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1 Summary:
Inspired by recent work on extended image volumes that lays the ground for randomized probing
of extremely large seismic wavefield matrices, we present a memory frugal and computationally
efficient inversion methodology that uses techniques from randomized linear algebra. By means of
a carefully selected realistic synthetic example, we demonstrate that we are capable of achieving
competitive inversion results at a fraction of the memory cost of conventional full-waveform inversion
with limited computational overhead. By exchanging memory for negligible computational overhead,
we open with the presented technology the door towards the use of low-memory accelerators such as
GPUs.

2 Introduction
Wave-equation based seismic inversion has resulted in tremendous improvements in subsurface
imaging over the past decade. However, the computational cost, and above-all memory cost, of these
methods remains extremely high limiting their widespread adaptation. These memory costs stem
from the requirement of the adjoint-state method [1, Tarantola [2]] to store (in memory, on disk,
possibly compressed) the complete time history of the forward modeled wavefield prior to on-the-fly
crosscorrelation with the time-reversed or adjoint wavefield. Unfortunately, the need to store these
forward wavefields for each source may require allocation of up to terabytes of memory during
high-frequency 3-D imaging. To tackle this memory requirement and to open the way to the use of
low-memory accelerators such as GPUs, different methods have been proposed that balance memory
usage with computational overhead to reduce the memory footprint. One of the earliest methods
in this area is optimal checkpointing [3, Symes [4]], which has recently been extended to include
wavefield compression [5]. Given available memory, optimal checkpointing reduces storage needs
at the expense of having to recompute the forward wavefield. While the resulting memory savings
can be significant, the computational overhead can be high (up to tens of extra wave-equations).
Alternatively, by relying on time-reversibility of the (attenuation-free) wave-equation, McMechan [6],
Mittet [7], Raknes and Weibull [8] proposed an approach where the forward wavefield is reconstructed
during back propagation from values stored on the boundary. Even though these approaches have
been applied successfully in practice, their implementation becomes elaborate especially in situations
of complex wave physics such as in elastic or transverse-tilted anisotropic media.

Aside from the aforementioned methods that are in principle error free, except perhaps for methods
that involve lossy compression, approximate methods have also been proposed to reduce the memory
imprint of gradient calculations for wave-equation based imaging. The rationale behind these
approximations is that by giving up accuracy one may gain computationally and/or memorywise.
This was, for example, the main idea behind imaging with phase-encoded sources [9, Krebs et al.
[10], Moghaddam et al. [11], Haber et al. [12], van Leeuwen and Herrmann [13]]. According to
insights from stochastic optimization, there are strong arguments that accurate gradients are indeed
unnecessary especially at the beginning of the optimization and as long as the approximate gradient
equals the true gradient in expectation [14]. We make use of this fundamental observation and propose
a new, simple to implement, alternative formulation that allows for approximate gradient calculations
with a significantly reduced memory imprint. At first sight, our method may be somewhat reminiscent
of memory-reducing methods based on the Fourier transform, which compute the Fourier transform



either on the fly [15, Witte et al. [16]] or in windows [17]. Our method is based on a randomized trace
estimation technique instead. Like Fourier methods, which derive their advantage from computing
the gradient for a relatively small number of Fourier modes, the proposed randomized algorithm
collects compressed data during forward propagation. This leads to significant memory savings at
a manageable computational overhead (similar if not cheaper than checkpointing [18]). However,
compared to optimal checkpointing and boundary methods, Fourier techniques involve inaccurate
gradients that may result in coherent artifacts during the inversion. Contrarily, our randomized linear
algebra based method produces incoherent artifacts, easily handled by regularizations methods, with
a computational overhead of at least half of that of Fourier methods thanks to real-valued arithmetic.

Inspired by recent work on randomized linear algebra for seismic inversion [19, Yang et al. [20]], we
propose an alternative method based on random trace estimation. Unlike direct time subsampling
[21], randomized trace estimation involves matrix probing with random vectors [22, Meyer et al. [23]]
(vectors with random ±1’s or Gaussian vectors) frequently employed by randomized algorithms,
such as the randomized SVD [24]. These probings are computationally efficient because they only
involve actions of the matrix on a small number of random vectors. This allows us to compress the
time axes during forward propagation, greatly reducing memory usage in a computationally efficient
way, yielding gradient calculations with a controllable error.

