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Outline

® Derive single-source monochromatic formulation of PDE
constrained optimization

— Lagrangian formulation
— adjoint-state method

® Extend to multi-source and multi-frequency

— multiple source
— multiple source & multiple frequency
— Gauss-Newton

® Discuss current-day cutting edge developments/applications of FWI
— stochastic optimization
— modified Gauss-Newton with sparsity promotion

® Related problems

— source calibration
— free surface
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PDE-constrained optimization (monochromatic)

1
§HPu—dH§ subject to H[m]u = q

min
1m.u
Variable | Type | Dimension Description

Ny y/m 1 Number of grid points in x
N, y/m 1 Number of grid points in z
N y/m 1 Number of receivers
m R NN, Model (slowness squared)

H[m] C ngn, X ngn, | Discrete Helmholz with boundary
P R Ny X Mg, Sampling operator
d C N, Data vector
q C NNy Source
u C NyN s Wavefield
\% C N1y Adjoint Wavefield
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Unconstrained formulation

Fm,q]
: 1 . 1—1 2
min  ¢(m) = _ | PH[m] ~'q —d|}

® interested in deriving the gradient for optimization
m" ! = m" — 4 V¢(m")

® matrix-free Jacobian ( J — v.#[m., q])

Vo(m) = (VF|m,q|)"(F|m,q] —d)
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Gradient of the Lagrangian

® Adjoint formulation using the Lagrangian

L(v,u,m) :

® Gradient
Ov L =
Oul =

Om, L =

Hm|u — q

P'(Pu—d)+H

1 X
5|Pu—d|j5 + v*(H[m]u—q)

m|*v

OH[m]

v

ﬁmi

® Put to zero top two equations uniquely defines u, v
® Solutions depend smoothly on m
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Gradient calculation

f(m) = L(v(m),u(m), m)
where v(m) and u(m) are the solutions to Oy L = 0uL =0

For a fixed value of m, define

i = H[m] 'q
v = —H[m]*P' (Pa — d)
d o dv | o du | _
d—mf(m) — aVL(Vv u, m) dm | 811£(V7 u, m) dm | 8m£(V, U, 1n
— aH'IL(‘_/—a ﬁ? 1Tl
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Gradient calculation cont’ed
f(m) = 3||Pa—d|3
= 3||PH[m] 'q—d|3

= ¢(m),
® corresponds to the unconstrained objective
® \\Ve obtain

Om, 6(m) = O, L5, ¥, m) — v+ O 5

5’mf,;

® or

Voé(m) = widiag(av™)
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Gradient calculation cont’ed
f(m) = 3|[Pa—d|3

= i||PH[m] 1q—d|3

= ¢(m),
® corresponds to the unconstrained objective
® \\Ve obtain
OH|[m
8ngb(m) — amiﬁ(l_l, \_/', m) =2 [ ]1_1
5’mf,;

P : : .
or zero-‘offset’ imaging condition

Vo(m) = w@(uv§
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Multisource FWI

® Constrained formulation

1
min  =||P(U) — D||% subject to H[m]U = Q
mU 2

® Unconstrained formulation

min ¢(m) := _ | P(H[m]~'Q) - D[}

® | agrangian

L(V.U,m) := _[P(U) ~ D} + tr (V* (H[m]U — Q)

® Matrix-free Jacobian

Vo(m) = (VF[m, Q|)"(¥m, Q] — D)
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Multisource FWI cont’'nd

Variable | Type | Dimension Description

Ny y/m 1 Number of grid points in x

N, y/m 1 Number of grid points in z

Ny y/m 1 Number of receivers

N y/m 1 Number of sources

n ¢ y/m 1 Number of frequencies

m R NN, Model (slowness squared)
H,, [m] C NeNy X NN, Discrete Helmholz with boundary for w
H[m] C nf(NgNy X Ngny) diag/H,,, (m|, ... He, im]]

D, C Ny X Mg Data vector for w

D C ns(ne X ng) stack[Dy,,, . .. 7Dwnf]

