Full-waveform inversion

Felix J. Herrmann*
 fherrmann@eos.ubc.ca

with help from
Tristan van Leeuwen, Sasha Aravkin, and other members of the SLIM team
*Seismic Laboratory for Imaging \& Modeling Department of Earth \& Ocean Sciences The University of British Columbia

Golub Summer School
Vancouver, July 4-15, 2011

Outline

- Derive single-source monochromatic formulation of PDE constrained optimization
- Lagrangian formulation
- adjoint-state method
- Extend to multi-source and multi-frequency
- multiple source
- multiple source \& multiple frequency
- Gauss-Newton
- Discuss current-day cutting edge developments/applications of FWI
- stochastic optimization
- modified Gauss-Newton with sparsity promotion
- Related problems
- source calibration
- free surface

PDE-contrained optimization

Felix J. Herrmann*

fherrmann@eos.ubc.ca
*Seismic Laboratory for Imaging \& Modeling Department of Earth \& Ocean Sciences The University of British Columbia

Golub Summer School
Vancouver, July 4-15, 2011

PDE-constrained optimization (monochromatic)

$$
\min _{\mathbf{m}, \mathbf{u}} \frac{1}{2}\|\mathbf{P} \mathbf{u}-\mathbf{d}\|_{2}^{2} \quad \text { subject to } \quad \mathbf{H}[\mathbf{m}] \mathbf{u}=\mathbf{q}
$$

Variable	Type	Dimension	Description
n_{x}	\mathbb{Z}_{+}	1	Number of grid points in x
n_{z}	\mathbb{Z}_{+}	1	Number of grid points in z
n_{r}	\mathbb{Z}_{+}	1	Number of receivers
\mathbf{m}	\mathbb{R}	$n_{x} n_{z}$	Model (slowness squared)
$\mathbf{H}[\mathbf{m}]$	\mathbb{C}	$n_{x} n_{z} \times n_{x} n_{z}$	Discrete Helmholz with boundary
\mathbf{P}	\mathbb{R}	$n_{r} \times n_{x} n_{z}$	Sampling operator
\mathbf{d}	\mathbb{C}	n_{r}	Data vector
\mathbf{q}	\mathbb{C}	$n_{x} n_{z}$	Source
\mathbf{u}	\mathbb{C}	$n_{x} n_{z}$	Wavefield
\mathbf{v}	\mathbb{C}	$n_{x} n_{z}$	Adjoint Wavefield

Unconstrained formulation

$$
\min _{\mathbf{m}} \quad \phi(\mathbf{m}):=\frac{1}{2}\|\overbrace{\mathbf{P H}[\mathbf{m}]^{-1} \mathbf{q}}^{\mathcal{F}[\mathbf{m}, \mathbf{q}]}-\mathbf{d}\|_{2}^{2}
$$

- interested in deriving the gradient for optimization

$$
\mathbf{m}^{k+1}=\mathbf{m}^{k}-\gamma \nabla \phi\left(\mathbf{m}^{k}\right)
$$

- matrix-free Jacobian $(\mathbf{J}=\nabla \mathcal{F}[\mathbf{m}, \mathbf{q}])$

$$
\nabla \phi(\mathbf{m})=(\nabla \mathcal{F}[\mathbf{m}, \mathbf{q}])^{*}(\mathcal{F}[\mathbf{m}, \mathbf{q}]-\mathbf{d})
$$

Gradient of the Lagrangian

- Adjoint formulation using the Lagrangian

$$
\mathcal{L}(\mathbf{v}, \mathbf{u}, \mathbf{m}):=\frac{1}{2}\|\mathbf{P} \mathbf{u}-\mathbf{d}\|_{2}^{2}+\mathbf{v}^{*}(\mathbf{H}[\mathbf{m}] \mathbf{u}-\mathbf{q})
$$

- Gradient

$$
\begin{aligned}
\partial_{\mathbf{V}} \mathcal{L} & = & \mathbf{H}[\mathbf{m}] \mathbf{u}-\mathbf{q} \\
\partial_{\mathbf{u}} \mathcal{L} & = & \mathbf{P}^{T}(\mathbf{P} \mathbf{u}-\mathbf{d})+\mathbf{H}[\mathbf{m}]^{*} \mathbf{v} \\
\partial_{\mathbf{m}_{i}} \mathcal{L} & = & \mathbf{v}^{*} \frac{\partial \mathbf{H}[\mathbf{m}]}{\partial \mathbf{m}_{i}} \mathbf{u}
\end{aligned}
$$