Our contributions are organized as follows. First, we introduce randomized trace estimation including
a recently proposed orthogonalization step that improves its performance and accuracy. Next, we
show that gradients calculated with the adjoint-state method for wave-equation based inversion can
be approximated by random trace estimation. Compared to conventional gradient calculations, the
approximated gradient leads to significant memory reductions and faster computation of certain
imaging conditions. To further justify the proposed algorithm, we discuss how its computational and
memory requirements compare to existing methods. We conclude by illustrating the advocacy of the
proposed method on a 2D synthetic full-waveform inversion example.

3 Methodology
In this section, we briefly lay out the key components of our seismic inversion method that requires
significantly less memory. We start by introducing stochastic estimates for the trace of a matrix,
followed by how these estimates can be used to approximate the gradient of a time-domain formulation
of the adjoint state method for the wave-equation. We conclude by providing estimates of memory
use of the proposed method and how it compares to other memory reducing methods.

3.1 Randomized trace estimation

To address memory pressure of data-intensive applications, a new generation of randomized algo-
rithms have been proposed. Contrary to classical deterministic techniques that aim for maximal
accuracy, these methods are stochastic in nature and provide answers with a controllable error. Ex-
amples of these techniques are the randomized SVD [24, Yang et al. [20]] and randomized trace
estimation [Avron, 23]. The latter was used to justify wave-equation inversions with random phase
encoding [12, van Leeuwen and Herrmann [13]]. In this work, we also rely on randomized trace
estimation but now to reduce the memory imprint of wave-equation based inversion. At its heart,
randomized trace estimation [22, Meyer et al. [23]] derives from the following approximation of the
identity I:
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where the zi’s are the random probing vectors for which E(z>z) = 1 and E is the stochastic
expectation operator. The above estimator is unbiased (exact in expectation) and converges to the
true trace of the matrix A, i.e. tr(A) =

∑
i Aii, with an error that decays with r and without access

to the entries of A. Only actions of A on the probing vectors are needed and we will exploit this
property and the factored form of the matrix A in gradient calculations for wave-equation based
inversion. Motivated by recent work [23, Graff-Kray et al. [25]] we will also employ a partial qr
factorization [26] that approximates the range of the matrix A—i.e., we approximate the trace with
probing vectors [Q,∼] = qr(AZ) where Z is a Rademacher random matrix of ±1.
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3.2 Approximate gradient calculations

While one may argue that inaccurate gradients need to be avoided at all times, approximations to the
gradient are actually quite common. For instance, wave-equation based inversion with phase-encoded
sources derives from a similar approximation but this time on the data misfit objective. Haber et al.
[12] showed that this type of approximate inversion is an instance of random trace estimation. In
addition, possible artifacts can easily be removed by adding regularization, e.g. by imposing the
TV-norm constraint on the model [27, Peters et al. [28]] or by including curvelet-domain sparsity
constraints on Gauss-Newton updates [29]. Let us consider the standard adjoint-state FWI problem,
which aims to minimize the misfit between recorded field data and numerically modeled synthetic
data [1, Tarantola [2], Virieux and Operto [30], Louboutin et al. [31], Louboutin et al. [32]]. In its
simplest form, the data misfit objective for this problem reads

minimize
m

1
2 ||F(m; q)− dobs||22 (2)

where m is a vector with the unknown physical model parameter (squared slowness in the isotropic
acoustic case), q the sources, dobs the observed data and F the forward modeling operator. This data
misfit is typically minimized with gradient-based optimization methods such as gradient descent
[33] or Gauss-Newton [29]. While the presented approach carries over to arbitrary complex wave
physics, we derive our memory reduced gradient approximation for the isotropic acoustic case where
the gradient for a single source δm can be written as

δm =
∑

t

ü[t]v[t] (3)

where u[t],v[t] are the vectorized (along space) full-space forward and adjoint solutions of the
forward and adjoint wave-equation at time index t. The symbol¨ represents second-order time
derivative. To arrive at a form where randomized trace estimation can be used, we write the above
zero-lag crosscorrelation over time as the trace of the outer product for each space index x separately.
By using the dot product property,

