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SUMMARY

The massive cost of 3D acquisition calls for methods to reduce
the number of receivers by designing optimal receiver sampling
masks. Recent studies on 2D seismic showed that maximiz-
ing the spectral gap of the subsampling mask leads to better
wavefield reconstruction results. We enrich the current study
by proposing a simulation-free method to generate optimal
3D acquisition by maximizing the spectral gap of the subsam-
pling mask via a simulated annealing algorithm. Numerical
experiments confirm improvement of the proposed method over
receiver sampling locations obtained by jittered sampling.

INTRODUCTION

Acquiring fully sampled seismic data is expensive in practice.
Thanks to recent advancements in compressive sensing, seismic
data can be randomly sampled along spatial coordinates to
improve acquisition efficiency (Candès et al., 2006; Mosher
et al., 2014; Kumar et al., 2015; Chiu, 2019). The subsampled
data can be consequently processed by wavefield reconstruction
techniques to recover the fully sampled data (Hennenfent and
Herrmann, 2008; Kumar et al., 2015; Zhang et al., 2020). While
uniform random sampling (Candès and Tao, 2010; Candes
and Recht, 2012) and jittered subsampling schemes, which
control the maximum gap size in subsampled data (Herrmann
and Hennenfent, 2008), are easy to generate, they may not be
optimal and can be improved through the resolution of specific
optimization problems (Mosher et al., 2014; Manohar et al.,
2018). Notably, a mutual coherence-based global optimization
scheme, initially proposed by Mosher et al. (2014), Li et al.
(2017), and later expanded upon by Titova et al. (2019), has
been developed to enhance reconstruction quality. Mosher
et al. (2014) proposed a simulation-based acquisition design
method based on the advancements in compressive sensing
to search for optimized sampling schemes. Similarly, Guo
and Sacchi (2020) optimized time-lapse seismic acquisition
using prior seismic data (Manohar et al., 2018). Guo et al.
(2023) also proposed a simulation-based survey design method
based on reinforcement learning. These methods have shown
promising results, but determining the optimal source-receiver
layout through combined wavefield simulations and recoveries
is computationally expensive and requires detailed information
of the seismic data, making it infeasible for optimizing for
source and receiver locations in a large-scale 3D survey.

Matrix completion is a computationally efficient technique used
to reconstruct fully sampled data from sparsely sampled seismic

data (Kumar et al., 2015). In matrix completion theory, the
spectral gap, which measures the connectivity of the graph
in expander graph theory, is employed to predict and partially
quantify the quality of the matrix completion result solely based
on the binary subsampling mask (Bhojanapalli and Jain, 2014).
López et al. (2023) further confirms that the success of seismic
wavefield reconstruction through universal matrix completion
can be predicted based on the ratio of the first two singular
values of the binary subsampling masks.

While recent work by López et al. (2023) eliminates the need
for multiple expensive wavefield reconstructions with different
sampling mask candidates, it does not yet provide a method to
generate sampling masks that maximize the spectral gap. Zhang
et al. (2022) introduced a practical algorithm utilizing simulated
annealing (Henderson et al., 2003) to generate acquisition ge-
ometries with small spectral gap ratios, and this algorithm was
further extended to time-lapse seismic acquisition by Zhang
et al. (2023). However, the application of this technique to 3D
seismic cases has not been explored yet. In this expanded ab-
stract, we will introduce a practical algorithm aimed specifically
at minimizing the spectral gap ratio of the binary subsampling
mask corresponding to a 3D seismic survey.

We organize this expanded abstract as follows. First, we present
the proposed optimization problem aimed at maximizing the
spectral gap ratio of 3D subsampling masks. Next, we intro-
duce an intriguing property of spectral gap ratio of the binary
masks for the unique case of 3D seismic surveys. Thanks to
this property, we are able to reduce the computational cost
of our algorithm. Finally, we demonstrate numerical experi-
ments conducted on the synthetic 3D Compass dataset (Jones
et al., 2012) and showcase an enhancement in recovery qual-
ity by juxtaposing two wavefield reconstruction results where
the receiver locations are obtained by the jittered subsampling
method (Hennenfent and Herrmann, 2008) and our proposed
method.

METHODOLOGY

The quality of seismic wavefield reconstruction through uni-
versal matrix completion (Bhojanapalli and Jain, 2014) can be
predicted by evaluating the ratio between the first two singular
values of binary sampling masks, denoted as σ2(M)/σ1(M) ∈
[0, 1], where the binary matrix M contains 1’s to indicate sam-
pled data and 0’s otherwise. Termed as the spectral gap ratio,
this measure offers a cost-effective means to quantitatively as-
sess recovery quality. A smaller spectral gap ratio implies
enhanced connectivity within the graphs formed by binary sam-



pling masks, resulting in improved wavefield recovery (López
et al., 2023). The spectral gap ratio has proven effective in
predicting and enhancing 2D wavefield reconstruction perfor-
mance (Zhang et al., 2022) and has been successfully applied to
time-lapse survey design (Zhang et al., 2023). In this expanded
abstract, we specifically consider 3D survey design where re-
ceivers are missing and sources are fully sampled. We propose
a cheap algorithm based on SGR minimization to optimize
sparse geometries for 3D seismic acquisition.

