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Seismic Laboratory for Imaging and Modeling

Outline
 Derive single-source monochromatic formulation of PDE 

constrained optimization
– Lagrangian formulation
– adjoint-state method

 Extend to multi-source and multi-frequency
– multiple source
– multiple source & multiple frequency
– Gauss-Newton

 Discuss current-day cutting edge developments/applications of FWI
– stochastic optimization
– modified Gauss-Newton with sparsity promotion

 Related problems
– source calibration
– free surface
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Seismic Laboratory for Imaging and Modeling

PDE-constrained optimization (monochromatic)

Variable Type Dimension Description

nx Z+ 1 Number of grid points in x
nz Z+ 1 Number of grid points in z
nr Z+ 1 Number of receivers

m R nxnz Model (slowness squared)

H[m] C nxnz × nxnz Discrete Helmholz with boundary

P R nr × nxnz Sampling operator

d C nr Data vector

q C nxnz Source

u C nxnz Wavefield

v C nxnz Adjoint Wavefield

min
m,u

1
2
�Pu− d�2

2 subject to H[m]u = q
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Seismic Laboratory for Imaging and Modeling

Unconstrained formulation

 interested in deriving the gradient for optimization

 matrix-free Jacobian (                     )

mk+1 = mk − γ∇φ(mk)

∇φ(m) = (∇F [m,q])∗(F [m,q]− d)

J = ∇F [m,q]

min
m

φ(m) :=
1
2
�

F [m,q]
� �� �
PH[m]

−1
q−d�2

2
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Seismic Laboratory for Imaging and Modeling

Gradient of the Lagrangian
 Adjoint formulation using the Lagrangian

 Gradient

 Put to zero top two equations uniquely defines u, v
 Solutions depend smoothly on m

∂vL = H[m]u− q

∂uL = P
T (Pu− d) + H[m]

∗
v

∂miL = v
∗ ∂H[m]

∂mi
u

L(v,u,m) :=
1
2
�Pu− d�2

2 + v
∗(H[m]u− q)
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Seismic Laboratory for Imaging and Modeling

Gradient calculation

f(m) = L(v(m),u(m),m)

where v(m) and u(m) are the solutions to ∂vL = ∂uL = 0

For a fixed value of m, define

ū = H[m]
−1

q

v̄ = −H[m]
−∗

P
T (Pū− d)

d

dm
f(m) = ∂vL(v̄, ū,m)

dv
dm

+ ∂uL(v̄, ū,m)
du
dm

+ ∂mL(v̄, ū,m)

= ∂mL(v̄, ū,m)
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Seismic Laboratory for Imaging and Modeling

Gradient calculation cont’ed

 corresponds to the unconstrained objective
 We obtain

 or

f(m) = 1
2�Pū− d�2

2

= 1
2�PH[m]

−1
q− d�2

2

= φ(m) ,

∂miφ(m) = ∂miL(ū, v̄,m) = v̄
∗ ∂H[m]

∂mi
ū

∇φ(m) = ω2diag(ūv̄∗)
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Seismic Laboratory for Imaging and Modeling

Gradient calculation cont’ed

 corresponds to the unconstrained objective
 We obtain

 or

f(m) = 1
2�Pū− d�2

2

= 1
2�PH[m]

−1
q− d�2

2

= φ(m) ,

∂miφ(m) = ∂miL(ū, v̄,m) = v̄
∗ ∂H[m]

∂mi
ū

∇φ(m) = ω2diag(ūv̄∗)

zero-‘offset’ imaging condition
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Seismic Laboratory for Imaging and Modeling

Multisource FWI
 Constrained formulation

 Unconstrained formulation

 Lagrangian

 Matrix-free Jacobian

min
m,U

1
2
�P(U)−D�2

F subject to H[m]U = Q

min
m

φ(m) :=
1
2
�P(H[m]

−1
Q)−D�2

F

L(V,U,m) :=
1
2
�P(U)−D�2

F + tr (V∗(H[m]U−Q))

∇φ(m) = (∇F [m,Q])∗(F [m,Q]−D)
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Seismic Laboratory for Imaging and Modeling

Multisource FWI cont’nd

Variable Type Dimension Description

nx Z+ 1 Number of grid points in x
nz Z+ 1 Number of grid points in z
nr Z+ 1 Number of receivers

ns Z+ 1 Number of sources

nf Z+ 1 Number of frequencies

m R nxnz Model (slowness squared)

