Normalizing Flows for Bayesian Experimental Design in Imaging Applications

Rafael Orozco¹, Abhinav Gahlot¹, Peng Chen¹, Mathias Louboutin^{1*} and Felix J. Herrmann¹

Georgia Tech College of Computing School of Computational Science and Engineering

now at Devito Codes

Seismic Laboratory for Imaging and Modeling (SLIM) Georgia Institute of Technology

Released to public domain under Creative Commons license type BY (<u>https://creativecommons.org/licenses/by/4.0</u>) Copyright (c) 2024, Rafael Orozco (Georgia Tech)

Presentation in one sentence:

Gradient optimization of designs w.r.t a normalizing flow loss enables experimental design in problems with...

Presentation in one sentence:

Gradient optimization of designs w.r.t a normalizing flow loss enables experimental design in problems with...

Iarge parameter designs (200,000 for medical imaging)

Presentation in one sentence:

Gradient optimization of designs w.r.t a normalizing flow loss enables experimental design in problems with...

Iarge parameter designs (200,000 for medical imaging)

Observation

In non-linear, expensive forward operators (wave equation for CO2 monitoring).

Takeaways from presentation

1. Exact likelihood evaluation keeps normalizing flows relevant in this diffusion era.

SORA WHO????

Takeaways from presentation

1. Exact likelihood evaluation keeps normalizing flows relevant in this diffusion era.

2. Simulation based inference is a general framework for Bayesian inference and downstream tasks i.e. experimental design.

prior samples

SORA WHO????

simulated observations

Bayesian experimental design

How should we collect data y over observable u to inform inference?

 $\mathbf{y} = \mathbf{M}(\mathbf{u})$

Bayesian experimental design

How should we collect data y over observable u to inform inference?

$\mathbf{y} = \mathbf{M}(\mathbf{u})$

Bayesians have a powerful answer: "Collect the data that maximizes the information gained" - where information gain is quantified by Kullback-Leibler divergence:

8

 $\max D_{KL}(p(\mathbf{x} | \mathbf{y}) | | p(\mathbf{x}))$ Μ

Bayesian experimental design

How should we collect data y over observable u to inform inference?

$\mathbf{y} = \mathbf{M}(\mathbf{u})$

Bayesians have a powerful answer: "Collect the data that maximizes the information gained" - where information gain is quantified by Kullback-Leibler divergence:

> $\max_{\mathbf{N}} D_{KL}(p(\mathbf{x} | \mathbf{y}) | | p(\mathbf{x}))$ Μ

Expected information gain (EIG) averages over all possible y

9

$\max_{\mathbf{M}} EIG(\mathbf{M}) = \mathbb{E}_{p(\mathbf{y}|\mathbf{M})} \left[D_{KL}(p(\mathbf{x} | \mathbf{y}) | | p(\mathbf{x})) \right]$ Μ

Go, Jinwoo, and Tobin Isaac. "Robust expected information gain for optimal Bayesian experimental design using ambiguity sets." Uncertainty in Artificial Intelligence. PMLR, 2022.

Relation between EIG and posterior likelihood

Maximizing the expected information gain is equivalent to maximizing the expected posterior likelihood

 $\max EIG(\mathbf{M}) = \mathbb{E}_{p(\mathbf{y}|\mathbf{M})} \left[D_{KL}(p_{\theta}(\mathbf{x} | \mathbf{y}) | | p(\mathbf{x})) \right]$ Μ $= \mathbb{E}_{p(\mathbf{y}|\mathbf{M})} \left[\mathbb{E}_{p(\mathbf{x}|\mathbf{y})} \left[\log p_{\theta}(\mathbf{x}|\mathbf{y}) - \log p(\mathbf{x}) \right] \right]$ $= \mathbb{E}_{p(\mathbf{y}|\mathbf{M})} \quad \mathbb{E}_{p(\mathbf{x}|\mathbf{y})} \left[\log p_{\theta}(\mathbf{x}|\mathbf{y}) \right]$ $= \mathbb{E}_{p(\mathbf{x}, \mathbf{y} | \mathbf{M})} \left[\log p_{\theta}(\mathbf{x} | \mathbf{y}) \right]$

Foster, Adam, et al. "A unified stochastic gradient approach to designing bayesian-optimal experiments." PMLR, 2020. 10 Hoffmann, Till, and Jukka-Pekka Onnela. "Minimizing the Expected Posterior Entropy Yields Optimal Summary Statistics." arXiv preprint arXiv:2206.02340 (2022).

same as neural posterior objective!