∑
xiyi = x>y = tr(xy>), in combination with Equation 1, we

approximate the gradient via random-trace estimation—i.e.,

δm[x] = tr
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where parenthesis were added to show that the matrix-vector products between the wavefields and
the probing matrix Q can be computed independently. We use this property to arrive at our proposed
ultra-low memory unbiased approximation of the gradient summarized in Algorithm 1 below. This
algorithm runs for each space index with the same probing matrix Q. Instead of storing the wavefield
during the forward pass, e.g. via checkpointing, the sum of the probed (with Q>) wavefield is for
each space index accumulated (line 2) in the variable u[x]. Because of the probing, we only need
to store N × r with r � nt samples in u instead of N × nt with nt the number of timesteps. As
we will show, r can be very small compared to nt, leading to significant memory savings. Similarly,
during the back propagation pass (lines 4-7), we accumulate for each spatial index v. After finishing
the back propagation iterations, the gradient is calculated by computing the trace of the outer product
of the accumulated probed wavefields (line 8). To avoid forming an unnecessarily large matrix for the
outer product in line 8, we simply compute the sum over the probing size of the pointwise product of
u and v in practice. Before deriving a practical scheme for FWI based on this probing scheme, let us
first discuss its memory use and how it compares to other known approaches to reduce the memory
imprint of wave-equation based inversion.

3.3 Memory estimates

From Equation 4, we can easily estimate the memory imprint of our method compared to conven-
tional FWI. For completeness, we also consider other mainstream low memory methods: optimal
checkpointing [3, Symes [4], Kukreja et al. [5]], boundary methods [6, Mittet [7], Raknes and
Weibull [8]], and DFT methods [17, Sirgue et al. [15], Witte et al. [16]]. This memory overview
generalizes to other wave-equations and imaging conditions easily as our method generalizes to any
time-domain adjoint-state method. We estimate the memory requirements for a three-dimensional
domain with N = Nx ×Ny ×Nz grid points and nt time steps. Conventional FWI requires storing
the full time-space forward wavefield to compute the gradient. This requirement leads to a memory
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Algorithm 1 Approximate gradient calculation with random trace estimation
0. for t=2:nt-1 # forward propagation
1. u[t+ 1] = f(u[t],u[t− 1],m,q[t])
2. u[x, ·] += Q[·, t]>ü[t,x]
3. end for
4. for t=nt:-1:1 # back propagation
5. v[t− 1] = f>(v[t],v[t+ 1],m, δd[t])
6. v[·,x] += v[t,x]Q[·, t]
7. end for
8. output: 1

r tr(u v>)

requirement of N × nt floating point values. Our method, on the other hand, for r probing vectors
(i.e Q ∈ Rnt×r), requires only N × r floating point values during each of the forward and backward
passes for a total of 2×N × r values. The memory reduction factor is, therefore, nt

2r . This memory
reduction is similar to computing the gradient with r

2 Fourier modes. We summarize the memory
usage compared to other state-of-the-art algorithms in table 1.

FWI DFT Probing Optimal checkpointing Boundary reconstruction

Compute 0 O(2r)× nt ×N O(r)× nt ×N O(log(nt))×N × nt nt ×N
Memory N × nt 2r ×N r ×N O(10)×N nt ×N

2
3

Table 1: Memory estimates and computational overhead of different seismic inversion methods for
nt time steps and N grid points.

It is worth noting that unlike the other methods in the table, boundary reconstruction methods tend
to have stability issues for more complex physics, in particular with physical attenuation making it
ill-suited for real-world applications. As stated in the introduction, our method closely follows the
computational and memory cost of Fourier methods by a factor of two related to real versus complex
arithmetic. We also show that unlike checkpointing or boundary methods, neither the memory nor
computational overhead depends on the number of time steps, therefore our method offers improved
scalability.

3.4 Imaging conditions

Aside from these clear advantages regarding memory use, the proposed approximation scheme also
has computational advantages when imposing more elaborate imaging conditions such as the inverse
scattering imaging condition [34, Witte et al. [35]] for RTM or wavefield separation [36] for FWI. In
most cases, these imaging condition can be expressed as linear operators that only act on the spatial
dimensions of the wavefields and not along time. Because these operators are linear, we can factor
these operators out and directly apply them to the probed wavefields consisting of r reduced time
steps rather than to every time steps with nt � r. We can achieve this by making use of the following
identity (the same applies to v):

Q> (Dxu[·,x]) = Dx

(
Q>u[·,x]

)
, (5)

which holds as long as the linear imaging condition only acts along the space directions and not
along time. Because r � nt this can lead to significant computational savings especially in the
common situation where imposing imaging conditions becomes almost as expensive as solving the
wave-equation itself.