Hω[m] C nxnz × nxnz Discrete Helmholz with boundary for ω
H[m] C nf (nxnz × nxnz) diag[Hω1 [m], . . . ,Hωnf

[m]]

Dω C nr × ns Data vector for ω
D C nf (nr × ns) stack[Dω1 , . . . ,Dωnf

]

Pf R nxnz × ns → nr × ns Sampling operator

P R nf (nxnz × ns)→ nf (nr × ns) Applies Pf to each frequency

Qω C nxnz × ns Source for frequency ω
Q C nf (nxnz × ns) stack[Qω1

, . . . ,Qωnf
]

Uω C nxnz × ns Wavefield for frequency ω
U C nω(nxnz × ns) stack[Uω1 , . . . ,Uωnf

]

Vω C nxnz × ns Adjoint wavefield for frequency ω
V C nω(nxnz × ns) stack[Vω1 , . . . ,Vωnf

]
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Seismic Laboratory for Imaging and Modeling

Multisource FWI cont’nd

 gradient of the Lagrangian

 or

 Corresponds to reverse-time migration

∂VL = H[m]U−Q

∂UL = P∗(P(U)−D) + H[m]
∗
V

∂miL = tr
�
V

∗ ∂H[m]

∂mi
U

�

∇φ(m) =
�

ω

ω2diag(UV∗)

∇φ(m) = (∇F [m,Q])∗� �� �
migration

residue/linearized data
� �� �
(F [m,Q]−D)
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Seismic Laboratory for Imaging and Modeling

Multisource FWI cont’nd

 gradient of the Lagrangian

 or

 Corresponds to reverse-time migration

∂VL = H[m]U−Q

∂UL = P∗(P(U)−D) + H[m]
∗
V

∂miL = tr
�
V

∗ ∂H[m]

∂mi
U

�

∇φ(m) =
�

ω

ω2diag(UV∗)

zero-‘offset’ imaging condition

∇φ(m) = (∇F [m,Q])∗� �� �
migration
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Seismic Laboratory for Imaging and Modeling

Multisource FWI cont’nd

 gradient of the Lagrangian

 or

 Corresponds to reverse-time migration

∂VL = H[m]U−Q

∂UL = P∗(P(U)−D) + H[m]
∗
V

∂miL = tr
�
V

∗ ∂H[m]

∂mi
U

�

∇φ(m) =
�

ω

ω2diag(UV∗)

zero-‘offset’ imaging condition

zero-‘time’ imaging condition

∇φ(m) = (∇F [m,Q])∗� �� �
migration

residue/linearized data
� �� �
(F [m,Q]−D)

Saturday, July 16, 2011



SLIM

Evaluation of                                              each require 
two PDE solves for each source & angular frequency

Involves inversion of a tall linear system of equations

Gauss-Newton

∇FH [m;Q] and ∇F [m;Q]

Algorithm 1: Gauss Newton

Result: Output estimate for the model m
m ←− m0; k ←− 0 ; // initial model

while not converged do
δmk ←− arg minδm

1
2�D−F [mk;Q]−∇F [mk;Q]δm�2F

mk+1 ←−mk + γkδmk
; // update with linesearch

k ←− k + 1;

end
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SLIM

Evaluation of                                              each require 
two PDE solves for each source & angular frequency

Involves inversion of a tall linear system of equations

Gauss-Newton

∇FH [m;Q] and ∇F [m;Q]

Algorithm 1: Gauss Newton

Result: Output estimate for the model m
m ←− m0; k ←− 0 ; // initial model

while not converged do

δmk ←− arg minδm
1
2�

b� �� �
D−F [mk

;Q]−∇F [mk
;Q]δm� �� �

Ax

�2F

mk+1 ←−mk + γkδmk
; // update with linesearch

k ←− k + 1;

end
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SLIM

Stochastic 
optimization

Replace deterministic-optimization problem with sum cycling 
over different sources & corresponding monochromatic shot 
records (columns of D & Q):

minm φ(m) =
1
N

ns�

i=1

1
2
�di − F [m;qi]�2

2

 [Haber, Chung, and FJH, ’10] 

[Bertsekas, ’96, Nemirovsky, ’08]
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SLIM

