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Takeaways from presentation

1. Exact likelihood evaluation keeps normalizing flows relevant in this diffusion era.
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Takeaways from presentation

1. Exact likelihood evaluation keeps normalizing flows relevant in this diffusion era.
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2. Simulation based inference is a general framework for Bayesian inference
and downstream tasks i.e. experimental design.
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Bayesian experimental design

How should we collect data y over observable u to inform inference?

y = M(u)

7 Go, Jinwoo, and Tobin Isaac. "Robust expected information gain for optimal Bayesian experimental design using ambiguity sets." Uncertainty in Artificial Intelligence. PMLR, 2022.



Bayesian experimental design

How should we collect data y over observable u to inform inference?
y = M(u)

Bayesians have a powerful answer: “Collect the data that maximizes the
information gained” - where information gain is quantified by Kullback-
Leibler divergence:

max Dy (px|y) | | p(x))

8 Go, Jinwoo, and Tobin Isaac. "Robust expected information gain for optimal Bayesian experimental design using ambiguity sets." Uncertainty in Artificial Intelligence. PMLR, 2022.



Bayesian experimental design

How should we collect data y over observable u to inform inference?
y = M(u)

Bayesians have a powerful answer: “Collect the data that maximizes the
information gained” - where information gain is quantified by Kullback-
Leibler divergence:

max Dy (px|y) | | p(x))

Expected information gain (EIG) averages over all possible y

II;/?X EIG(M) = = (Y| M) [DKL(p(X |y) | \p(X))]

9 Go, Jinwoo, and Tobin Isaac. "Robust expected information gain for optimal Bayesian experimental design using ambiguity sets." Uncertainty in Artificial Intelligence. PMLR, 2022.



Relation between EIG and posterior likelihood

Maximizing the expected information gain is equivalent to maximizing the
expected posterior likelihood

II;/EIIX EIG(M) = = h(y|M) [DKL(pe(X‘Y) | ‘p(X))]

=y |M) l = o(x]y) log py(x|y) — 10gP(X)”

~p(yIM) l “pixly) 108 Po(X | Y)]]

E M) log py(x|y)| same as neural posterior objective!

Foster, Adam, et al. "A unified stochastic gradient approach to designing bayesian-optimal experiments.” PMLR, 2020.
1 O Hoffmann, Till, and Jukka-Pekka Onnela. "Minimizing the Expected Posterior Entropy Yields Optimal Summary Statistics." arXiv preprint arXiv:2206.02340 (2022).



Relation between EIG and posterior likelihood

Maximizing the expected information gain is equivalent to maximizing the
expected posterior likelihood

II;/EIIX EIG(M) = = h(y|M) [DKL(pe(X‘Y) | ‘p(X))]

=y |M) l = o(x]y) log py(x|y) — 10gP(X)”

~p(yIM) l “pixly) 108 Po(X | Y)]]

E M) log py(x|y)| same as neural posterior objective!

Thus optimizing M under posterior learning objective will increase its EIG

Foster, Adam, et al. "A unified stochastic gradient approach to designing bayesian-optimal experiments.” PMLR, 2020.
1 1 Hoffmann, Till, and Jukka-Pekka Onnela. "Minimizing the Expected Posterior Entropy Yields Optimal Summary Statistics." arXiv preprint arXiv:2206.02340 (2022).



Normalizing flows for posteriors

They learn to sample posterior by maximizing the posterior likelihood
under training examples

mglx [Ep(X,y) l log py(x | Y)]

1 2 Radev, Stefan T., et al. "BayesFlow: Learning complex stochastic models with invertible neural networks." IEEE transactions on neural networks and learning systems 33.4 (2020):



Normalizing flows for posteriors

They learn to sample posterior by maximizing the posterior likelihood
under training examples

mglx [Ep(X,y) l log py(x | Y)]

e.g. Normalizing flows are trained as such

A\

| &
0 = arg max — (— x": y|1Z 4+ 1o |detJ
o NZ? x5 y™)|[3 + log |detJ,

)

v

1 3 Radev, Stefan T., et al. "BayesFlow: Learning complex stochastic models with invertible neural networks." IEEE transactions on neural networks and learning systems 33.4 (2020):



