Wavefield recovery with limited-subspace weighted matrix factorizations

Yijun Zhang, Shashin Sharan, Oscar Lopez, and Felix J. Herrmann SEG 2020

Motivation

Fully sampled data is needed for

- multiple removal
- migration & FWI

Dense seismic data acquisition

- budget limitations
- operationally challenging

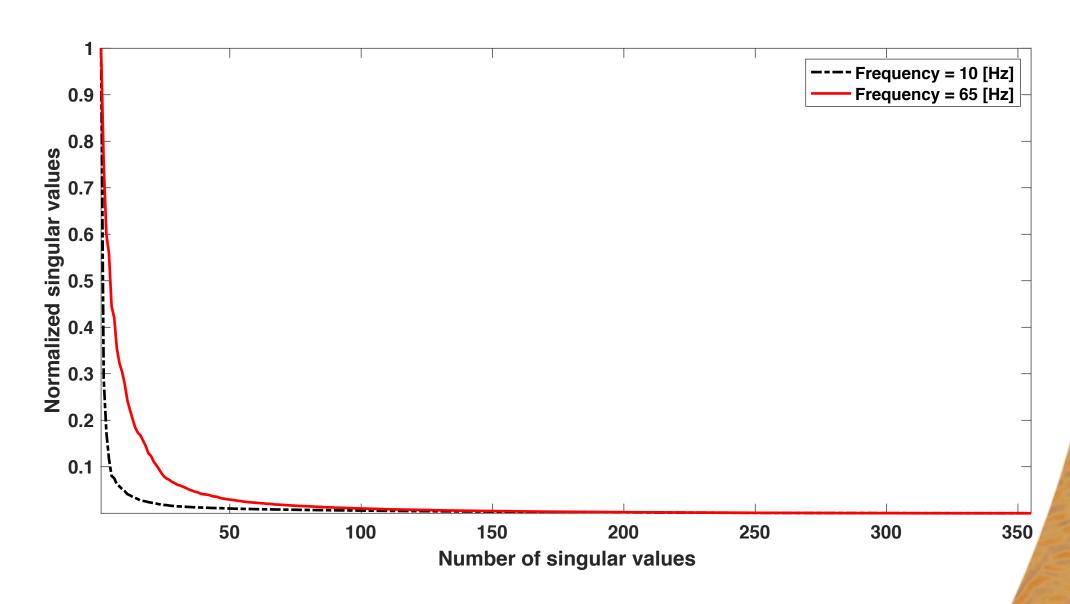
Motivation

Matrix completion

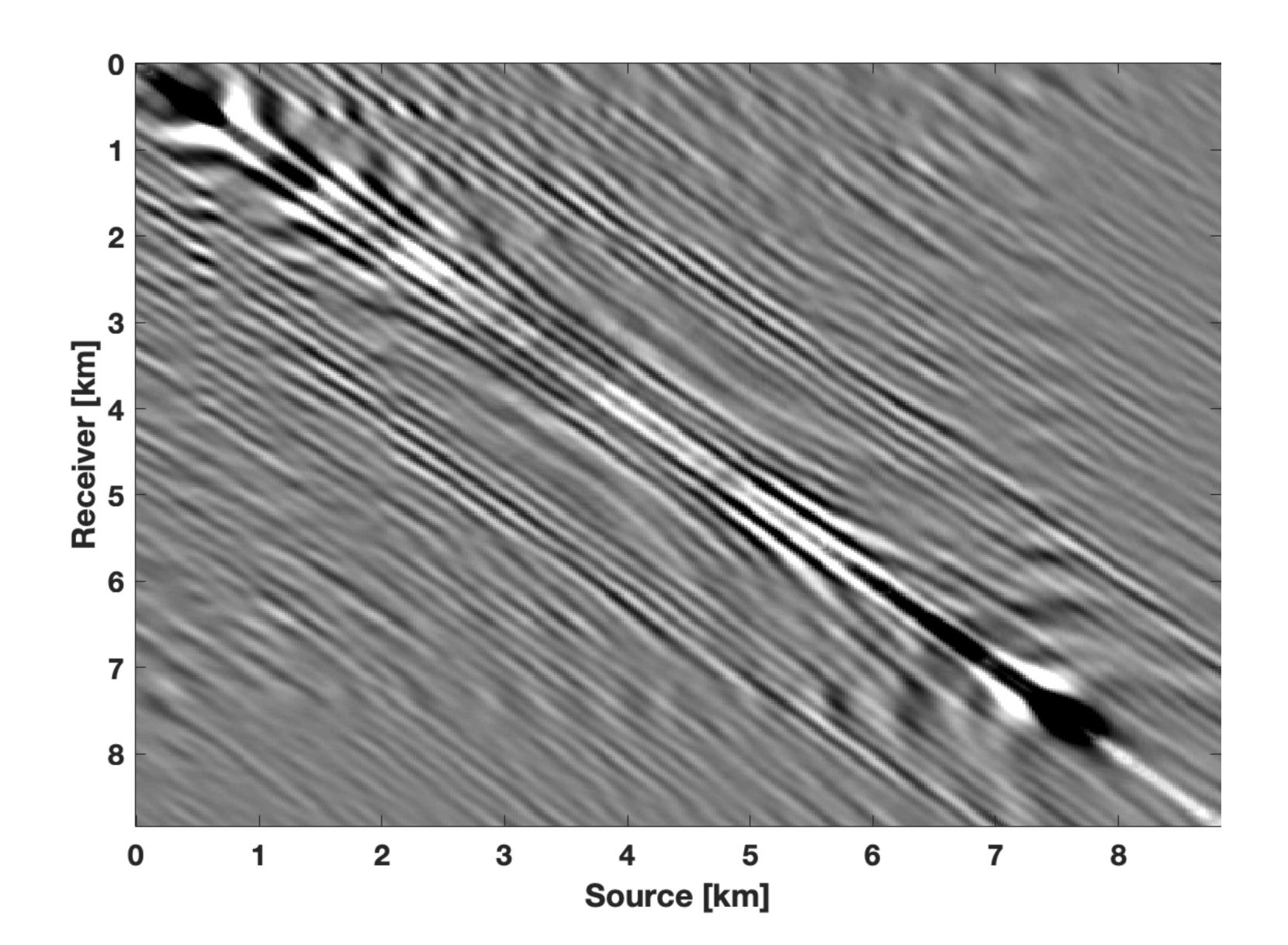
- exploits low-rank structure for recovery
- performance degrades with increasing frequency