- Put to zero top two equations uniquely defines \mathbf{u}, \mathbf{v}
- Solutions depend smoothly on \mathbf{m}

Gradient calculation

$$
f(\mathbf{m})=\mathcal{L}(\mathbf{v}(\mathbf{m}), \mathbf{u}(\mathbf{m}), \mathbf{m})
$$

where $\mathbf{v}(\mathbf{m})$ and $\mathbf{u}(\mathbf{m})$ are the solutions to $\partial_{\mathbf{v}} \mathcal{L}=\partial_{\mathbf{u}} \mathcal{L}=0$
For a fixed value of \mathbf{m}, define

$$
\begin{aligned}
& \overline{\mathbf{u}}= \\
& \overline{\mathbf{v}}= \\
& -\mathbf{H}[\mathbf{m}]^{-*} \mathbf{P}^{T}(\mathbf{P} \overline{\mathbf{u}}-\mathbf{d}) \\
& \begin{array}{rlrl}
\frac{d}{d \mathbf{m}} f(\mathbf{m}) & = & \partial_{\mathbf{v}} \mathcal{L}(\overline{\mathbf{v}}, \overline{\mathbf{u}}, \mathbf{m}) \frac{d \mathbf{v}}{d \mathbf{m}}+\partial_{\mathbf{u}} \mathcal{L}(\overline{\mathbf{v}}, \overline{\mathbf{u}}, \mathbf{m}) \frac{d \mathbf{u}}{d \mathbf{m}}+\partial_{\mathbf{m}} \mathcal{L}(\overline{\mathbf{v}}, \overline{\mathbf{u}}, \mathbf{m}) \\
& = & & \partial_{\mathbf{m}} \mathcal{L}(\overline{\mathbf{v}}, \overline{\mathbf{u}}, \mathbf{m})
\end{array}
\end{aligned}
$$

Gradient calculation cont'ed

$$
\begin{aligned}
f(\mathbf{m}) & =\frac{1}{2}\|\mathbf{P} \overline{\mathbf{u}}-\mathbf{d}\|_{2}^{2} \\
& =\frac{1}{2}\left\|\mathbf{P H}[\mathbf{m}]^{-1} \mathbf{q}-\mathbf{d}\right\|_{2}^{2} \\
& =\phi(\mathbf{m}),
\end{aligned}
$$

- corresponds to the unconstrained objective
- We obtain

$$
\partial \mathbf{m}_{i} \phi(\mathbf{m})=\partial \mathbf{m}_{i} \mathcal{L}(\overline{\mathbf{u}}, \overline{\mathbf{v}}, \mathbf{m})=\overline{\mathbf{v}}^{*} \frac{\partial \mathbf{H}[\mathbf{m}]}{\partial \mathbf{m}_{i}} \overline{\mathbf{u}}
$$

- or

$$
\nabla \phi(\mathbf{m})=\omega^{2} \operatorname{diag}\left(\overline{\mathbf{u}} \overline{\mathbf{v}}^{*}\right)
$$

Gradient calculation cont'ed

$$
\begin{aligned}
f(\mathbf{m}) & =\frac{1}{2}\|\mathbf{P} \overline{\mathbf{u}}-\mathbf{d}\|_{2}^{2} \\
& =\frac{1}{2}\left\|\mathbf{P H}[\mathbf{m}]^{-1} \mathbf{q}-\mathbf{d}\right\|_{2}^{2} \\
& =\phi(\mathbf{m}),
\end{aligned}
$$

- corresponds to the unconstrained objective
- We obtain

$$
\partial \mathbf{m}_{i} \phi(\mathbf{m})=\partial \mathbf{m}_{i} \mathcal{L}(\overline{\mathbf{u}}, \overline{\mathbf{v}}, \mathbf{m})=\overline{\mathbf{v}}^{*} \frac{\partial \mathbf{H}[\mathbf{m}]}{\partial \mathbf{m}_{i}} \overline{\mathbf{u}}
$$

- or

$$
\nabla \phi(\mathbf{m})=\omega^{2} \operatorname{diag}\left(\overline{\mathbf{u}} \overline{\mathbf{v}}^{*}\right)
$$

