A dual formulation for time-domain wavefield reconstruction inversion

Gabrio Rizzuti1,*, Mathias Louboutin2, Rongrong Wang2, Emmanouil Daskalakis3, and Felix J. Herrmann1

1 Georgia Institute of Technology
2 Michigan State University
3 University of British Columbia
PDE-constrained optimization

\[
\inf_{m,u} \frac{1}{2} \left\| d - Ru \right\|^2 \quad \text{s.t.} \quad A(m)u = S^* f
\]

\[d\] : data \quad \quad \text{\(A(m)\)} : \text{wave equation}

\[f\] : source \quad \quad \text{\(R\)} : \text{receiver interp.}

\[m\] : model \quad \quad \text{\(S\)} : \text{source interp.}

\[u\] : wavefield
PDE-constrained optimization (all-at-once full-space)

\[
\mathcal{L}(m, u, v) = \frac{1}{2} \left\| d - R u \right\|^2 + \langle v, S^* f - A(m) u \rangle
\]

[Haber, E., and Ascher, U. M., 2001; Biros, G., and Ghattas, O., 2005; Grote et al, 2011]

Pros:
- **simultaneous** update of model, wavefield, multiplier
- **cheap** evaluation and gradient computation
- sparse Hessian

Cons:
- **storage of fields and multipliers**
 (for each source and time/frequency sample)
- **updates** computationally demanding
PDE-constrained optimization (reduced space)

\[J(m) = \frac{1}{2} \| d - F(m) S^* f \|^2 \]

\[F(m) = RA(m)^{-1} \]

forward map

Pros:
- low(er) storage requirements

Cons:
- highly non-convex (needs good starting model)
- requires exact PDE solutions
- dense Hessian
PDE-constrained optimization (penalty method)

\[J_\lambda(m, u) = \frac{1}{2} \| d - Ru \|^2 + \frac{\lambda^2}{2} \| S^* f - A(m) u \|^2 \]

PDE penalty

[van den Berg, P. M., and Kleinman, R. E., 1997; van Leeuwen, T. and Herrmann, F. J., 2013]
PDE-constrained optimization (wavefield reconstruction inversion)

\[J_\lambda(m) = \frac{1}{2} \| d - R \bar{u} \|^2 + \frac{\lambda^2}{2} \| S^* f - A(m) \bar{u} \|^2 \]

\[
\begin{bmatrix}
R \\
\lambda A(m)
\end{bmatrix} \bar{u} = \begin{bmatrix}
d \\
\lambda S^* f
\end{bmatrix}
\]

[van Leeuwen, T. and Herrmann, F. J., 2013]

Pros:
- no simultaneous field storage for all sources
- sparse Gauss-Newton Hessian

Cons:
- continuation strategy on \(\lambda \)
- need augmented PDE solution:
 - frequency domain: proper preconditioning?
 - time domain: no explicit time-marching scheme
Question: feasible model extension?

- convenient handling of slack variables
- feasible computation of augmented PDE (e.g., can be solved by time-marching)
Wavefield Reconstruction Inversion (time domain approximation)

\[J_\lambda(m) = \frac{1}{2} \| d - F(m) \bar{q} \|^2 + \frac{\lambda^2}{2} \| S^* f - \bar{q} \|^2 \]

\[\begin{bmatrix} F(m) \\ \lambda I \end{bmatrix} \bar{q} = \begin{bmatrix} d \\ \lambda S^* f \end{bmatrix} \]

augmented wave equation

[Wang et al, 2016] \quad \bar{q} \sim \text{generalized source}

(see also [Huang et al, 2018])

First order Taylor expansion wrt \(1/\lambda^2\):

\[\bar{q} \approx S^* f + \frac{1}{\lambda^2} F(m)^*(d - F(m)S^* f), \quad \lambda \to +\infty \]
Denoising reformulation of WRI

\[
\inf_{m,u} \frac{1}{2} \left\| S^* f - A(m)u \right\|^2 \quad \text{s.t.} \quad \left\| d - R u \right\| \leq \varepsilon
\]

