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PDE-consirained optimization

This talk is about parameter estimation with wavefields.

[from:http://www.sercel.com/about/Pages/what-is-geophysics.aspx]
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PDE-consirained optimization

This talk is about parameter estimation with the Helmholtz equation.

Challenging because:
e oscillatory data and predicted fields
® NONn-convex
¢ |ocal minimizers often unacceptable
e 1 PDE:~[1e6 - 1e9] grid points
e working with multiple [10 - 1000] PDE’s simultaneously is very challenging




PDE-consirained optimization

known:
e source/receiver locations
e source function (sometimes)
e the PDE (usually simplified physics)

unknown:
e PDE-coefficients (acoustic velocity)

notation:
e fields (‘state variables’)
e medium parameters (‘control variables’)




[E. Haber & U.M. Ascher, 2001 ; G. Biros & O. Ghattas, 2005 ;
Grote et. al., 2011}

PDE-consirained optimization

Use the ‘discretize-then-optimize’ framework:

1
min §HPu —d||z st. Hm)u=q

)

H(m) €¢ CV"*% discrete PDE
m € RY medium parameters
P € R™N  gelects field at receivers

ucCV field
d € C"™ observed data

qc CV source




PDE-consirained optimization

Multi-experiment structure:

1
min§\|Pu—dH§ s.t. H(m)u=q

Pl U dl Hl u; q1
Py us ds Hs uy qo
P ug d; Hy, uy qk

k x N field parameters




eliminate field variables

[E Haber et al., 2000 ; | Epanomeritakis et al., 2008]
red Uced quce [T. van Leeuwen & F.J. Herrmann, 2014]

® storage as low as two fields at a time
® highly nonlinear function value computation is

® expensive

® inexact when sub-problems are solved iteratively
e dense reduced-Hessian

® requires extra safeguards/accuracy control



e few algorithms are based on the quadratic-penalty form

e interchanging objective and constraints lead to same
algorithm

e also works with fixed A

[R.E. Kleinman & P.M.van den Berg, 1992 ; T. van Leeuwen & F.J. Herrmann, 2013]



eliminate field variables

l

.1 _
min || PH (m) ' q — d|

reduced gradient method/
reduced Lagrangian

eliminate field variables: Vy¢(m,d, A) = 0

l

N ) | N = 2
Il’lnllIl§HPll—d||2 | 9 HH(m)u_qHZ

reduced quadratic-penalty



[T. van Leeuwen & F.J. Herrmann, 2013]

A reduced-space quadratic-penalty method

. .1 A _
To minimize: mnllniHPI_l—dH% -5 |H(m)u — q|3
at every iteration: \H (m) 3\
e compute u = arg min ( D ) u — ( dq)
2

e evaluate o(m, 1, \) & Vio(m, a, \)

e update m




~ 2e8 field variables
1 compute node, <100Gb memory True model
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Solution of the sub-problem

Main challenge: solve 4 = argmin
¢ jteratively & matrix-free
e no QR or LU factorizations
e at cost cost of a few PDE solves
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Solution of the sub-problem

Cl
|

Properties of the sub-problem:

arg min

® [ isindefinite, asymmetric & very large

® nconsistent

e full column rank

e very large condition number (squared) of the H™ H block




Solution of the sub-problem

_ . AHY\ — (Aq
0 = argmin p U d
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Proposed algorithm

LS-problem in normal-equation form:
(AH(m)*H(m) + P*P)u = A\H(m)q + P*d

Split-preconditioning by A\ H w/o computations

(I+H,"P*PH ')y = Aq+ (Hy)"'P*d, with Hyu=y

e m + 1 distinct eigenvalues (identity + low-rank)
e even for inexact Helmholtz
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Proposed algorithm

Exploit identity + low-rank structure:

(I + H,"P*PH, ")y = A\q+ (H})" ' P*d,

=

by solving H=*P* =W

o Tlrec Helmholtz problems (inexactly)
e |ow-rank factorization

with Hyu =y
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Proposed algorithm

Leverage low-rank factorization:

(I+WW%y =Aq+ Wd, with Hyu=Yy

and invert system matrix as

y= (I —-W({I+WW)'W*(\q+ Wd),

soweonly needtoinvert (I +W*W) e C™*™

with Hyu=1y
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Proposed algorithm

for angular frequency w do
// solve m Helmholtz problems
HIW = P
M=I+WW)!
for right hand side 1 do
// solve for u,
Hyu; =Yy;
end for
end for
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Proposed algorithm

Matrix-free algorithm
¢ no direct solves
¢ related mildly overdetermined systems

Computational cost:
e 1 PDE per receiver
e ] PDE per source

Memory requirements:
e 1 vector per receiver (W)
e system matrix ( H)
e storage for solving systems with H

[L. M. Delves & I. Barrodale, 1979]
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Proposed algorithm

Inexact solutions to the linear systems:

for angular frequency w do
// solve m Helmholtz problems inexactly
—»( HiW = P*+ R, |
M = (I+W*W)~!
for right hand side 1 do
Vi = (I — WMW*) ()\qq; + VAde)
// solve for u; inexactly
end for
end for
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Proposed algorithm

(preliminary) error bound on inexactly computed solution:
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Proposed algorithm

(preliminary) error bound on inexactly computed solution:

H insteadof H*H
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Proposed algorithm

(preliminary) error bound on inexactly computed solution:

residual of solving a system with H

e Y~

|(I +ww*) " (Hy "rod + 1y — (W(H, "1y)" + (H "




_ Suggested PDE-solver
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Need to store 1 vector per receiver
-> use PDE-solver with low-memory & setup requirements

Helmholtz:

e CGMN ( only 4 vect ors) / CARP-CG [A. Bjorck & T. Elfving, 1979; D. Gordon & R. Gordon, 2010;

T. van Leeuwen & F.J. Herrmann, 2014]

e Shifted-Laplacian w/ multi-grid [Y.A. Erlangga, 2008; H. Calandra et al., 2013]
e combination of the above [R. Lago & F.J. Herrmann, 2015]
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10 x 10 x 2 km, 5 Hz, 27-point discretization, ~1e7 grid points, source at [0,0,0]

L R0
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3D Example

- wavefield in frue model
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Conclusions

e Developed matrix-free version of a reduced-space quadratic-penalty
method.

e Enabler for 3D parameter estimation w/ the quadratic-penalty method.

® Proposed algorithm might be used for other large-scale mildly
overdetermined problems w/ many variables & few constraints.
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Current & future work

1 \?
p(m,u,\) = _||Pu—d|3 + Z-[|H (m)u - q)

Viu® Vam®) (0u) _ (V¢
V?n,uqé\v‘%n,mqb om) ~ "\ Vo

NH*H + P*P

Developed algorithm is also a key building block for a full-space algorithm

Penalty approach avoids storing multipliers
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