Multisource FWI

- Constrained formulation
$\min _{\mathbf{m}, \mathbf{U}} \quad \frac{1}{2}\|\mathcal{P}(\mathbf{U})-\mathbf{D}\|_{F}^{2} \quad$ subject to $\quad \mathbf{H}[\mathbf{m}] \mathbf{U}=\mathbf{Q}$
- Unconstrained formulation

$$
\min _{\mathbf{m}} \quad \phi(\mathbf{m}):=\frac{1}{2}\left\|\mathcal{P}\left(\mathbf{H}[\mathbf{m}]^{-1} \mathbf{Q}\right)-\mathbf{D}\right\|_{F}^{2}
$$

- Lagrangian

$$
\mathcal{L}(\mathbf{V}, \mathbf{U}, \mathbf{m}):=\frac{1}{2}\|\mathcal{P}(\mathbf{U})-\mathbf{D}\|_{F}^{2}+\operatorname{tr}\left(\mathbf{V}^{*}(\mathbf{H}[\mathbf{m}] \mathbf{U}-\mathbf{Q})\right)
$$

- Matrix-free Jacobian

$$
\nabla \phi(\mathbf{m})=(\nabla \mathcal{F}[\mathbf{m}, \mathbf{Q}])^{*}(\mathcal{F}[\mathbf{m}, \mathbf{Q}]-\mathbf{D})
$$

Seismic Laboratory for Imaging and Modeling

Multisource FWI cont'nd

Variable	Type	Dimension	Description
n_{x}	\mathbb{Z}_{+}	1	Number of grid points in x
n_{z}	\mathbb{Z}_{+}	1	Number of grid points in z
n_{r}	\mathbb{Z}_{+}	1	Number of receivers
n_{s}	\mathbb{Z}_{+}	1	Number of sources
n_{f}	\mathbb{Z}_{+}	1	Number of frequencies
\mathbf{m}	\mathbb{R}	$n_{x} n_{z}$	Model (slowness squared)
$\mathbf{H}_{\boldsymbol{\omega}}[\mathbf{m}]$	\mathbb{C}	$n_{x} n_{z} \times n_{x} n_{z}$	Discrete Helmholz with boundary for ω
$\mathbf{H}[\mathbf{m}]$	\mathbb{C}	$n_{f}\left(n_{x} n_{z} \times n_{x} n_{z}\right)$	$\operatorname{diag}\left[\mathbf{H}_{\omega_{1}}[\mathbf{m}], \ldots, \mathbf{H}_{\omega_{n_{f}}}[\mathbf{m}]\right]$
$\mathbf{\mathbf { D } _ { \omega }}$	\mathbb{C}	$n_{r} \times n_{s}$	Data vector for ω
\mathbf{D}	\mathbb{C}	$n_{f}\left(n_{r} \times n_{s}\right)$	$\operatorname{stack}\left[\mathbf{D}_{\omega_{1}}, \ldots, \mathbf{D}_{\omega_{n_{f}}}\right]$
\mathcal{P}_{f}	\mathbb{R}	$n_{x} n_{z} \times n_{s} \rightarrow n_{r} \times n_{s}$	Sampling operator
\mathcal{P}	\mathbb{R}	$n_{f}\left(n_{x} n_{z} \times n_{s}\right) \rightarrow n_{f}\left(n_{r} \times n_{s}\right)$	Applies \mathcal{P}_{f} to each frequency
$\mathbf{Q}{ }_{\omega}$	\mathbb{C}	$n_{x} n_{z} \times n_{s}$	Source for frequency ω
\mathbf{Q}	\mathbb{C}	$n_{f}\left(n_{x} n_{z} \times n_{s}\right)$	stack $\left[\mathbf{Q}_{\omega_{1}}, \ldots, \mathbf{Q}_{\omega_{n_{f}}}\right]$
$\mathbf{\mathbf { U } _ { \omega }}$	\mathbb{C}	$n_{x} n_{z} \times n_{s}$	Wavefield for frequency ω
\mathbf{U}	\mathbb{C}	$n_{\omega}\left(n_{x} n_{z} \times n_{s}\right)$	stack $\left[\mathbf{U}_{\omega_{1}}, \ldots, \mathbf{U}_{\omega_{n_{f}}}\right]$
\mathbf{V}_{ω}	\mathbb{C}	$n_{x} n_{z} \times n_{s}$	Adjoint wavefield for frequency ω
\mathbf{V}	\mathbb{C}	$n_{\omega}\left(n_{x} n_{z} \times n_{s}\right)$	stack $\left[\mathbf{V} \mathbf{V}_{\omega_{1}}, \ldots, \mathbf{V}_{\omega_{n_{f}}}\right]$