Relation between EIG and posterior likelihood

Maximizing the expected information gain is equivalent to maximizing the expected posterior likelihood

 $\max EIG(\mathbf{M}) = \mathbb{E}_{p(\mathbf{y}|\mathbf{M})} \left[D_{KL}(p_{\theta}(\mathbf{x} | \mathbf{y}) | | p(\mathbf{x})) \right]$ Μ $= \mathbb{E}_{p(\mathbf{y}|\mathbf{M})} \left[\mathbb{E}_{p(\mathbf{x}|\mathbf{y})} \left[\log p_{\theta}(\mathbf{x}|\mathbf{y}) - \log p(\mathbf{x}) \right] \right]$ $= \mathbb{E}_{p(\mathbf{y}|\mathbf{M})} \quad \mathbb{E}_{p(\mathbf{x}|\mathbf{y})} \left[\log p_{\theta}(\mathbf{x}|\mathbf{y}) \right]$ $= \mathbb{E}_{p(\mathbf{x}, \mathbf{y} | \mathbf{M})} \left[\log p_{\theta}(\mathbf{x} | \mathbf{y}) \right]$

Thus optimizing M under posterior learning objective will increase its EIG

Foster, Adam, et al. "A unified stochastic gradient approach to designing bayesian-optimal experiments." PMLR, 2020. Hoffmann, Till, and Jukka-Pekka Onnela. "Minimizing the Expected Posterior Entropy Yields Optimal Summary Statistics." arXiv preprint arXiv:2206.02340 (2022).

same as neural posterior objective!

Normalizing flows for posteriors

They learn to sample posterior by maximizing the posterior likelihood under training examples

$\max_{\theta} \mathbb{E}_{p(\mathbf{x},\mathbf{y})} \left[\log p_{\theta}(\mathbf{x} \mid \mathbf{y}) \right]$

Normalizing flows for posteriors

They learn to sample posterior by maximizing the posterior likelihood under training examples

$$\max_{\theta} \mathbb{E}_{p(\mathbf{x},\mathbf{y})} \left[\log p_{\theta}(\mathbf{x} \mid \mathbf{y}) \right]$$

e.g. Normalizing flows are trained as such

$$\hat{\theta} = \arg \max_{\theta} \frac{1}{N} \sum_{n=1}^{N} \left(-\|f_{\theta}(\mathbf{x})\|_{n=1}^{N} \right)$$

$\mathbf{x}^{(n)}; \mathbf{y}^{(n)}) \|_2^2 + \log \left| \det \mathbf{J}_{f_{\theta}} \right| \right)$

Proposed method

Prepare posterior learning algorithm as typically:

 use prior samples and forward operator to make training pairs $\{\mathbf{X}^{(n)}, \mathbf{y}^{(n)}\}_{i=1}^{N}$

Instead of optimizing only network parameters: $\hat{\theta} = \arg \max_{\theta} \frac{1}{N} \sum_{n=1}^{N} \left(- \| f_{\theta} \right)$

$$(\mathbf{x}^{(n)};\mathbf{y}^{(n)})\|_2^2 + \log \left|\det \mathbf{J}_{f_\theta}\right|).$$

Proposed method

Prepare posterior learning algorithm as typically:

