However, in general and for large-scale commercial projects wewill need
to minimize the drilling of observation wells and mainly rely on remote detection
and modelling approaches. That is to say, a combination of fluid flow modelling and
geophysical/geochemical monitoring will need to be sufficient to have confidence
about the site. In the next section we will focus on monitoring approaches, and here
we will briefly cover the practices needed to model and understand the CO2 plume
and associated pressure footprint.

Demonstrated solution for large scale 
storage


‣ subsurface structures create natural 
barriers


‣ long term solution - CO2 chemically 
seals into rock at geological time scales


but the plume is not stationary… 

Ringrose, P. 2020. How to store CO2 underground: Insights from early-mover CCS Projects, volume 129. Springer.

Jun, Y.-S.; Zhang, L.; Min, Y.; and Li, Q. 2017. Nanoscale Chemical Processes Affecting Storage Capacities and Seals during Geologic CO2 Sequestration. Accounts of 
Chemical Research, 50(7): 1521–1529. PMID: 28686035.



Carbon dioxide monitoring

50

CO2 plume evolves over time due to injection and permeability effects




Carbon dioxide monitoring
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CO2 plume evolves over time due to injection and permeability effects


thus monitoring plume is important to:


‣ prevent leakage


‣ avoid “seismic events”


‣ stay in licensed area.




Carbon dioxide monitoring
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Two types of time-lapse CO2 plume observations


‣direct but local – borehole wells


‣indirect but global – seismic



Optimal well locations
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CO2 project lasts years thus can drill more wells but:


‣many location options


‣expensive (1 million dollars - 100 million dollars)




Optimal well locations
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CO2 project lasts years thus can drill more wells but:


‣many location options


‣expensive (1 million dollars - 100 million dollars)


Operators deciding well locations should be informed by


‣current knowledge of the CO2 plumes (prior)


‣physics simulations of plume forecasts  (likelihood)



Optimal well locations

55

Optimize for probability density of well 
placement


‣well budget agnostic 


‣ decide number of wells post-hoc


‣ easier optimization 


‣ stochastic sampling during training 
avoids local minima



Small module in full-stack digital twin

56



CO2 storage project life cycle
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Fluid flow 
simulations

Prior samples p(xt)



CO2 storage project life cycle
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Fluid flow 
simulations

Prior samples p(xt) Forecasted plumes p(xt+1 |xt)



CO2 storage project life cycle
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Train inference network and 

well design using pairs  p(xt+1, yt+1)

Fluid flow 
simulations

Prior samples p(xt)

Synthetic 
observations

Forecasted plumes p(xt+1 |xt)



CO2 storage project life cycle
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Train inference network and 

well design using pairs  p(xt+1, yt+1)

Fluid flow 
simulations

Prior samples p(xt)

Synthetic 
observations

Outputs: posterior sampler 
 and optimal well densityp ̂θ(xt+1 |yt+1)

Forecasted plumes p(xt+1 |xt)



CO2 storage project life cycle
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Drill well using optimal well density

Train inference network and 

well design using pairs  p(xt+1, yt+1)

Fluid flow 
simulations

Prior samples p(xt)

Synthetic 
observations

Outputs: posterior sampler 
 and optimal well densityp ̂θ(xt+1 |yt+1)

Forecasted plumes p(xt+1 |xt)



CO2 storage project life cycle
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Drill well using optimal well density

Train inference network and 

well design using pairs  p(xt+1, yt+1)

Collect field data  w/ optimal wellyobs
t+1

Fluid flow 
simulations

Prior samples p(xt)

Synthetic 
observations

Outputs: posterior sampler 
 and optimal well densityp ̂θ(xt+1 |yt+1)

Field 
observation

Forecasted plumes p(xt+1 |xt)



CO2 storage project life cycle
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Drill well using optimal well density

Train inference network and 

well design using pairs  p(xt+1, yt+1)

Collect field data  w/ optimal wellyobs
t+1

Fluid flow 
simulations

Prior samples p(xt)

Synthetic 
observations

Inference from field data p ̂θ(xt+1 |yobs
t+1)

Outputs: posterior sampler 
 and optimal well densityp ̂θ(xt+1 |yt+1)

Field 
observation

Posterior 
inference

Forecasted plumes p(xt+1 |xt)



CO2 storage project life cycle
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Drill well using optimal well density

Train inference network and 

well design using pairs  p(xt+1, yt+1)

Collect field data  w/ optimal wellyobs
t+1

Fluid flow 
simulations

Prior samples p(xt)

Synthetic 
observations

Posterior becomes 
prior and recurse

Inference from field data p ̂θ(xt+1 |yobs
t+1)

Outputs: posterior sampler 
 and optimal well densityp ̂θ(xt+1 |yt+1)

Field 
observation

Posterior 
inference

Forecasted plumes p(xt+1 |xt)



Monitor 1



Monitor 2



Monitor 3



Monitor 4



Monitor 1

inference varianceinference error

inference meanground-truth CO2



Monitor 2

inference varianceinference error

inference meanground-truth CO2



Monitor 3

inference varianceinference error

inference meanground-truth CO2



Monitor 4

inference varianceinference error

inference meanground-truth CO2



Our algorithm places wells at optimal locations as measured by error


our inference variance

Improvement on baseline



Gradient optimization of designs w.r.t a normalizing flow loss enables 
experimental design in realistic problems:


Conclusions

74

optimal design posterior samples optimal design

posterior variance

MRI Underground CO2 monitoring



Gradient optimization of designs w.r.t a normalizing flow loss enables 
experimental design in realistic problems:


and possible because normalizing flows have exact likelihood evaluation.


Conclusions
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optimal design posterior samples optimal design

posterior variance

MRI Underground CO2 monitoring



Gradient optimization of designs w.r.t a normalizing flow loss enables 
experimental design in realistic problems:


and possible because normalizing flows have exact likelihood evaluation.


Conclusions

76

optimal design posterior samples optimal design

posterior variance

MRI Underground CO2 monitoring

Probabilistic Bayesian optimal experimental design using conditional normalizing flows.  

Orozco, Chen, Herrmann  arxiv:2402.18337 (2024)