Multisource FWI cont'nd

- gradient of the Lagrangian

$$
\begin{array}{rlr}
\partial_{\mathbf{V}} \mathcal{L} & = & \mathbf{H}[\mathbf{m}] \mathbf{U}-\mathbf{Q} \\
\partial_{\mathbf{U}} \mathcal{L} & = & \mathcal{P}^{*}(\boldsymbol{P}(\mathbf{U})-\mathbf{D})+\mathbf{H}[\mathbf{m}]^{*} \mathbf{V} \\
\partial_{\mathbf{m}_{i}} \mathcal{L} & = & \operatorname{tr}\left(\mathbf{V}^{*} \frac{\partial \mathbf{H}[\mathbf{m}]}{\partial \mathbf{m}_{i}} \mathbf{U}\right)
\end{array}
$$

- or

$$
\nabla \phi(\mathbf{m})=\sum_{\omega} \omega^{2} \operatorname{diag}\left(\mathbf{U V}^{*}\right)
$$

- Corresponds to reverse-time migration
residue/linearized data

$$
\nabla \phi(\mathbf{m})=\underbrace{(\nabla \mathcal{F}[\mathbf{m}, \mathbf{Q}])^{*}}_{\text {migration }}
$$

$$
\overbrace{(\mathcal{F}[\mathbf{m}, \mathbf{Q}]-\mathbf{D})}
$$

Multisource FWI cont'nd

- gradient of the Lagrangian

$$
\begin{array}{rlr}
\partial_{\mathbf{V}} \mathcal{L} & = & \mathbf{H}[\mathbf{m}] \mathbf{U}-\mathbf{Q} \\
\partial_{\mathbf{U}} \mathcal{L} & = & \mathcal{P}^{*}(\mathcal{P}(\mathbf{U})-\mathbf{D})+\mathbf{H}[\mathbf{m}]^{*} \mathbf{V} \\
\partial_{\mathbf{m}_{i}} \mathcal{L} & = & \operatorname{tr}\left(\mathbf{V}^{*} \frac{\partial \mathbf{H}[\mathbf{m}]}{\partial \mathbf{m}_{i}} \mathbf{U}\right)
\end{array}
$$

- or

$$
\nabla \phi(\mathbf{m})=\sum_{\omega} \omega^{2} \operatorname{diag}\left(\mathbf{U V}^{*}\right)
$$

- Corresponds to reverse-time migration

$$
\nabla \phi(\mathbf{m})=\underbrace{(\nabla \mathcal{F}[\mathbf{m}, \mathbf{Q}])^{*}}_{\text {migration }}
$$

residue/linearized data

$$
\overbrace{(\mathcal{F}[\mathbf{m}, \mathbf{Q}]-\mathbf{D})}
$$

Multisource FWI cont'nd

- gradient of the Lagrangian

$$
\begin{array}{rlr}
\partial_{\mathbf{V}} \mathcal{L} & = & \mathbf{H}[\mathbf{m}] \mathbf{U}-\mathbf{Q} \\
\partial_{\mathbf{U}} \mathcal{L} & = & \mathcal{P}^{*}(\mathcal{P}(\mathbf{U})-\mathbf{D})+\mathbf{H}[\mathbf{m}]^{*} \mathbf{V} \\
\partial_{\mathbf{m}_{i}} \mathcal{L} & = & \operatorname{tr}\left(\mathbf{V}^{*} \frac{\partial \mathbf{H}[\mathbf{m}]}{\partial \mathbf{m}_{i}} \mathbf{U}\right)
\end{array}
$$

- or
zero-‘offset’ imaging condition

$$
\nabla \phi(\mathbf{m})=\sum_{\omega} \omega^{2} \operatorname{diag}\left(\mathbf{U V}^{*}\right)
$$

zero-'time' imaging condition

- Corresponds to reverse-time migration

$$
\nabla \phi(\mathbf{m})=\underbrace{(\nabla \mathcal{F}[\mathbf{m}, \mathbf{Q}])^{*}}_{\text {migration }}
$$