- use prior samples and forward operator to make training pairs $\{\mathbf{X}^{(n)}, \mathbf{y}^{(n)}\}_{i=1}^{N}$
- Instead of optimizing only network parameters: $\hat{\theta} = \arg \max_{\theta} \frac{1}{N} \sum_{n=1}^{N} \left(-\|f_{\theta}(x)\|_{\theta} \right)$
- jointly optimize for design \mathbf{M} as well: $\hat{\theta}, \, \hat{\mathbf{M}} = \underset{\theta, \, \mathbf{M}}{\operatorname{arg\,max}} \, \frac{1}{N} \sum_{i=1}^{N} \left(- \| f_{\theta}(\mathbf{M}) - \mathbf{M}_{i} \| f_{\theta}(\mathbf{M}) \right)$

$$(\mathbf{x}^{(n)};\mathbf{y}^{(n)})\|_2^2 + \log \left|\det \mathbf{J}_{f_\theta}\right|)$$

$$(\mathbf{x}^{(n)}; \mathbf{M}(\mathbf{y}^{(n)})) \|_2^2 + \log \left| \det \mathbf{J}_{f_{\theta}} \right| \right).$$

Normalizing Flows

Normalizing flows

Likelihood-based generative models that:

- have exact likelihood evaluation
- scalable memory usage during training (more on this later)
- fast sampling

Normalizing flows

Learn distribution by mapping samples to simple distribution.

Mapping needs to be

- differentiable
- invertible

Normalizing flow during training

X

Learn distribution by mapping samples to Normal distribution.

 $f_{\theta}(\mathbf{X})$

 $f_{\theta}(\mathbf{X})$

Epoch 1 Epoch 2

Epoch 64

Louboutin, Mathias, et al. "Learned multiphysics inversion with differentiable programming and machine learning." The Leading Edge 42.7 (2023): 474-486. 19

Normalizing flow during training

X

Learn distribution by mapping samples to Normal distribution.

Epoch 1

 $f_{\theta}(\mathbf{x})$

 $f_{\theta}(\mathbf{X})$

Louboutin, Mathias, et al. "Learned multiphysics inversion with differentiable programming and machine learning." *The Leading Edge* 42.7 (2023): 474-486.

Application: medical imaging

Magnetic Resonance Imaging (MRI)

Established imaging modality for diagnosis in oncology, neurology and the muscoloskeletal system.

Magnetic Resonance Imaging (MRI)

Established imaging modality for diagnosis in oncology, neurology and the muscoloskeletal system.

Observation process involves magnetic field that captures the spatial frequency and phase of cross-section through patient tissue:

patient

Magnetic pulses

Fourier transform

Accelerated Magnetic Resonance Imaging (MRI)

Process is lengthy (easily > 30 min), leads to low patient throughput, problems with patient comfort, artifacts from patient motion, and high exam costs.

Situation: accelerating MRI by subsampling data is important but...

all data

accelerated data

Accelerated Magnetic Resonance Imaging (MRI)

Process is lengthy (easily > 30 min), leads to low patient throughput, problems with patient comfort, artifacts from patient motion, and high exam costs.

Situation: accelerating MRI by subsampling data is important but...

all data

Problem: which data points should we measure for best image inference?

Solution: experimental design

accelerated data

Accelerated Magnetic Resonance Imaging (MRI)

Due to noise and subsampling the imaging is ill-posed thus best solved with Bayesian framework:

given observation \boldsymbol{y} (acquired w/ our experimental design) the goal is to sample the posterior:

FASTMRI pairs of high quality images $\mathbf{x}^{(i)}$ and fully sampled k-space data $\mathbf{y}^{(i)}$:

 $x^{(1)}$

v(1800)

FASTMRI pairs of high quality images $\mathbf{x}^{(i)}$ and fully sampled k-space data $\mathbf{y}^{(i)}$:

 $x^{(1)}$

Jointly train normalizing flow and subsampling pattern:

$$\max_{\theta, \mathbf{M}} \frac{1}{N} \sum_{i=1}^{N} \left(-\frac{1}{2} \| f_{\theta}(\mathbf{x}^{(i)}; A) - \frac{1}{2} \| f_{\theta}(\mathbf{x}^{(i)};$$

 $\mathbf{A}^{\mathsf{T}}\mathbf{M} \odot \mathbf{y}^{(i)} \|_{2}^{2} + \log \left| \det \mathbf{J}_{f_{\theta}} \right| \right).$

FASTMRI pairs of high quality images $\mathbf{x}^{(i)}$ and fully sampled k-space data $\mathbf{y}^{(i)}$:

 $x^{(1)}$

Jointly train normalizing flow and subsampling pattern:

$$\max_{\theta, \mathbf{M}} \frac{1}{N} \sum_{i=1}^{N} \left(-\frac{1}{2} \| f_{\theta}(\mathbf{x}^{(i)}; \mathbf{x}^{(i)}; \mathbf{x}^{(i)};$$

Problem: how do you optimize binary mask?