P R NpNy X Mg — Ny X Tg Sampling operator

P R (Mg, X Ng) — np(n, X ng) Applies P to each frequency

Q, C Ny, X Ng Source for frequency w

Q C nf(Ngny X Ng) stack|Q,,, ;- -, anf]

U, C NypN, X Mg Wavefield for frequency w

U C N (NaNy X Ng) stack|Uy,,, ... ,anf]

V. C NypMN, X Mg Adjoint wavefield for frequency w

\Y% C N (NpNy X Ng) stack|V,,... ,anf]
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Multisource FWI cont’'nd

® gradient of the Lagrangian

ovL = Hm|U - Q
oyl = P*(P(U)—-D)+H[m|*V
_ «OH|[m]

Vo(m) = Z w?diag(UV™)

® Corresponds to reverse-time migration residue/linearized data
/_/_
Vo(m) = (VF[m, Q)" (F[m, Q|- D)
N———

migration
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Multisource FWI cont’nd

® gradient of the Lagrangian

ovL = Hm|U - Q
oyl = P*(P(U)—-D)+H[m|*V
_ . OH[m]

zero-‘offset’ imaging condition
Votm) = 3 (V)

® Corresponds to reverse-time migration residue/linearized data
/_/%
Vo(m) = (VF[m, Q)" (F[m, Q|- D)
N———

migration
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Multisource FWI cont’nd

® gradient of the Lagrangian

ovL = Hm|U - Q
oyl = P*(P(U)—-D)+ H[m]*V
_ . OH[m]

zero-‘offset’ imaging condition

Ve (m) @«Q@N@

zero-‘time’ 1imaging condition

® Corresponds to reverse-time migration residue/linearized data
/_/%
Vo(m) = (VF[m, Q)" (F[m, Q|- D)
N———

migration
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Algorithm 1: Gauss Newton

Result: Output estimate for the model m
m «— mg; k+— 0 ; // initial model
while not converged do

dm" — argming, 3D — F[m"; Q] - VF[m"; Qlom|3
m*t! —— m* + ~F5m" ; // update with linesearch
k+— k+1;

end

Evaluation of VF" m; Q| and VF|m; Q)| each require
two PDE solves for each source & angular frequency

Involves inversion of a tall linear system of equations
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Gauss-Newton

Evaluation of VF" m; Q| and VF|m; Q)| each require
two PDE solves for each source & angular frequency

Involves inversion of a tall linear system of equations

Saturday, July 16, 2011



Algorithm 1: Gauss Newton

Result: Output estimate for the model m
m<«— mg; k<+— 0 ; // initial model
while not converged do

b
dm" «—— argming,, 3| D — F[m"; Q] - VF[m"; QJém ||%
Ax
m~t! «—— mF + ’yk(ﬁml€ ; // update with linesearch
k+— k+1;

end

Evaluation of VF " m; Q| and VF|m; Q)| each require
two PDE solves for each source & angular frequency

Involves inversion of a tall linear system of equations
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SIIIOChqsII.IC [Haber, Chung, and FJH,’10]

O pllli m iZCI 'I'io n [Bertsekas, '96, Nemirovsky, '08]

Replace deterministic-optimization problem with sum cycling

over different sources & corresponding monochromatic shot
records (columns of D & Q):

N s

1

. B 1 T2
I?%lngb(m) =N ; §Hdz — Flm; q;]||5
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Stochastic average

a pproxima’rion [Haber, Chung, and FJH,"10]

by a stochastic-optimization problem (SAA)

min By {¢(m,w) = [Dw  Fm; Qw][3}
— Hrll%ln¢(m)
1 K
> IIrlrllnE Z _” [m g.j]HQ
j=1

with Ew{ww!} =1

andd; = Dw;, q;, = Qw;
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-

Stylized example

starting
model

‘reflectivity’

z [km]