Proposed method

Prepare posterior learning algorithm as typically:

* use prior samples and forward operator to make training pairs
(x_ ymN |
9 =

Instead of optimizing only network parameters:

Va\

1 N
_ T - (n). <, (M\112
0 = arg max Nn§:1j,( I/5x; y )13 + log |det ),

)
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Proposed method

Prepare posterior learning algorithm as typically:

* use prior samples and forward operator to make training pairs
(x_ ymN |
9 =

Instead of optimizing only network parameters:

Va\

1 N
_ T - (n). <, (M\112
0 = arg max Nn§:1j,( I/5x; y )13 + log |det ),

)

jointly optimize for design M as well:

.. |«
0. M = argmax — ' (—u £(x: M(y™))|I12 + log ‘det J
o.M i=1

)

15



Normalizing Flows



Normalizing flows

Likelihood-based generative models that:
> have exact likelihood evaluation
> scalable memory usage during training (more on this later)

> fast sampling

17



Learn distribution by mapping samples to simple distribution.

Mapping needs to be
« differentiable
e |nvertible

18 Dinh, Laurent, Jascha Sohl-Dickstein, and Samy Bengio. "Density estimation using real nvp." arXiv preprint arXiv:1605.08803 (2016).



Normalizing flow during training SLIM@

ML4Seismic

Learn distribution by mapping samples to Normal distribution.
X Z,

Epoch 1

Epoch 2

Jo(X) o

Epoch 64

19 Louboutin, Mathias, et al. "Learned multiphysics inversion with differentiable programming and machine learning." The Leading Edge 42.7 (2023): 474-486.



Normalizing flow during training SLM@

ML4Seismic

Learn distribution by mapping samples to Normal distribution.
z~ N0,

Epoch 1

Epoch 2

Epoch 64

20 Louboutin, Mathias, et al. "Learned multiphysics inversion with differentiable programming and machine learning." The Leading Edge 42.7 (2023): 474-486.



Application: medical imaging



Magnetic Resonance Imaging (MRI)

Established imaging modality for diagnosis in oncology, neurology and the
muscoloskeletal system.

22



Magnetic Resonance Imaging (MRI)

Established imaging modality for diagnosis in oncology, neurology and the
muscoloskeletal system.

Observation process involves magnetic field that captures the spatial frequency
and phase of cross-section through patient tissue:

patient observations C"™*"

Magnetic pulses

Fourier transform

23
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Accelerated Magnetic Resonance Imaging (MRI)

Process Is lengthy (easily > 30 min), leads to low patient throughput, problems
with patient comfort, artifacts from patient motion, and high exam costs.

Situation: accelerating MRI by subsampling data is important but...
all data elected locations accelerated data




Accelerated Magnetic Resonance Imaging (MRI)

Process Is lengthy (easily > 30 min), leads to low patient throughput, problems
with patient comfort, artifacts from patient motion, and high exam costs.

Situation: accelerating MRI by subsampling data is important but...

all data elected locations accelerated data

Problem: which data points should we measure for best image inference?

Solution: experimental design



Accelerated Magnetic Resonance Imaging (MRI)

Due to noise and subsampling the imaging is ill-posed thus best solved with
Bayesian framework:

given observation y (acquired w/ our experimental design) the goal is to sample
the posterior:

20



MRI experimental design with normalizing flows
FASTMRI pairs of high quality images x") and fully sampled k-space data y(i):

x(D - x(2) . (1800 y(1) y(2) y(1800)

27 Zbontar, Jure, et al. "fastMRI: An open dataset and benchmarks for accelerated MRL." arXiv preprint arXiv:1811.08839 (2018).