Stochastic average 
approximation

by a stochastic-optimization problem (SAA)

with

and

 [Haber, Chung, and FJH, ’10] 

dj = Dwj , qj = Qwj

Ew{wwH} = I

min
m

Ew{φ(m,w) =
1
2
�Dw − F [m;Qw]�22}

= minm φ(m)

≈ minm
1
K

K�

j=1

1
2
�dj − F [m;qj ]�22
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SLIM

Stylized example
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Figure 1: True (a) and initial (b) squared-slowness models (s2/km2) and the true reflectivity.

x [km]

z 
[k

m
]

0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2
x [km]

z 
[k

m
]

0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

(a) (b)

x [km]

z 
[k

m
]

0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2
x [km]

z 
[k

m
]

0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

(c) (d)

Figure 2: The full gradient is depicted in (a). The gradients for various K are depicted
in (b) K = 1, (c) K = 5 and (d) K = 10. For a relatively small batch-size the gradient
already shows the main features.

true
model

starting
model

‘reflectivity’

Saturday, July 16, 2011



SLIM

Gradients
Search direction for increasing batch size K:

full K=1 K=5

gK ≈
1
K

K�

j=1

∇F∗[m;qj ]δdj
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Figure 1: True (a) and initial (b) squared-slowness models (s2/km2) and the true reflectivity.
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Figure 2: The full gradient is depicted in (a). The gradients for various K are depicted
in (b) K = 1, (c) K = 5 and (d) K = 10. For a relatively small batch-size the gradient
already shows the main features.
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Figure 2: The full gradient is depicted in (a). The gradients for various K are depicted
in (b) K = 1, (c) K = 5 and (d) K = 10. For a relatively small batch-size the gradient
already shows the main features.
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SLIM

Decay

error	  between	  full	  and	  sampled	  gradient

18
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(a)

Figure 3: Error in gradient for as a function of the batch-size K. As expected, the error
goes down as 1/

√
K (dashed line).

0 0.2 0.4 0.6 0.8 10

1

2

3

4

5 x 108

!

f 1(!
)

0 0.2 0.4 0.6 0.8 10

1

2

3

4

5 x 108

!

f 5(!
)

0 0.2 0.4 0.6 0.8 10

1

2

3

4

5 x 108

!

f 10
(!

)

(a) (b) (c)

Figure 4: Behavior of misfit for various K. Shown are five different realizations and the
true misfit (dashed line) for (a) K = 1, (b) K = 5 and (c) K = 10. The misfit approximates
the true misfit pretty well for relatively small batch-sizes.
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Figure 5: Residual matrix A = STS, where S is the data residual corresponding to the
smooth model depicted in figure 1 (a) at 5Hz.
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Misfit functional

K=1 K=5 K=10
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Figure 3: Error in gradient for as a function of the batch-size K. As expected, the error
goes down as 1/

√
K (dashed line).
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true misfit (dashed line) for (a) K = 1, (b) K = 5 and (c) K = 10. The misfit approximates
the true misfit pretty well for relatively small batch-sizes.
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Figure 5: Residual matrix A = STS, where S is the data residual corresponding to the
smooth model depicted in figure 1 (a) at 5Hz.

[Haber, Chung, and FJH, ’10; van Leeuwen, Aravkin, FJH, ’10] 

φK(gK) =
1
K

K�

j=1

1
2
�dj − F [m + αgK ;qj ]�2

2
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SLIM

Stochastic average 
approximation

In the limit             , stochastic & deterministic formulations 
are identical

Applicable to arbitrary optimization problems of the form

We gain as long as              ...

But the error in Monte-Carlo methods decays only slowly 

K � N

(O(K−1/2))

K →∞

minm φ(m) =
K�

i=1

φi(m)
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SLIM

Stochastic 
approximation (SA)

 [Bertsekas, ’96; Haber, Chung, and FJH, ’10] 

Algorithm 1: Stochastic gradient descent

Result: Output estimate for the model m
m ←− m0; k ←− 0 ; // initial model

while not converged do
{dk,qk}←− {Dwk,Qwk} with wk ∈ N(0, 1) ; // draw sim. exp.