residue/linearized data

$$
\overbrace{(\mathcal{F}[\mathbf{m}, \mathbf{Q}]-\mathbf{D})}
$$

Gauss-Newton

```
Algorithm 1: Gauss Newton
    Result: Output estimate for the model \(\mathbf{m}\)
    \(\mathbf{m} \longleftarrow \mathbf{m}_{0} ; k \longleftarrow 0 ; \quad\) // initial model
    while not converged do
        \(\delta \mathbf{m}^{k} \longleftarrow \arg \min _{\delta \mathbf{m}} \frac{1}{2}\left\|\mathbf{D}-\mathcal{F}\left[\mathbf{m}^{k} ; \mathbf{Q}\right]-\nabla \mathcal{F}\left[\mathbf{m}^{k} ; \mathbf{Q}\right] \delta \mathbf{m}\right\|_{F}^{2}\)
        \(\mathbf{m}^{k+1} \longleftarrow \mathbf{m}^{k}+\gamma^{k} \delta \mathbf{m}^{k} ; \quad / /\) update with linesearch
        \(k \longleftarrow k+1 ;\)
    end
```

Evaluation of $\nabla \mathcal{F}^{H}[\mathbf{m} ; \mathbf{Q}]$ and $\nabla \mathcal{F}[\mathbf{m} ; \mathbf{Q}]$ each require two PDE solves for each source \& angular frequency

Involves inversion of a tall linear system of equations

Gauss-Newton

Evaluation of $\nabla \mathcal{F}^{H}[\mathbf{m} ; \mathbf{Q}]$ and $\nabla \mathcal{F}[\mathbf{m} ; \mathbf{Q}]$ each require two PDE solves for each source \& angular frequency

Involves inversion of a tall linear system of equations

Gauss-Newton

Algorithm 1: Gauss Newton
Result: Output estimate for the model \mathbf{m}
$\mathbf{m} \longleftarrow \mathbf{m}_{0} ; k \longleftarrow 0 ; \quad$ // initial model
while not converged do
$\delta \mathbf{m}^{k} \longleftarrow \arg \min _{\delta \mathbf{m}} \frac{1}{2}\|\overbrace{\mathbf{D}-\mathcal{F}\left[\mathbf{m}^{k} ; \mathbf{Q}\right]}^{\mathbf{b}}-\underbrace{\nabla \mathcal{F}\left[\mathbf{m}^{k} ; \mathbf{Q}\right] \delta \mathbf{m}}_{\mathbf{A x}}\|_{F}^{2}$
$\mathbf{m}^{k+1} \longleftarrow \mathbf{m}^{k}+\gamma^{k} \delta \mathbf{m}^{k} ; \quad / /$ update with linesearch
$k \longleftarrow k+1 ;$
end
Evaluation of $\nabla \mathcal{F}^{H}[\mathbf{m} ; \mathbf{Q}]$ and $\nabla \mathcal{F}[\mathbf{m} ; \mathbf{Q}]$ each require two PDE solves for each source \& angular frequency

Involves inversion of a tall linear system of equations

Developments/applications FWI

Felix J. Herrmann*

fherrmann@eos.ubc.ca
*Seismic Laboratory for Imaging \& Modeling Department of Earth \& Ocean Sciences
The University of British Columbia

Golub Summer School
Vancouver, July 4-15, 2011

Stochastic optimization

Replace deterministic-optimization problem with sum cycling over different sources \& corresponding monochromatic shot records (columns of $D \& Q$):

$$
\min _{\mathbf{m}} \phi(\mathbf{m})=\frac{1}{N} \sum_{i=1}^{n_{s}} \frac{1}{2}\left\|\mathbf{d}_{i}-\mathcal{F}\left[\mathbf{m} ; \mathbf{q}_{i}\right]\right\|_{2}^{2}
$$

Stochastic average approximation (Hher: Churg and fy, 10

by a stochastic-optimization problem (SAA)

$$
\begin{aligned}
\min _{\mathbf{m}} \mathbf{E}_{\mathbf{w}}\{\phi(\mathbf{m}, \mathbf{w}) & \left.=\frac{1}{2}\|\mathbf{D} \mathbf{w}-\mathcal{F}[\mathbf{m} ; \mathbf{Q w}]\|_{2}^{2}\right\} \\
& =\min _{\mathbf{m}} \phi(\mathbf{m})
\end{aligned}
$$

with $\mathbf{E}_{\mathbf{w}}\left\{\mathbf{w w}^{H}\right\}=\mathbf{I}$

$$
\approx \min _{\mathbf{m}} \frac{1}{K} \sum_{j=1}^{K} \frac{1}{2}\left\|\underline{\mathbf{d}}_{j}-\mathcal{F}\left[\mathbf{m} ; \mathbf{q}_{j}\right]\right\|_{2}^{2}
$$

and $\underline{\mathbf{d}}_{j}=\mathbf{D w}_{j}, \underline{\mathbf{q}}_{j}=\mathbf{Q w}{ }_{j}$