X [km]
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ien

Grad

Search direction for

batch size K;

increasing

0.5¢

1.5¢
2

K=1 K=5 K=10

full
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10 N — S
10° 10" 10
K

2

error between full and sampled gradient
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Misfit functional

K
1
Ok (8k) = 25 — Flm + agk; q,] i3

x 10 T T T T x 10 T T x 10

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
a

K:l K=5 K=10

[Haber, Chung, and FJH,’|0; van Leeuwen, Aravkin, FJH, "1 0]
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Stochastic average

approximation

In the limit K — oo, stochastic & deterministic formulations
are identical

Applicable to arbitrary optlmlzatlon problems of the form

min 6(m z@

We gain as longas K < N ...

But the error in Monte-Carlo methods decays only slowly

(O(K~V?))
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Stochastic

approximation (SA)

Algorithm 1: Stochastic gradient descent

Result: Output estimate for the model m

m<«— mg; k«— 0 ; // initial model

while not converged do

{Qk,gk} — {DWk, ka} with w¥ € N(0,1); // draw sim.
gk «— VF* m*!, ¢*|(d" — Flm* 1, q"]) ; // gradient
m+! — mb — Akgh - // update
m* ! = k%—l (Zf];:l m’ + mk“); // average
k—Fk+1;

end

[Bertsekas, '96; Haber, Chung, and FJH,’10]
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K=1

[noisy case]
w/0o averaging
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Stochastic-average approximation (SAA):

p Error decays slowly with batch size K

p Works for separable optimization problems
Stochastic approximation (SA):

p Renewals improve convergence significantly

p Requires averaging to remove noise instability, which is
detrimental to the convergence
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-

Randomized

source superposition

[b17°°' 7bns} \%Y% [bla'” 7bn/]

S

Source - Receiver Slice (Full Data) Random Gaussian Matrix Data * Random Gaussian Matrix

Receiver Index

120

140°F

Source Index
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Heuristic

a Ig Ol’i'l'h M) [Haber, Chung, and FH,’10]

Algorithm 1: Stochastic-average approximation with warm starts

Xg «— 0k +— 0 ; // initialize
while ||X0 — §||2 2 e do
k«— k4 1; // increase counter
X — X0; // update warm start
W «—— Draw(W); // draw new subsampler
xo «— Solve(P(W); X); // solve the subproblem

end
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Subproblems

least-squares migraﬁon

Py, (W x0) m;n—ZH -~ Alx]3

p solve with limited # of iterations of LSQR
p initialize solver with warm start

p solves damped least-squares problem
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Subproblems

sparsity-promoting migration

P, (Wi m;n—ZH ~ Al subject to |||y, < 7"

p solve LASSO problem for a given sparsity level using the
spectral-gradient method (SPG/;)

p initialize solver with warm start

p solves sparsity-pbromoting subproblem

[van den Berg & Friedlander, ’08]
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Depth (Km)

Least-squares migration

8 supershots w 3 frequencies

with renewals

1 2 3 4 5 6 7 8 9
Lateral distance (Km)
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Depth (Km)

Least-squares migration

8 supershots w 3 frequencies

without renewals

1 2 3 4 5 6 7 8 9
Lateral distance(Km)
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Sparse migration

8 supershots w 3 frequencies

without renewals

Lateral distance (Km)
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Sparse migration

8 supershots w 3 frequencies

with renewals

Lateral distance (Km)
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Depth (Km)

Least-squares migration

all 192 shots w 10 frequencies

Lateral distance (Km)
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Leverage findings from stochastic & compressive sensing

® consider dimensionality reduced Gauss-Newton updates
as separate “‘compressive-sensing /{1 regularized
experiments”

® turn large ‘overdetermined’ problems with large matrix-
setup costs into small ‘undetermined’ problems via
randomization
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Modified Gauss-Newion

) active: B | )
Objective f(m) :=[|D — Fm; Q]|
o |terative algorithm: m”" =m" +,C"ox
- : L V. L V. * 2
« Direction dx solves . ID = Flm” Q] = VF|m”; Q|C7ox][%
S.t. |ox|[1 < T