gk ←− ∇F∗
[mk−1,qk](dk −F [mk−1,qk]) ; // gradient

mk+1 ←−mk − γkgk ; // update

mk+1 =
1

k+1

��k
i=1 mi + mk+1

�
; // average

k ←− k + 1;

end
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SLIM

K=1 w and w/o redraw
[noise-free case]
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K=1
[noisy case]
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SLIM

Observations
Stochastic-average approximation (SAA):

‣ Error decays slowly with batch size K

‣ Works for separable optimization problems

Stochastic approximation (SA):

‣ Renewals improve convergence significantly

‣ Requires averaging to remove noise instability, which is 
detrimental to the convergence
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SLIM

Randomized 
source superposition

W
�
b1, · · · ,bns

� �
b1, · · · ,bn�

s

�
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SLIM

Heuristic
algorithm

Algorithm 1: Stochastic-average approximation with warm starts
x0 ←− 0;k ←− 0 ; // initialize
while �x0 − ex�2 ≥ � do

k ←− k + 1; // increase counter
ex←− x0; // update warm start
W ←− Draw(W); // draw new subsampler
x0 ←− Solve(P(W); ex); // solve the subproblem

end

 [Haber, Chung, and FJH, ’10] 
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SLIM

Subproblems
least-squares migration

‣ solve with limited # of iterations of LSQR

‣ initialize solver with warm start

‣ solves damped least-squares problem

P�2(W
k;x0) : min

x

1
2K

K�

j=1

�bk
j −Ak

j x�2
2
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SLIM

Subproblems
sparsity-promoting migration

‣ solve LASSO problem for a given sparsity level using the 
spectral-gradient method (           )

‣ initialize solver with warm start

‣ solves sparsity-promoting subproblem

SPG�1

[van den Berg & Friedlander, ’08]

P�1(W
k;x0) min

x

1
2K

K�

j=1

�bk
j −Ak

j x�2 subject to �x��1 ≤ τk
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Least-squares migration
8 supershots w 3 frequencies
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Lateral distance(Km)
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Sparse migration
8 supershots w 3 frequencies
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Least-squares migration
all 192 shots w 10 frequencies
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Combined approach

Leverage findings from stochastic & compressive sensing

• consider dimensionality reduced Gauss-Newton updates 
as separate “compressive-sensing /   regularized 
experiments”

• turn large ‘overdetermined’ problems with large matrix-
setup costs into small ‘undetermined’ problems via 
randomization

�1
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SLIM

• Objective:	  

• Iterative	  algorithm:	  

• Direction	  	  	  	  	  	  	  	  	  	  	  solves	  

• The	  subproblem	  for	  	  	  	  	  	  	  	  	  	  	  	  is	  convex,	  and	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  is	  a	  descent	  direction:

Modified Gauss-Newton

min
δx

�D−F [mν ;Q]−∇F [mν ;Q]C∗δx�2F

s.t. �δx�1 ≤ τ

δx

δx C∗δx

f(mν)

mν+1 = mν + γνC∗δx

f(m) := �D−F [m;Q]�2
F

[Burke	  ’89,	  Burke	  ’92]

f �(mν ;C∗δx) ≤ f(mν)− �D−F [mν ;Q]� �� �−∇F [m;Q]C∗δx�2F < 0
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Projected gradient. Our application of the SPG algorithm to solve (LSτ ) follows
Birgin, Mart́ınez, and Raydan [5] closely for the minimization of general nonlinear
functions over arbitrary convex sets. The method they propose combines projected-
gradient search directions with the spectral step length that was introduced by Barzilai
and Borwein [1]. A nonmonotone line search is used to accept or reject steps. The
key ingredient of Birgin, Mart́ınez, and Raydan’s algorithm is the projection of the
gradient direction onto a convex set, which in our case is defined by the constraint
in (LSτ ). In their recent report, Figueiredo, Nowak, and Wright [27] describe the
remarkable efficiency of an SPG method specialized to (QPλ). Their approach builds
on the earlier report by Dai and Fletcher [18] on the efficiency of a specialized SPG
method for general bound-constrained quadratic programs (QPs).

2. The Pareto curve. The function φ defined by (1.1) yields the optimal value
of the constrained problem (LSτ ) for each value of the regularization parameter τ .
Its graph traces the optimal trade-off between the one-norm of the solution x and
the two-norm of the residual r, which defines the Pareto curve. Figure 2.1 shows the
graph of φ for a typical problem.