3.5 Choice of the probing matrix Q

While strictly random, e.g. random±1 as in Rademacher or Gaussians [22] an extra orthogonalization
step (via a qr factorization on random probings AZ) allows us to capture the range of A [23, Graff-
Kray et al. [25]], which leads faster decay of the error as a function of r. This error in the gradient
is due to “cross talk”—i.e. ZZ> 6= I. Unfortunately, we do not have easy access to A during the
approximate gradient calculations outlined in Algorithm 1. Moreover, orthogonalizing each spatial
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gridpoint separately would be computationally infeasible. Despite these complications, we argue
that we can still get a reasonable approximation of the range by random probing the observed data
organized as a matrix for each source experiment—i.e., we have

[Q,∼] = qr(AZ) with A = DobsD>obs (6)

where the observed data vector dobs for each shot is shaped into a matrix along the time and
lumped together receiver coordinates. Since observed data contains information on the temporal
characteristics of the wavefields, we argue that this outer product can serve as a proxy for the time
characteristics of the wavefield everywhere. In Figure 1, we demonstrate the benefits of the additional
orthogonalization step by comparing the outer products of the Rademacher probing matrix Z, the
restricted Fourier matrix F, and orthogonalized probing vectors Q as a function of increasing r. The
following observations can be made. First, as expected the “cross-talk”, i.e. amplitudes away from
the diagonal, becomes smaller when r increases, which is to be expected for all cases. However,
we observe also that the outer product converges faster to the identity for both the Rademacher and
qr factored case while coherent artifact remain with Fourier due to the truncation. Second, because
of the orthogonalization the artifacts for the outer product of Q are much smaller and this should
improve the accuracy of the gradient at the expense of a relatively minor cost of carrying our a qr
factorization for each shot record. Finally, compared to the Fourier basis, in combination with source
spectrum informed frequency sampling, our probing factors are informed by estimates of the range of
the sample covariance kernel spanned by the traces in each shot record.

Figure 1: Probing vector for varying probing size.

4 Example
We illustrate our method on the 2D overthrust model and compare our inversion results to conventional
FWI and on-the-fly DFT [15, Witte et al. [16]]. We consider a 20km by 5km 2D slice of the well-
known overthrust model. The dataset consists of 97 sources 200m apart at 50m depth. Each shot
contains between 127 and 241 ocean bottom nodes 50m apart at 500m depth for a maximum offset
of 6km. The data is modeled with an 8Hz Ricker wavelet and 3sec recording. We show the true
model and the initial background model with the inversion results in Figure 2. We ran 20 iterations
of Spectral Projected Gradient (SPG, gradient descent with box constraints [37]) with 20 randomly
selected shots per iteration [38] in all cases. We can clearly see from Figure 2 that our probed gradient
allows the inversion to carry towards a good velocity estimate. As theoretically expected, for few
probing vectors, we do not converge since our approximation is not accurate enough. However, we
start to obtain a result comparable to the true model with as few as 16 probing vectors. Additionally,
this result could easily be improved by adding constraints as regularization [27, Peters et al. [28]]. On
the other hand, we can also see in Figure 2 that for an equivalent memory cost, on-the-fly DFT fails
to converge to an acceptable result for any number of frequencies, most likely due to the coherent
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artifacts that stem from the DFT. These results could also be improved with constraints or with a
better choice of selected frequencies. We finally compare the three vertical traces highlighted in black
to detail the accuracy of the inverted velocity plotted in Figure 2. These traces show that our probed
inversion result is in the vicinity of results obtained with standard FWI, which itself is close to the
true model.

Figure 2: Probed versus On-the-fly DFT FWI on the 2D overthrust model with equivalent memory
imprints.

Figure 3: Vertical trace comparison between the OTDFT and probed FWI.

Our implementation and examples are open sourced at TimeProbeSeismic.jl and extends our Julia
inversion framework JUDI.jl. Our code is also designed to generalize to 3D and more complicated
physics as supported by Devito [39, Luporini et al. [40]].

5 Discussion and Conclusions
We introduced a randomized trace estimation technique to drastically reduce the memory footprint
of wave-equation based inversion. We achieved this result at a computational overhead similar
smaller than that of Fourier-based methods. However, compared to these methods our approach is
simpler and produces less coherent crosstalk. Aside from the elegance and simplicity of the well-
established technique of randomized trace estimation our proposed approach derives its performance
from probing vectors that approximate the range of the data’s sample covariance operator. We
successfully demonstrated our randomized scheme on a realistic 2D full-waveform example where
our method outperforms Fourier based methods. In future work, we plan to extend our methodology
to high-frequency inversion and to per offset or even per trace probing vectors instead of per shot.
We will also test this method on more complex wave physics.
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