Stylized example

Gradients

Search direction for increasing batch size K:

$$
\mathbf{g}_{K} \approx \frac{1}{K} \sum_{j=1}^{K} \nabla \mathcal{F}^{*}\left[\mathbf{m} ; \mathbf{q}_{j}\right] \delta \underline{\mathbf{d}}_{j}
$$

$\mathrm{K}=1$
$\mathrm{K}=5$

$K=10$

Decay

error between full and sampled gradient

Misfit functional

$$
\phi_{K}\left(\mathbf{g}_{K}\right)=\frac{1}{K} \sum_{j=1}^{K} \frac{1}{2}\left\|\underline{\mathbf{d}}_{j}-\mathcal{F}\left[\mathbf{m}+\alpha \mathbf{g}_{K} ; \mathbf{q}_{j}\right]\right\|_{2}^{2}
$$

$\mathrm{K}=1$

$\mathrm{K}=5$

$\mathrm{K}=10$
[Haber, Chung, and FJH, 'IO; van Leeuwen, Aravkin, FJH, 'IO]

Stochastic average approximation

In the limit $K \rightarrow \infty$, stochastic \& deterministic formulations are identical

Applicable to arbitrary optimization problems of the form

$$
\min _{\mathbf{m}} \phi(\mathbf{m})=\sum_{i=1}^{K} \phi_{i}(\mathbf{m})
$$

We gain as long as $K \ll N$...
But the error in Monte-Carlo methods decays only slowly $\left(\mathcal{O}\left(K^{-1 / 2}\right)\right)$

approximation (SA)

Algorithm 1: Stochastic gradient descent
Result: Output estimate for the model \mathbf{m}

$$
\mathbf{m} \longleftarrow \mathbf{m}_{0} ; k \longleftarrow 0 ;
$$

while not converged do $\left\{\underline{\mathbf{d}}^{k}, \underline{\mathbf{q}}^{k}\right\} \longleftarrow\left\{\mathbf{D w}^{k}, \mathbf{Q} \mathbf{w}^{k}\right\}$ with $\mathbf{w}^{k} \in N(0,1) ; \quad / /$ draw sim. exp. $\mathrm{g}^{k} \longleftarrow \nabla \mathcal{F}^{*}\left[\mathbf{m}^{k-1}, \underline{\mathrm{q}}^{k}\right]\left(\underline{\mathrm{d}}^{k}-\mathcal{F}\left[\mathbf{m}^{k-1}, \underline{\mathrm{q}}^{k}\right]\right) ; \quad / /$ gradient $\underline{\mathbf{m}}^{k+1} \longleftarrow \mathrm{~m}^{k}-\gamma^{k} \mathbf{g}^{\bar{k}} ; \quad$ // update $\mathrm{m}^{k+1}=\frac{1}{k+1}\left(\sum_{i=1}^{k} \mathrm{~m}^{i}+\underline{\mathrm{m}}^{k+1}\right) ; \quad$ // average $k \longleftarrow k+1 ;$
end

K=1 w and w/o redraw [noise-free case]

w/o redraw
w redraw

w/o averaging
 w averaging

smart averaging

Observations

Stochastic-average approximation (SAA):

- Error decays slowly with batch size K
- Works for separable optimization problems

Stochastic approximation (SA):

- Renewals improve convergence significantly
- Requires averaging to remove noise instability, which is detrimental to the convergence

Randomized

source superposition

$\left[\mathbf{b}_{1}, \cdots, \mathbf{b}_{n_{s}}\right]$
Source - Receiver Slice (Full Data)

W
Random Gaussian Matrix

$\left[\underline{\mathbf{b}}_{1}, \cdots, \underline{\mathbf{b}}_{n_{s}^{\prime}}\right]$

Heuristic

Algorithm 1: Stochastic-average approximation with warm starts
$\mathbf{x}_{0} \longleftarrow \mathbf{0} ; \mathbf{k} \longleftarrow \mathbf{0} ; \quad / /$ initialize
while $\left\|\mathrm{x}_{0}-\widetilde{\mathbf{x}}\right\|_{2} \geq \epsilon$ do
$k \longleftarrow k+1 ;$
// increase counter
$\widetilde{\mathbf{x}} \longleftarrow \mathbf{x}_{0} ; \quad / /$ update warm start
$\mathbf{W} \longleftarrow \operatorname{Draw}(\mathbf{W}) ;$
// draw new subsampler
$\mathbf{x}_{0} \longleftarrow \operatorname{Solve}(\mathbb{P}(\mathbf{W}) ; \widetilde{\mathbf{x}}) ; \quad / /$ solve the subproblem end