PDE misfit

data constraint

[Wang, R., and Herrmann, F. J., 2017]
Dual formulation of WRI - Lagrangian

\[
\inf_{m,u} \frac{1}{2} \left\| S^* f - A(m)u \right\|^2 \quad \text{s.t.} \quad \left\| d - R u \right\| \leq \varepsilon
\]

PDE misfit

data constraint

Saddle-point problem

\[
\inf_{m,u} \sup_{y} \mathcal{L}(m,u,y)
\]

\[
\mathcal{L}(m,u,y) = \frac{1}{2} \left\| S^* f - A(m)u \right\|^2 + \langle y, d - R u \rangle - \varepsilon \| y \|
\]
Dual formulation of WRI – Augmented wave equation

Solving for u ...

$$A(m)\bar{u} = S^* f + F(m)^* y$$

augmented wave equation

Data interfere with the system!

Saddle-point problem

$$\inf_{m,u} \sup_y \mathcal{L}(m,u,y) \geq \inf_m \sup_y \inf_u \mathcal{L}(m,u,y)$$

$$\mathcal{L}(m,u,y) = \frac{1}{2} ||S^* f - A(m)u||^2 + \langle y, d - R u \rangle - \varepsilon ||y||$$
Dual formulation of WRI – Augmented wave equation

Transmission data problem:

- 1 km x 1 km model
- background velocity: 2000 m/s, inclusion 2100 m/s
- 11 sources (10 Hz peak), 51 receivers
- y = background data residual
Transmission data problem:

- 1 km x 1 km model
- background velocity: 2000 m/s, inclusion 2100 m/s
- 11 sources (10 Hz peak), 51 receivers
- \(y = \) background data residual
Dual formulation of WRI – Augmented wave equation

Transmission data problem:

- 1 km x 1 km model
- background velocity: 2000 m/s, inclusion 2100 m/s
- 11 sources (10 Hz peak), 51 receivers
- \(y = \) background data residual
Transmission data problem:

- 1 km x 1 km model
- background velocity: 2000 m/s, inclusion 2100 m/s
- 11 sources (10 Hz peak), 51 receivers
- y = background data residual
Dual formulation of WRI – Objective and gradients

\[
\inf_{m} \sup_{y} \bar{\mathcal{L}}(m, y) = \frac{1}{2} \| F(m)^* y \|^2 + \langle y, d - F(m) S^* f \rangle - \varepsilon \| y \|
\]

Gradients

\[
\nabla_m \bar{\mathcal{L}} = - \text{Jac}(m, S^* f + F(m)^* y)^* y
\]

\[
\nabla_y \bar{\mathcal{L}} = d - F(m) (S^* f + F(m)^* y)
\]

\[
\text{Jac}(m, q) = \frac{d}{dm} (\cdot \mapsto F(\cdot) q) \bigg|_m
\]

~ conventional FWI gradient
generalized-source data residual
Dual formulation of WRI (recap)

Dual saddle-point formulation

\[
\inf_m \sup_y \bar{\mathcal{L}}(m, y) = \frac{1}{2} \| F(m)^* y \|^2 + \langle y, d - F(m) S^* f \rangle - \varepsilon \| y \|
\]

Obtained **model extension** along **data space**:

\[
\bar{\mathcal{L}} : M \times D \to \mathbb{R}
\]

- amenable to **time-domain** methods
- extra variable **storage is affordable**
- **no continuation strategy** needed for relaxation parameter
- extra **time complexity** (2x PDE solutions, wrt FWI)
- dense Hessian
- need to figure out best **optimization strategy** (work in progress ...)