Weighted matrix completion

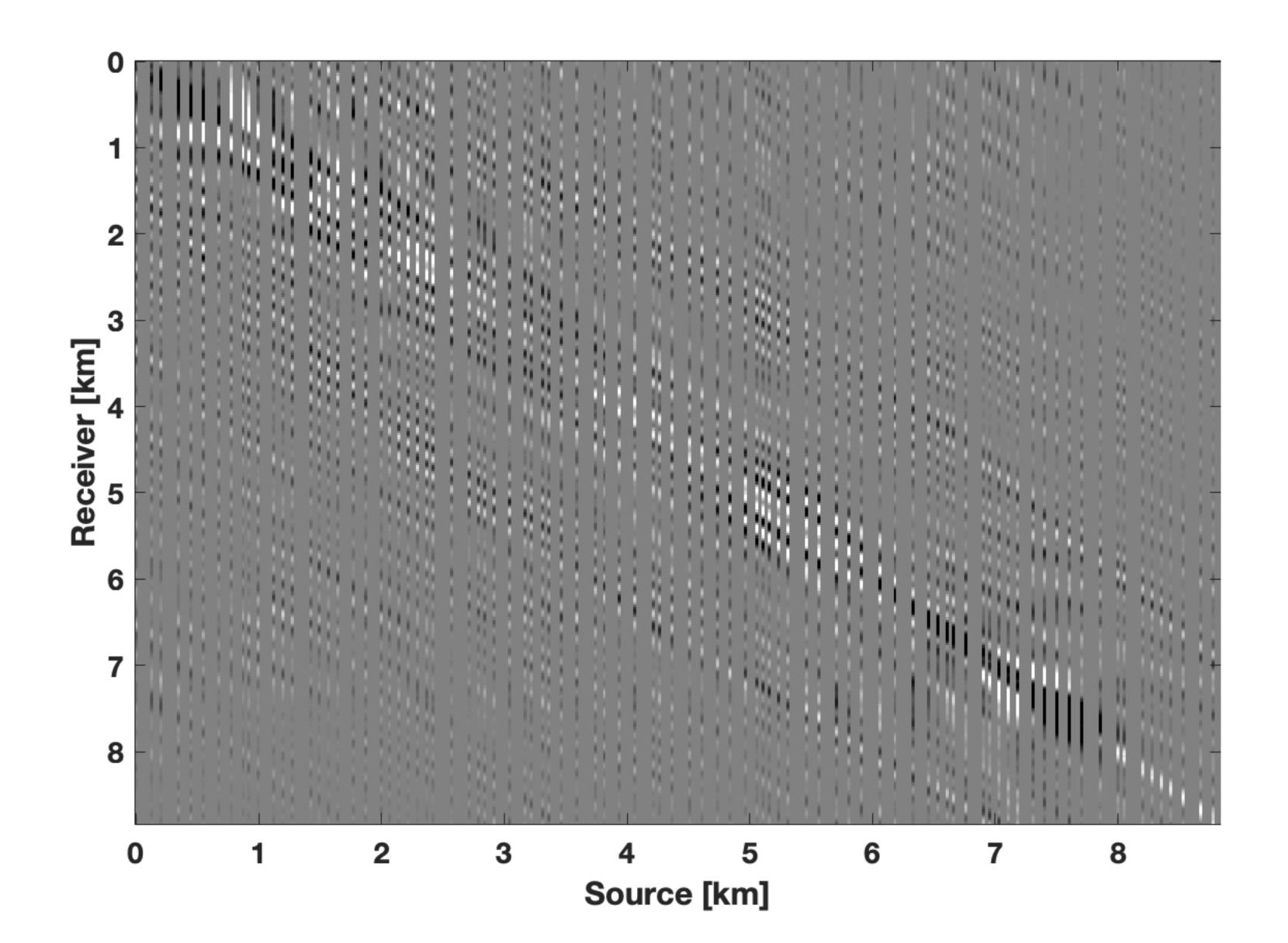
- gives good results for higher frequency slices
- higher rank needed for higher frequencies
- increases chances of potential overfitting