Subproblems least-squares migration

$$
\mathbb{P}_{\ell_{2}}\left(\mathbf{W}^{k} ; \mathbf{x}_{0}\right): \quad \min _{\mathbf{x}} \frac{1}{2 K} \sum_{j=1}^{K}\left\|\underline{\mathbf{b}}_{j}^{k}-\underline{\mathbf{A}}_{j}^{k} \mathbf{x}\right\|_{2}^{2}
$$

- solve with limited \# of iterations of LSQR
- initialize solver with warm start
- solves damped least-squares problem

Subproblems sparsity-promoting migration

$$
\mathbb{P}_{\ell_{1}}\left(\mathbf{W}^{k} ; \mathbf{x}_{0}\right) \quad \min _{\mathbf{x}} \frac{1}{2 K} \sum_{j=1}^{K}\left\|\underline{\mathbf{b}}_{j}^{k}-\underline{\mathbf{A}}_{j}^{k} \mathbf{x}\right\|_{2} \quad \text { subject to } \quad\|\mathbf{x}\|_{\ell_{1}} \leq \tau^{k}
$$

- solve LASSO problem for a given sparsity level using the spectral-gradient method ($\mathrm{SPG} \ell_{1}$)
- initialize solver with warm start
- solves sparsity-promoting subproblem

Least-squares migration 8 supershots w 3 frequencies

Least-squares migration
 8 supershots w 3 frequencies

Sparse migration 8 supershots w 3 frequencies

Sparse migration 8 supershots w 3 frequencies

with renewals

Least-squares migration all 192 shots w 10 frequencies

Combined approach

Leverage findings from stochastic \& compressive sensing

- consider dimensionality reduced Gauss-Newton updates as separate "compressive-sensing $/ \ell_{1}$ regularized experiments"
- turn large 'overdetermined' problems with large matrixsetup costs into small 'undetermined’ problems via randomization

Modified Gauss-Newton

- Objective:
- Iterative algorithm:
- Direction $\overline{\delta \mathrm{x}}$ solves

$$
\begin{gathered}
\underline{f}(\mathbf{m}):=\|\underline{\mathbf{D}}-\mathcal{F}[\mathbf{m} ; \underline{\mathbf{Q}}]\|_{F}^{2} \\
\mathbf{m}^{\nu+1}=\mathbf{m}^{\nu}+\gamma_{\nu} \mathcal{C}^{*} \overline{\delta \mathbf{x}}
\end{gathered}
$$

$$
\begin{array}{cc}
\min _{\delta \mathbf{x}} & \left\|\underline{\mathbf{D}}-\mathcal{F}\left[\mathbf{m}^{\nu} ; \underline{\mathbf{Q}}\right]-\nabla \mathcal{F}\left[\mathbf{m}^{\nu} ; \underline{\mathbf{Q}}\right] \mathcal{C}^{*} \delta \mathbf{x}\right\|_{F}^{2} \\
\text { s.t. } & \|\delta \mathbf{x}\|_{1} \leq \tau
\end{array}
$$

- The subproblem for $\overline{\delta \mathrm{x}}$ is convex, and $\mathcal{C}^{*} \overline{\delta \mathrm{x}}$ is a descent direction:

$$
\underline{f}^{\prime}\left(\mathbf{m}^{\nu} ; \mathcal{C}^{*} \overline{\delta \mathbf{x}}\right) \leq \underline{f}\left(\mathbf{m}^{\nu}\right)-\|\underbrace{\underline{\mathbf{D}}-\mathcal{F}\left[\mathbf{m}^{\nu} ; \underline{\mathbf{Q}}\right]}_{\underline{f}\left(\mathbf{m}^{\nu}\right)}-\nabla \mathcal{F}[\mathbf{m} ; \underline{\mathbf{Q}}] \mathcal{C}^{*} \overline{\delta \mathbf{x}}\|_{F}^{2}<0
$$

[Burke '89, Burke '92]