MRI experimental design with normalizing flows

FASTMRI pairs of high quality images x") and fully sampled k-space data y(i):
x(D x(2) (1800 y(1) y(2) y(1800)

Jointly train normalizing flow and subsampling pattern:
N

1 | _— o
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FASTMRI pairs of high quality images x") and fully sampled k-space data y(i):
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MRI experimental design with normalizing flows M e

FASTMRI pairs of high quality images x") and fully sampled k-space data y(i):
x(D x(2) (1800 y(1) y(2) y(1800)

Jointly train normalizing flow and subsampling pattern:
N

max ! —ll\f x5 A™M © yV)||5 + log |detJ, | ).
oM N&\ 2 A : Jo

Problem: how do you optimize binary mask?

Solution: reinterpret mask as a sampling density.

30 Zbontar, Jure, et al. "fastMRI: An open dataset and benchmarks for accelerated MRL." arXiv preprint arXiv:1811.08839 (2018).



Sampling density for receiver placement

Instead of optimizing for binary mask M € Z"™*" : M, ; = {0,1}

Wu, Sixue, Dirk J. Verschuur, and Gerrit Blacquiere. "Automated seismic acquisition geometry design for optimized illumination at the target: A linearized approach." IEEE
Transactions on Geoscience and Remote Sensing 60 (2021)

31 Bengio, Yoshua, Nicholas Léonard, and Aaron Courville. "Estimating or propagating gradients through stochastic neurons for conditional computation.” arXiv:1308.3432 (2013).



Sampling density for receiver placement

Instead of optimizing for binary mask M € Z"™*" : M, ; = {0,1}

optimize for sampling density w € R"*"

Wu, Sixue, Dirk J. Verschuur, and Gerrit Blacquiere. "Automated seismic acquisition geometry design for optimized illumination at the target: A linearized approach." IEEE
Transactions on Geoscience and Remote Sensing 60 (2021)

32 Bengio, Yoshua, Nicholas Léonard, and Aaron Courville. "Estimating or propagating gradients through stochastic neurons for conditional computation.” arXiv:1308.3432 (2013).



Sampling density for receiver placement

Instead of optimizing for binary mask M € Z"™*" : M, ; = {0,1}

optimize for sampling density w € R"*"

binarize with indicator

M(w) :=1,,_,
where u ~ U(0,1).

Wu, Sixue, Dirk J. Verschuur, and Gerrit Blacquiere. "Automated seismic acquisition geometry design for optimized illumination at the target: A linearized approach." IEEE
Transactions on Geoscience and Remote Sensing 60 (2021)

33 Bengio, Yoshua, Nicholas Léonard, and Aaron Courville. "Estimating or propagating gradients through stochastic neurons for conditional computation.” arXiv:1308.3432 (2013).



MRI experimental design with normalizing flows
FASTMRI pairs of high quality images x") and fully sampled k-space data y(i):

Jointly train normalizing flow and sampling density:

5 l < 1 . |
L — — _ (D). AT (D\ 112
0, w = argmax v E ( 2Hfg(x ;A" M(w) ©y")|[5 + log |det], )

Q, W i=1

34 Zbontar, Jure, et al. "fastMRI: An open dataset and benchmarks for accelerated MRL." arXiv preprint arXiv:1811.08839 (2018).



MRI experimental design with normalizing flows
FASTMRI pairs of high quality images x") and fully sampled k-space data y(i):

Jointly train normalizing flow and sampling density:

5 l < 1 . |
L — — _ (D). AT (D\ 112
0, w = argmax v E ( 2Hfg(x ;A" M(w) ©y")|[5 + log |det], )

Q, W i=1

Binarize during training and enforce budget s = 0.025
M(W) — 1s%<u

where u ~ U(0,1).

35 Zbontar, Jure, et al. "fastMRI: An open dataset and benchmarks for accelerated MRL." arXiv preprint arXiv:1811.08839 (2018).