 $\mathbf{A}^{\mathsf{T}}\mathbf{M} \odot \mathbf{y}^{(i)} \|_{2}^{2} + \log \left| \det \mathbf{J}_{f_{\theta}} \right| \right).$

FASTMRI pairs of high quality images $\mathbf{x}^{(i)}$ and fully sampled k-space data $\mathbf{y}^{(i)}$:

 $x^{(1)}$

Jointly train normalizing flow and subsampling pattern: $\mathbf{A}^{\mathsf{T}}\mathbf{M} \odot \mathbf{y}^{(i)} \|_{2}^{2} + \log \left| \det \mathbf{J}_{f_{\theta}} \right| \right).$

$$\max_{\theta, \mathbf{M}} \frac{1}{N} \sum_{i=1}^{N} \left(-\frac{1}{2} \| f_{\theta}(\mathbf{x}^{(i)}; A) - \frac{1}{2} \| f_{\theta}(\mathbf{x}^{(i)};$$

Problem: how do you optimize binary mask?

Solution: reinterpret mask as a sampling density.

 $\mathbf{x}^{(2)}$

30 Zbontar, Jure, et al. "fastMRI: An open dataset and benchmarks for accelerated MRI." arXiv preprint arXiv:1811.08839 (2018).

Sampling density for receiver placement Instead of optimizing for binary mask $\mathbf{M} \in \mathbb{Z}^{m \times n}$: $\mathbf{M}_{i,i} = \{0,1\}$

Wu, Sixue, Dirk J. Verschuur, and Gerrit Blacquière. "Automated seismic acquisition geometry design for optimized illumination at the target: A linearized approach." IEEE *Transactions on Geoscience and Remote Sensing* 60 (2021)

Bengio, Yoshua, Nicholas Léonard, and Aaron Courville. "Estimating or propagating gradients through stochastic neurons for conditional computation." arXiv:1308.3432 (2013).

Sampling density for receiver placement Instead of optimizing for binary mask $\mathbf{M} \in \mathbb{Z}^{m \times n}$: $\mathbf{M}_{i,i} = \{0,1\}$

optimize for sampling density $\mathbf{W} \in \mathbb{R}^{m \times n}$

Wu, Sixue, Dirk J. Verschuur, and Gerrit Blacquière. "Automated seismic acquisition geometry design for optimized illumination at the target: A linearized approach." IEEE Transactions on Geoscience and Remote Sensing 60 (2021)

Bengio, Yoshua, Nicholas Léonard, and Aaron Courville. "Estimating or propagating gradients through stochastic neurons for conditional computation." arXiv:1308.3432 (2013).

Sampling density for receiver placement

Instead of optimizing for binary mask $\mathbf{M} \in \mathbb{Z}^{m \times n}$: $\mathbf{M}_{i,i} = \{0,1\}$

optimize for sampling density $\mathbf{w} \in \mathbb{R}^{m \times n}$

where $u \sim U(0,1)$.

Wu, Sixue, Dirk J. Verschuur, and Gerrit Blacquière. "Automated seismic acquisition geometry design for optimized illumination at the target: A linearized approach." IEEE Transactions on Geoscience and Remote Sensing 60 (2021)

Bengio, Yoshua, Nicholas Léonard, and Aaron Courville. "Estimating or propagating gradients through stochastic neurons for conditional computation." arXiv:1308.3432 (2013).

FASTMRI pairs of high quality images $\mathbf{x}^{(i)}$ and fully sampled k-space data $\mathbf{y}^{(i)}$:

Jointly train normalizing flow and sampling density:

$$\hat{\theta}, \hat{\mathbf{w}} = \operatorname*{argmax}_{\theta, \mathbf{w}} \frac{1}{N} \sum_{i=1}^{N} \left(-\frac{1}{2} \| f_{\theta}(\mathbf{x}^{(i)}; \mathbf{x}^{(i)}; \mathbf{w}) \right)$$

$||\mathbf{A}^{\mathsf{T}}\mathbf{M}(\mathbf{w}) \odot \mathbf{y}^{(i)}||_2^2 + \log \left|\det \mathbf{J}_{f_\theta}\right|$.