Picking Lasso Parameter

Compressive inversion

```
Algorithm 1: Dimensionality-reduced Gauss Newton with sparsity
    Result: Output estimate for the model \(\mathbf{m}\)
    \(\mathbf{m} \longleftarrow \mathbf{m}_{0} ; k \longleftarrow 0 ;\)
    // initial model
    while not converged do
        \(\delta \mathbf{x} \longleftarrow\left\{\begin{array}{l}\mathbf{S}^{*} \arg \min _{\delta \mathbf{x}} \frac{1}{2}\left\|\underline{\mathbf{D}}^{k}-\mathcal{F}\left[\mathbf{m}^{k} ; \underline{\mathbf{Q}}^{k}\right]-\nabla \mathcal{F}\left[\mathbf{m}^{k} ; \underline{\mathbf{Q}}^{k}\right] \delta \mathbf{x}\right\|_{F}^{2} \\ \text { subject to }\|\delta \mathbf{x}\|_{1} \leq \tau^{k}\end{array}\right.\)
        \(\mathbf{m}^{k+1} \longleftarrow \mathbf{m}^{k}+\gamma^{k} \mathbf{S}^{*} \delta \mathbf{x} ; \quad / /\) update with linesearch
        \(k \longleftarrow k+1 ;\)
    end
```


Example II BG model

SLIM ©

BG model initial model

SLIM (+)

BG model inverted model

BG model inverted model w/o renewalls

Example II BG model

Related problems

Felix J. Herrmann*

fherrmann@eos.ubc.ca
*Seismic Laboratory for Imaging \& Modeling Department of Earth \& Ocean Sciences The University of British Columbia

Golub Summer School
Vancouver, July 4-15, 2011

Free-surface mitigation

Robust estimation of primaries by sparse inversion

- alternating optimization
- curvelet-domain sparsity promotion
- informed blind deconvolution

Sparsity-promoting imaging with multiples

Robust EPSI

Estimation of primaries by sparse inversion

upgoing wavefield

\approx \underbrace{G}
downgoing wavefield

surface-free impulse response

Involves the solution of a bi-convex optimization problem yielding alternating estimates

- for the source function \mathbf{Q}
- for the surface-free Green's function \mathbf{G}

Pluto 15 data
Elastic FD Modeling muted
no deghosting

Pluto 15 REPSI

Primary IR (G)
no transform used 80 iters

F-K Spectrum of data
F-K Spectrum of REPSI Primary IR

Gulf of Suez

 datashot gather
interpolated, muted
reciprocity
no deghosting

Gulf of Suez REPSI + Transform

Primary IR (G) shot gather

2D Curvelet (Src-Rcv)
Spline a=3.0 DWT (Time)
90 SPG grad. iterations

F-K Spectrum of data
F-K Spectrum of REPSI+Transform Primary IR

F-K Spectrum of data

F-K Spectrum of REPSI+Transform Primary IR

Further reading

Compressive sensing

- Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information by Candes, 06.
- Compressed Sensing by D. Donoho, '06

Simultaneous simulations, imaging, and full-wave inversion:

- Faster shot-record depth migrations using phase encoding by Morton \& Ober, '98.
- Phase encoding of shot records in prestack migration by Romero et. al., '00.
- High-resolution wave-equation amplitude-variation-with-ray-parameter (AVP) imaging with sparseness constraints by Wang \& Sacchi, '07
- Efficient Seismic Forward Modeling using Simultaneous Random Sources and Sparsity by N. Neelamani et. al., '08.
- Compressive simultaneous full-waveform simulation by FJH et. al., '09.
- Fast full-wavefield seismic inversion using encoded sources by Krebs et. al., '09
- Randomized dimensionality reduction for full-waveform inversion by FJH \& X. Li,'IO

Stochastic optimization and machine learning:

- A Stochastic Approximation Method by Robbins and Monro, I95I
- Neuro-Dynamic Programming by Bertsekas, '96
- Robust stochastic approximation approach to stochastic programming by Nemirovski et. al., '09
- Stochastic Approximation approach to Stochastic Programming by Nemirovski
- An effective method for parameter estimation with PDE constraints with multiple right hand sides. by Eldad Haber, Matthias Chung, and Felix J. Herrmann. 'IO
- Seismic waveform inversion by stochastic optimization. Tristan van Leeuwen, Aleksandr Aravkin and FJH, 2010.

Full-waveform inversion with extensions

- Migration velocity analysis and waveform inversion by Symes Geophysical Prospecting, 56: 765-790, 2008.
- The seismic reflection inverse problem by Symes, Inverse Problems 25, 2009.

[^0]
Thank you

slim.eos.ubc.ca

[^0]: Saturday, July 16, 201