Optimized experimental design

optimal density  optimal binary ~ baseline full data




Optimized experimental design

optimal density  optimal binary full data

We conclude our optimized density Is:
1. centered -> prioritizes low frequencies
2. ellipsoid  -> prioritizes vertical elements in k-space

3. asymmetric -> learns to exploit Hermitian symmetry
37



Posterior sampling w/ optimal design

Baseline posterior samples:

38



Posterior sampling w/ optimal design

Baseline posterior samples:

Our posterior samples
w/ optimal design:

39



Posterior sampling w/ optimal design

Baseline posterior samples:

Our posterior samples
w/ optimal design:

40



Posterior statistics

Fast sampling w/ normalizing flow to efficiently estimate statistical moments
l.e. mean, standard deviation:

Mean SSIM=0.57 Standard deviation Error NMSE=0.105

Reference image

41



Posterior statistics

Fast sampling w/ normalizing flow to efficiently estimate statistical moments
l.e. mean, standard deviation:
Mean SSIM=0.57 Standard deviation Error NMSE=0.105

Retference 1mage Mean SSIM=0.68 Standard deviation Error NMSE=0.022




Evaluation on leave-out test set

Posterior sampler generalizes to many observations thus can evaluate on
many (100) test examples.

uncertainty Is reduced

0.6

Standard Deviation

1
—

Handcraf‘éed design EIG optimilzed design
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Evaluation on leave-out test set

Posterior sampler generalizes to many observations thus can evaluate on
many (100) test examples.

0.6

Standard Deviation

44
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Note on scalability

Normalizing flows give you crucial memory efficiency for free...

45 Orozco, R., Witte, P., Louboutin, M., Siahkoohi, A., Rizzuti, G., Peters, B., & Herrmann, F. J. (2023). InvertibleNetworks. jl: A Julia package for scalable normalizing flows. arXiv:2312.13480.



Note on scalability

Normalizing flows give you crucial memory efficiency for free...

If you actually take advantage of it.

l
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46 Orozco, R., Witte, P., Louboutin, M., Siahkoohi, A., Rizzuti, G., Peters, B., & Herrmann, F. J. (2023). InvertibleNetworks. jl: A Julia package for scalable normalizing flows. arXiv:2312.13480.



Application: monitoring carbon dioxide for
mitigating climate change




State and future of climate change

Forecasts say it is not enough to reduce CO2 emissions

________

Global Emissions (Gt CO,)

Year

we need to have negative CO2 emissions i.e. take out CO2 already in
atmosphere...

but where do we store it?

48 Ringrose, P. 2020. How to store CO2 underground: Insights from early-mover CCS Projects, volume 129. Springer.



Underground carbon dioxide storage

Demonstrated solution for large scale
storage

» subsurface structures create natural
barriers

> long term solution - CO2 chemically
seals into rock at geological time scales

but the plume Is not stationary...

Offshore facilities
Monitoring surveys
L
_» Leakage pathway Marine environment
Overburden
|
% \‘
=
C
e
I3,
@
c Migration pathway o
“\\ apfOCk
SGc;‘;t it CO2 plume
slo
N —— Spill point level ™\

\T/

1000m

Ringrose, P. 2020. How to store CO2 underground: Insights from early-mover CCS Projects, volume 129. Springer.
49 Jun, Y.-S.; Zhang, L.; Min, Y.; and Li, Q. 2017. Nanoscale Chemical Processes Affecting Storage Capacities and Seals during Geologic CO> Sequestration. Accounts of

Chemical Research, 50(7): 1521-1529. PMID: 28686035.