FASTMRI pairs of high quality images $\mathbf{x}^{(i)}$ and fully sampled k-space data $\mathbf{y}^{(i)}$:

Jointly train normalizing flow and sampling density:

$$\hat{\theta}, \hat{\mathbf{w}} = \underset{\theta, \mathbf{w}}{\operatorname{argmax}} \frac{1}{N} \sum_{i=1}^{N} \left(-\frac{1}{2} \| f_{\theta}(\mathbf{x}^{(i)}; \mathbf{x}^{(i)}) \right)$$

Binarize during training and enforce budget s = 0.025

$$\mathbf{M}(\mathbf{w}) := \mathbf{1}_{S \frac{\mathbf{w}}{\overline{\mathbf{w}}}}$$

where $u \sim U(0,1)$.

35 Zbontar, Jure, et al. "fastMRI: An open dataset and benchmarks for accelerated MRI." arXiv preprint arXiv:1811.08839 (2018).

- $||\mathbf{A}^{\mathsf{T}}\mathbf{M}(\mathbf{w}) \odot \mathbf{y}^{(i)}||_2^2 + \log \left|\det \mathbf{J}_{f_\theta}\right|$.
- -<**u**

Optimized experimental design

optimal density

optimal binary

baseline

full data

Optimized experimental design

optimal density optimal binary

We conclude our optimized density is:

- -> prioritizes low frequencies centered 1.
- 2. ellipsoid -> prioritizes vertical elements in k-space

3. asymmetric -> learns to exploit Hermitian symmetry

baseline

full data

Posterior sampling w/ optimal design

Baseline posterior samples:

Posterior sampling w/ optimal design

Baseline posterior samples:

Our posterior samples w/ optimal design:

Posterior sampling w/ optimal design

Baseline posterior samples:

Reference image

Our posterior samples w/ optimal design:

Posterior statistics

Fast sampling w/ normalizing flow to efficiently estimate statistical moments i.e. mean, standard deviation:

Mean SSIM=0.57

Reference image

Standard deviation

Error NMSE=0.105

Posterior statistics

Fast sampling w/ normalizing flow to efficiently estimate statistical moments i.e. mean, standard deviation:

Mean SSIM=0.57

Reference image

Mean SSIM=0.68

Standard deviation

Standard deviation

Error NMSE=0.105

Error NMSE=0.022

Evaluation on leave-out test set

Posterior sampler generalizes to many observations thus can evaluate on many (100) test examples.

Evaluation on leave-out test set

Posterior sampler generalizes to many observations thus can evaluate on many (100) test examples.

Note on scalability

Normalizing flows give you crucial memory efficiency for free...

Note on scalability

Normalizing flows give you crucial memory efficiency for free...

if you actually take advantage of it.

Application: monitoring carbon dioxide for mitigating climate change

State and future of climate change

Forecasts say it is not enough to reduce CO₂ emissions

we need to have negative CO_2 emissions i.e. take out CO_2 already in atmosphere...

but where do we store it?

Underground carbon dioxide storage

Demonstrated solution for large scale storage

- subsurface structures create natural barriers
- Iong term solution CO₂ chemically seals into rock at geological time scales

but the plume is not stationary...

49

Ringrose, P. 2020. How to store CO₂ underground: Insights from early-mover CCS Projects, volume 129. Springer. Jun, Y.-S.; Zhang, L.; Min, Y.; and Li, Q. 2017. Nanoscale Chemical Processes Affecting Storage Capacities and Seals during Geologic CO₂ Sequestration. Accounts of Chemical Research, 50(7): 1521–1529. PMID: 28686035.

Carbon dioxide monitoring

CO₂ plume evolves over time due to injection and permeability effects

Carbon dioxide monitoring

CO₂ plume evolves over time due to injection and permeability effects

thus monitoring plume is important to:

- prevent leakage
- avoid "seismic events"
- stay in licensed area.

