Learned one-shot imaging
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Seismic imaging’s main limiting factor is the scale of the involved dataset
and the number of independent wave-equation solves required to migrate
thousands of shots. To tackle this dimensionality curse, we introduce a
learned framework that extends the conventional computationally reductive
linear source superposition (e.g., via random simultaneous-source
encoding) to a nonlinear learned source superposition and its
corresponding learned supershot. With this method, we can image the
subsurface at the cost of a one-shot migration by learning the most
informative superposition of shots.
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Only migrate supershots. Training us cheaper than
standard migration of all shots.