Carbon dioxide monitoring

CO:2 plume evolves over time due to injection and permeability effects

50



Carbon dioxide monitoring

CO:2 plume evolves over time due to injection and permeability effects

thus monitoring plume is important to:
> prevent leakage
> avoid “seismic events”

» stay in licensed area.
51



Carbon dioxide monitoring

Two types of time-lapse CO2 plume observations

» direct but local — borehole wells

0
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Optimal well locations

CO2 project lasts years thus can drill more wells but:
» many location options

» expensive (1 million dollars - 100 million dollars




ptimal well locations

CO2 project lasts years thus can drill more wells but:

» many location options

» expensive (1 million dollars - 100 million dollars

erators deciding well locations should be informed
» current knowledge of the CO2 plumes (prior

physics simulations of plume forecasts (likelihoo

54




Optimal well locations

Optimize for probability density of well
placement

» well budget agnostic

AN

> decide number of wells post-hoc 500 1000 1500 2000 2500 3000

[well density]
=
=
ol

<

o

S
O 1

> easier optimization

250

> stochastic sampling during training _ °™
avoids local minima 750
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0 500 1000 1500 2000 2500 3000
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Small module in full-stack digital twin

MS189
Uncertainty Quantification for Digital Twins - Part III of I1I

8:30 AM - 10:30 AM
Room: San Giusto - Hotel Savoia Excelsior Palace

) Time
Pairs advance
For Part II, See MS 169 data/State ‘ Well pressure[MPa]z0 A igra ion
R 4 , s B
A digital twin (DT) is a computational system that continuously and repeatedly assimilates obser 8 8 g . .i;: —
otherwise guides decisions, using predictions from the updated model. Often DTs are employed £ 0 0
to models to decisions. The resulting data assimilation and optimal control/decision problems mu . Current field Start
tractable for large-scale complex systems. This minisymposium addresses mathematical, statistic ; injection

control, and optimal experimental design subproblems, as well as the reduced order models and s oo T
Organizer: Nicole Aretz .L L

University of Texas at Austin, U.S.

bapcts. active™ mdis: , Bayesian
Omar Ghattas \ by Inference
University of Texas at Austin, U.S.
Youssef M. Marzouk

state
Massachusetts Institute of Technology, U .S.

in silico

Simulation

8:30-8:55 An Uncertainty-Aware Digital Twin for Geological Carbon Storage abstract
Felix Herrmann and Abhinav Gahlot, Georgia Institute of Technology, U.S.

56



CO2 storage project life cycle

Prior samples p(X,)

Fluid flow
simulations
>
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CO2 storage project life cycle

Prior samples p(X,) Forecasted plumes p(X,, | X,)

Fluid flow
simulations
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CO2 storage project life cycle

Train inference network and

Prior samples p(X,) Forecasted plumes p(X,, | X,) well design using pairs p(X,, 1, ¥;41)
_ - :“.'"i:."iﬂ gt{ht ﬁ'!—t;ﬁ’li}}

Fluid flow Synthetic i SRS w'g}fg_, ‘539& o

simulations observations [Saaias : ST
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CO2 storage project life cycle

Prior samples p(X,) Forecasted plumes p(X,, | X,)

Fluid flow

Synthetic
simulations

observations

60
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Train inference network and
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CO2 storage project life cycle

Prior samples p(X,) Forecasted plumes p(X,, | X,)

Train inference network and
well design using pairs p(XH_l, yt+1)

Fluid flow

Synthetic
simulations

1 = o X . S ~ Ty
observations SRENETes e S e

Outputs: posterior sampler
P3(X,111¥,41) and optimal well density
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CO2 storage project life cycle

Prior samples p(X,) Forecasted plumes p(X,, | X,) well design using pairs p(X,, 1, ¥;+1)
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CO2 storage project life cycle

Train inference network and

Prior samples p(X,) Forecasted plumes p(X,, | X,) well design using pairs p(X,, 1, ¥;41)
| | ORI, SRR
Fluid flow Synthetic  SHESSSGE RSl ;;iq, A
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CO2 storage project life cycle

Train inference network and

Prior samples p(X,) Forecasted plumes p(X,, | X,) well design using pairs p(X,, 1, ¥;+1)
O PN AR (e (A "'-‘-:;iifiﬁ:?"'gm’li?i‘r
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