Dual saddle-point formulation

\[
\inf_m \sup_y \bar{L}(m, y) = -\frac{1}{2} \|F(m)^* y\|^2 + \langle y, d - F(m) S^* f \rangle - \varepsilon \|y\|
\]

Preconditioning/Scaling issue in Lagrangian/augmented wave equation:

\[
A(m) \bar{u} = S^* f + \alpha F(m)^* y
\]

Adaptive strategy?
Dual saddle-point formulation

\[\inf_m \sup_y \bar{L}(m, y) \]
\[\bar{L}(m, y) = -\frac{1}{2} \| F(m)^* y \|^2 + \langle y, d - F(m) S^* f \rangle - \varepsilon \| y \| \]

Solving for the scaling parameter

\[\tilde{L}(m, y, \alpha) := \bar{L}(m, \alpha y) \]
\[\bar{L}(m, y) := \sup_\alpha \tilde{L}(m, y, \alpha) = \tilde{L}(m, y, \alpha(m, y)) \]
\[\alpha(m, y) = \begin{cases}
\frac{\langle y, r \rangle - \varepsilon \text{sign}(\langle y, r \rangle) \| y \|}{\| F(m)^* y \|^2}, & \langle y, r \rangle \geq \varepsilon \| y \| \\
0, & \text{otherwise}
\end{cases} \]
Dual formulation of WRI (scaled)

\[
\inf_m \sup_y \bar{\mathcal{L}}(m, y) = \begin{cases}
\frac{1}{2} (|\langle \hat{y}, r \rangle| - \varepsilon \| \hat{y} \|)^2, & |\langle \hat{y}, r \rangle| \geq \varepsilon \| \hat{y} \| \\
0, & \text{otherwise}
\end{cases}
\]

\[
\hat{y} = \frac{y}{\| F(m)^* y \|}
\]}
Diving-wave example:

- 5 km x 10 km model
- linear velocity, varying slope:
 \[v(x, z) = v_0 + \beta z \]
 \[v_0 = 2 \text{ km/s}, \quad 0.5 \leq \beta \leq 1 \]
- single source (5 Hz peak), 21 receivers

Plot misfit landscape as a function of slope
Diving-wave example:

- 5 km x 10 km model
- Linear velocity
- Single source (5 Hz peak), 21 receivers

Plot misfit landscape as a function of slope

Spurious minima
Diving-wave example:

- 5 km x 10 km model
- linear velocity, varying slope
- single source (5 Hz peak), 21 receivers

Plot misfit landscape as a function of slope

Spurious minima
Spurious minima

Diving-wave example:

- 5 km x 10 km model
- linear velocity
- single source (5 Hz peak), 21 receivers

Plot misfit landscape as a function of slope
Reconstruction algorithm (sketch)

Alternating gradient descent

Given \(m_0, y_0 = d - F(m_0)S^*f \)

for \(n = 1:\text{Niter} \)

- compute gradient wrt \(m \): \(\nabla_{m_n} \bar{\mathcal{L}} \)
- update \(m \) (minimize): \(m_n \leftarrow m_n - \beta \nabla_{m_n} \bar{\mathcal{L}} \)

- compute gradient wrt \(y \): \(\nabla_{y_n} \bar{\mathcal{L}} \)
- update \(y \) (maximize): \(y_n \leftarrow y_n + \gamma \nabla_{y_n} \bar{\mathcal{L}} \)
BG Compass (reflections/diving waves) [preliminary results]

BG compass:
- ~ 3 km x 6 km model
- 25 sources (10 Hz peak), 251 receivers
- challenging for conventional FWI!

Optimization setup:
- gradient descent (fixed step length)
- just 10 iterations
BG Compass [preliminary results]
BG Compass (worse background) [preliminary results]
Presented a **reconstruction algorithm** potentially apt to large **3D** problems:

- based on **model extension** along data dimension: **robust to spurious minima**
- **storage** of slack variables is **affordable** (unlike full-space methods)
- computationally advantageous:
 - **PDEs** can be solved in time domain with **explicit schemes** (unlike classical WRI)

To do:

- study of **optimization strategy**
- implement **constraints**
References

van Leeuwen, T., and Herrmann, F. J., Mitigating local minima in full-waveform inversion by expanding the search space, Geophysical Journal International 195.1 (2013)

Peters, B., and Herrmann, F. J., and van Leeuwen, T., Wave-equation Based Inversion with the Penalty Method-Adjoint-state Versus Wavefield-Reconstruction Inversion, 76th EAGE Conference (2014)