The Newton-based root-finding procedure that we propose for locating specific
points on the Pareto curve—e.g., finding roots of (1.2)—relies on several important
properties of the function φ. As we show in this section, φ is a convex and differentiable
function of τ . The differentiability of φ is perhaps unintuitive, given that the one-
norm constraint in (LSτ ) is not differentiable. To deal with the nonsmoothness of
the one-norm constraint, we appeal to Lagrange duality theory. This approach yields
significant insight into the properties of the trade-off curve. We discuss the most
important properties below.

2.1. The dual subproblem. The dual of the Lasso problem (LSτ ) plays a
prominent role in understanding the Pareto curve. In order to derive the dual of
(LSτ ), we first recast (LSτ ) as the equivalent problem

(2.1) minimize
r,x

‖r‖2 subject to Ax + r = b, ‖x‖1 ≤ τ.
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Fig. 2.1. A typical Pareto curve (solid line) showing two iterations of Newton’s method. The
first iteration is available at no cost.

Picking Lasso Parameter

min
δx

�
� �� �
D−F [mν ;Q]−

� �� �
∇F [mν ;Q]C∗ δx�2F

s.t. �δx�1 ≤ τ

b A
�b�F

min
δx

�δx�1

s.t. b = Aδx

min
δx

�δx�1

s.t. �b−Aδx�F ≤ σ

σ

Lasso

BP

BPDN

[van	  den	  Berg	  ’08]
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Compressive inversion
Algorithm 1: Dimensionality-reduced Gauss Newton with sparsity

Result: Output estimate for the model m
m ←− m0; k ←− 0 ; // initial model

while not converged do

δx←−
�

S∗ arg minδx
1
2�D

k −F [mk;Qk
]−∇F [mk;Qk

]δx�2F
subject to �δx�1 ≤ τk

mk+1 ←−mk + γkS∗δx ; // update with linesearch

k ←− k + 1;

end
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Example II
BG model
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BG model
initial model
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BG model
inverted model
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BG model
inverted model w/o renewals
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Example II
BG model
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Free-surface 
mitigation

Robust estimation of primaries by sparse inversion

‣ alternating optimization

‣ curvelet-domain sparsity promotion

‣ informed blind deconvolution

Sparsity-promoting imaging with multiples
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Robust EPSI
Estimation of primaries by sparse inversion

Involves the solution of a bi-convex optimization problem 
yielding alternating estimates

• for the source function Q

• for the surface-free Green’s function G

upgoing wavefield����
P ≈ G����

surface-free impulse response

downgoing wavefield� �� �
[Q−P]
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Further reading
Compressive sensing

– Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information by Candes, 06.

– Compressed Sensing by D. Donoho, ’06

Simultaneous simulations, imaging, and full-wave inversion:
– Faster shot-record depth migrations using phase encoding by Morton & Ober, ’98.

– Phase encoding of shot records in prestack migration by Romero et. al., ’00.
– High-resolution wave-equation amplitude-variation-with-ray-parameter (AVP) imaging with sparseness constraints by Wang & Sacchi, ’07

– Efficient Seismic Forward Modeling using Simultaneous Random Sources and Sparsity by N. Neelamani et. al., ’08.
– Compressive simultaneous full-waveform simulation by FJH et. al., ’09.

– Fast full-wavefield seismic inversion using encoded sources by Krebs et. al., ’09

– Randomized dimensionality reduction for full-waveform inversion by FJH & X. Li, ’10

 Stochastic optimization and machine learning:

– A Stochastic Approximation Method by Robbins and Monro, 1951

– Neuro-Dynamic Programming by Bertsekas, ’96
– Robust stochastic approximation approach to stochastic programming by Nemirovski et. al., ’09

– Stochastic Approximation approach to Stochastic Programming by Nemirovski
– An effective method for parameter estimation with PDE constraints with multiple right hand sides. by Eldad Haber, Matthias Chung, 

and Felix J. Herrmann. ’10

– Seismic waveform inversion by stochastic optimization. Tristan van Leeuwen, Aleksandr Aravkin and FJH, 2010. 

 Full-waveform inversion with extensions
– Migration velocity analysis and waveform inversion by Symes Geophysical Prospecting, 56: 765–790, 2008.

– The seismic reflection inverse problem by Symes, Inverse Problems 25, 2009.
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Thank you

slim.eos.ubc.ca
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