Carbon dioxide monitoring

Two types of time-lapse CO₂ plume observations

direct but local – borehole wells

Optimal well locations

CO₂ project lasts years thus can drill more wells but:

- many location options
- expensive (1 million dollars 100 million dollars)

Optimal well locations

CO₂ project lasts years thus can drill more wells but:

- many location options
- expensive (1 million dollars 100 million dollars)

Operators deciding well locations should be informed by

- Current knowledge of the CO₂ plumes (prior)
- physics simulations of plume forecasts (likelihood)

Optimal well locations

Optimize for probability *density* of well placement

- well budget agnostic
 - decide number of wells post-hoc
- easier optimization
 - stochastic sampling during training avoids local minima

Small module in full-stack digital twin

MS189 Uncertainty Quantification for Digital Twins - Part III of III

8:30 AM - 10:30 AM Room: San Giusto - Hotel Savoia Excelsior Palace

For Part II, see MS169

A digital twin (DT) is a computational system that continuously and repeatedly assimilates obser otherwise guides decisions, using predictions from the updated model. Often DTs are employed f to models to decisions. The resulting data assimilation and optimal control/decision problems mu tractable for large-scale complex systems. This minisymposium addresses mathematical, statistic control, and optimal experimental design subproblems, as well as the reduced order models and s

Organizer: Nicole Aretz

University of Texas at Austin, U.S. **Omar Ghattas** University of Texas at Austin, U.S. Youssef M. Marzouk Massachusetts Institute of Technology, U.S.

8:30-8:55 An Uncertainty-Aware Digital Twin for Geological Carbon Storage abstract Felix Herrmann and Abhinav Gahlot, Georgia Institute of Technology, U.S.

Prior samples $p(\mathbf{x}_t)$

Fluid flow simulations

Prior samples $p(\mathbf{x}_t)$

Forecasted plumes $p(\mathbf{x}_{t+1} | \mathbf{x}_t)$

Fluid flow simulations

Prior samples $p(\mathbf{x}_t)$

Forecasted plumes $p(\mathbf{x}_{t+1} | \mathbf{x}_t)$

Fluid flow simulations

Synthetic

observations

Train inference network and well design using pairs $p(\mathbf{x}_{t+1}, \mathbf{y}_{t+1})$

Prior samples $p(\mathbf{x}_t)$

Fluid flow simulations

Train inference network and

Outputs: posterior sampler $p_{\hat{\theta}}(\mathbf{x}_{t+1} | \mathbf{y}_{t+1})$ and optimal well density ell density] ₫ 0.00 1000 3000 500 1500 2000 2500 [meters]

Prior samples $p(\mathbf{x}_t)$

Fluid flow simulations

Prior samples $p(\mathbf{x}_t)$

Prior samples $p(\mathbf{x}_t)$

Inference from field data $p_{\hat{\theta}}(\mathbf{x}_{t+1} | \mathbf{y}_{t+1}^{obs})$

Fluid flow

simulations

Prior samples $p(\mathbf{x}_t)$

Posterior becomes prior and recurse

Posterior

inference

Inference from field data $p_{\hat{\theta}}(\mathbf{x}_{t+1} | \mathbf{y}_{t+1}^{obs})$

ground-truth CO₂

inference error

inference mean

ground-truth CO₂

inference error

inference mean

ground-truth CO₂

inference error

inference mean

ground-truth CO₂

inference error

inference mean

Improvement on baseline

Our algorithm places wells at optimal locations as measured by error

our inference variance

Conclusions

Gradient optimization of designs w.r.t a normalizing flow loss enables experimental design in realistic problems:

Conclusions

Gradient optimization of designs w.r.t a normalizing flow loss enables experimental design in realistic problems:

and possible because normalizing flows have exact likelihood evaluation.

Conclusions

Probabilistic Bayesian optimal experimental design using conditional normalizing flows. Orozco, Chen, Herrmann arxiv:2402.18337 (2024)

Gradient optimization of designs w.r.t a normalizing flow loss enables experimental design in realistic problems:

and possible because normalizing flows have exact likelihood evaluation.

Underground CO2 monitoring