« The subproblem for §x isconvex,and C*§x is a descent direction:

f'(m”;€"ox) < f(m”) — | D — Flm"; Q] —-VF[m; Q|C"dx|7 < 0

-~

f(m”)

[Burke ‘89, Burke "92]
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Picking Lasso Parameter

b A
25_ AL AL
”bHF\ min HD—F[m”;Qj—er[m”;Q]CgéxHQF
0X
- 20- s.t. 16%][1 < 7 Lasso
T
O
o 15-
ks
£
2 107 min 10x][;
g 0xX BPDN
- - . s.t. ||b— Adx||p <o
O | | | | | [ |
0 1 2 3 4 5 6‘\7
one—norm of solution
min 0X
Sxc 0|1 BP
s.t. b= Adx

[van den Berg '08]
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Compressive inversion

Algorithm 1: Dimensionality-reduced Gauss Newton with sparsity

Result: Output estimate for the model m
m<«— mg; k<+<— 0 ; // initial model
while not converged do

Sy S* arg ming, %HQk — f[mk;gk] — Vf[mk;gk]&dl%
subject to  ||6x|[; < 7F

m — mF + y*S*x ; // update with linesearch
k+— k+1;
end

k+1
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Example Il
BG model
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Depth (Km)

BG model

initial model
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Lateral distance (Km)
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BG model

inverted model
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Lateral distance (Km)
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BG model

Depth (Km)

Lateral distance (Km)

inverted model w/o renewals
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Example Il
BG model
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Free-surface

mitigation
Robust estimation of primaries by sparse inversion
p alternating optimization

p curvelet-domain sparsity promotion

p informed blind deconvolution

Sparsity-promoting imaging with multiples
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Estimation of primaries by sparse inversion

upgoing wavefield downgoing wavefield
~ =~ o N—
P ~ G Q — P|
N~

surface-free impulse response

Involves the solution of a bi-convex optimization problem
yielding alternating estimates

® for the source function Q

® for the surface-free Green’s function G
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trace x104
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Pluto15
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Primary IR (G)

no transform used
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0.5
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x104

Gulf of Suez
REPSI + Transform
Primary IR (G)

shot gather

2D Curvelet (Src-Rcv)
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90 SPG grad. iterations
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Compressive sensing

Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information by Candes, 06.
Compressed Sensing by D. Donoho,’06

Simultaneous simulations, imaging, and full-wave inversion:

Faster shot-record depth migrations using phase encoding by Morton & Ober, ’98.

Phase encoding of shot records in prestack migration by Romero et. al.,’00.

High-resolution wave-equation amplitude-variation-with-ray-parameter (AVP) imaging with sparseness constraints by Wang & Sacchi, ’07
Efficient Seismic Forward Modeling using Simultaneous Random Sources and Sparsity by N. Neelamani et. al.,’08.

Compressive simultaneous full-waveform simulation by FJH et. al.,’09.

Fast full-wavefield seismic inversion using encoded sources by Krebs et. al.,’09

Randomized dimensionality reduction for full-waveform inversion by FJH & X.Li,’ 10

Stochastic optimization and machine learning:

A Stochastic Approximation Method by Robbins and Monro, 1951

Neuro-Dynamic Programming by Bertsekas, 96

Robust stochastic approximation approach to stochastic programming by Nemirovski et. al.,’09
Stochastic Approximation approach to Stochastic Programming by Nemirovski

An effective method for parameter estimation with PDE constraints with multiple right hand sides. by Eldad Haber, Matthias Chung,
and Felix J. Herrmann.’ |10

Seismic waveform inversion by stochastic optimization. Tristan van Leeuwen, Aleksandr Aravkin and FJH, 2010.

Full-waveform inversion with extensions

Migration velocity analysis and waveform inversion by Symes Geophysical Prospecting, 56: 765—-790, 2008.
The seismic reflection inverse problem by Symes, Inverse Problems 25, 2009.
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