Optimized 3D seismic acquisition

3D wavefield reconstruction based on low-rank matrix
completion relies on the non-canonical Source-X/Receiver-X
(columns) Source-Y/Receiver-Y (rows) organization of the
data into a matrix in order to leverage the inherent low-rank
characteristics of seismic data (Kumar et al., 2015). Following
this success, we aim to minimize the SGR of the subsampling
mask in the same domain. In this scheme, the subsampling
mask is represented as M ∈ {0,1}(Nsx×Nrx)×(Nsy×Nry), where
Nsx and Nsy represent the number of sources along the x and y
coordinates, respectively, and Nrx and Nry represent the number
of receivers along these coordinates. Motivated by the success
on (time-lapse) 2D seismic survey design reported by Zhang
et al. (2022) and Zhang et al. (2023), we solve the following
optimization problem to minimize the spectral gap ratio of the
3D acquisition mask:

minimize
M

σ2(M)/σ1(M) subject to M ∈ C . (1)

The objective function is the SGR of the subsampling mask,
where σ1 and σ2 represent the first and the second singular
values, respectively. In order to ensure the feasibility of opti-
mized binary masks with a receiver subsampling ratio denoted

as ρ ∈ (0,1), we incorporate a constraint denoted as C =
4⋂

i=1
Ci.

This constraint encompasses four components: a cardinality
constraint defined as

C1 = {M | #(M) = ⌊Nrx ×Nry ×ρ⌋×Nsx ×Nsy}, (2)

a binary mask constraint as

C2 = {M | M ∈ {0,1}(Nsx×Nrx)×(Nsy×Nry)}, (3)

and constraints, C3 and C4, to enforce lower bounds for the
number of subsampling points for each row and column of
the binary subsampling matrix, respectively, in order to avoid
missing row or column in the matrix. They are defined as

C3 = {M | #(Mi)≥ m} and C4 = {M | #(M j)≥ n}
where i = 1, · · · ,Nsx ×Nrx and j = 1, · · · ,Nsy ×Nry.

(4)

Here, Mi and M j represent the i-th row and the j-th column of
matrix M, respectively. m represents the lower bound for num-
ber of subsampling points for each row, and n for each column.
These lower-bound constraints ensure that the binary subsam-
pling matrix does not contain any empty rows or columns. This
is important because having an empty row or column can be
detrimental to the process of matrix completion.

An intriguing property of the spectral gap ratio

Despite the fact that this proposed optimization could be solved
using simulated annealing (Zhang et al., 2022, 2023), the binary
subsampling matrix M can still be large for 3D seismic cases,
which potentially slows down the algorithm in practice. To
overcome this problem, we have fortunately discovered that
when sources are fully sampled, each single-receiver block of
the global sampling matrix is either fully sampled or empty
depending on whether that specific receiver is sampled. Con-
sequently, the block structure of the global matrix leads to the
exact same singular values as a single-source receiver sampling
mask, as shown in Figure 1. We can therefore optimize a single-
source mask to obtain the global optimized mask. The main
computational cost therein is computing the first two singu-
lar values of the receiver sampling mask, which is negligible
compared to approaches that require wave simulations (Mosher
et al., 2014; Guo et al., 2023). The resulting optimal mask with
the lowest SGR indicates the receiver sampling locations that
favor 3D wavefield reconstruction via matrix completion in the
non-canonical organization domain.

Figure 1: Spectral gap ratio of the data matrix in the non-
canonical Source-X/Receiver-X (columns) Source-Y/Receiver-
Y (rows) domain is the same as the spectral gap ratio of the
single-source receiver sampling matrix.

Experiment

We illustrate the efficacy of our method via a numerical ex-
periment on a simulated 3D marine dataset over the compass
model (Jones et al., 2012). The data volume consists of 501
time samples, 1681 sources and 10,000 receivers. The distance
between the adjacent sources and receivers are 150m and 25m
in each direction, respectively, with a time sampling interval
of 0.01s. By using jittered subsampling (Herrmann, 2010), we
removed 90% of the receivers. This results in a binary matrix
with a SGR of 0.507 in the non-canonical domain. After ap-
plying simulated annealing algorithm, the SGR of the mask
effectively decreases to 0.328. To validate the efficacy of our
acquisition design method, we perform data reconstruction on
a frequency slice at 16.8Hz via weighted matrix completion
(Zhang et al., 2020) for the two subsampled datasets with jit-
tered subsampling mask and the optimized mask. This data
reconstruction process was performed on each dataset individu-
ally. The reconstruction results are shown in Figure 2, providing
evidence for the efficacy of the acquisition design strategy em-
ployed throughout the study. The reconstruction signal-to-noise



ratio (SNR) obtained from data observed at jittered sampled
receiver locations is 10.88dB, which is lower than the recon-
struction SNR obtained from data observed at specified receiver
locations obtained by solving Equation 1 (12.27dB). This dis-
tinction is crucial, with an increase of approximately 1.4dB in
SNR. This finding supports the hypothesis that the optimized
receiver positions can lead to a superior seismic survey, ulti-
mately improving the performance of the wavefield reconstruc-
tion. Specifically, this algorithm is computationally inexpensive
compared to simulation-based survey design methods, because
each iteration of this algorithm only needs to calculate the first
two singular values of the receiver sampling mask — a small
100×100 matrix.

Figure 2: Comparison of data reconstruction performance for
receiver locations sampled by the jittered method and the pro-
posed method. There is about 1.4dB SNR improvement.

CONCLUSIONS

Our expanded abstract presents the first numerical case study
that applies spectral gap ratio minimization techniques for 3D
seismic acquisition design. Rather than requiring costly wave
simulations, the proposed method only relies on a single bi-
nary matrix optimization which is computationally inexpensive.
Through a representative numerical experiment conducted on
3D Compass dataset, we conclude that our proposed method
yields an optimal subsampling mask that is highly suitable for
3D wavefield reconstruction based on matrix completion. This
cheap while effective optimization scheme has the potential to
scale to industry-size 3D survey design problems.
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