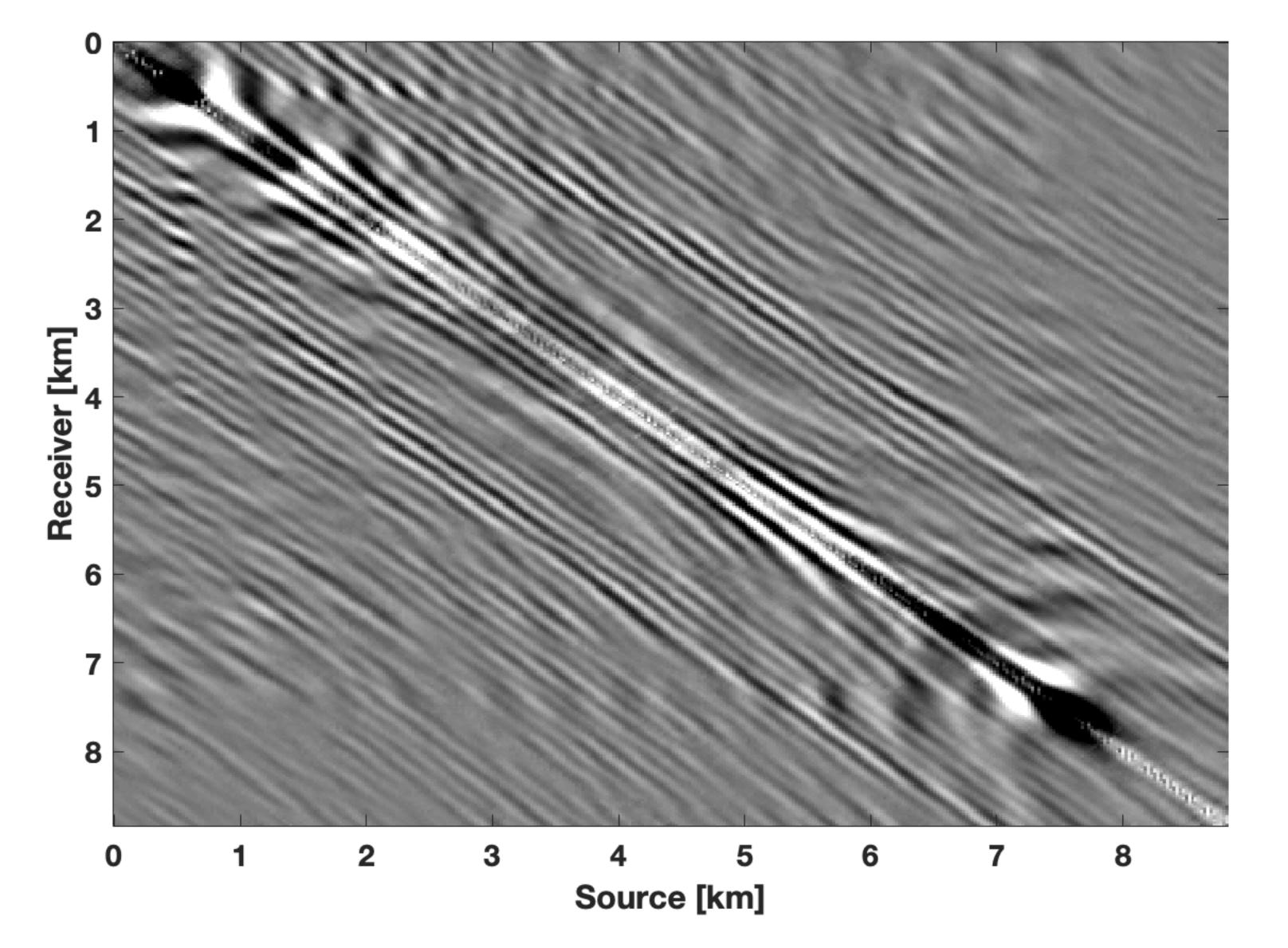
Fully sampled data: 22 Hz slice



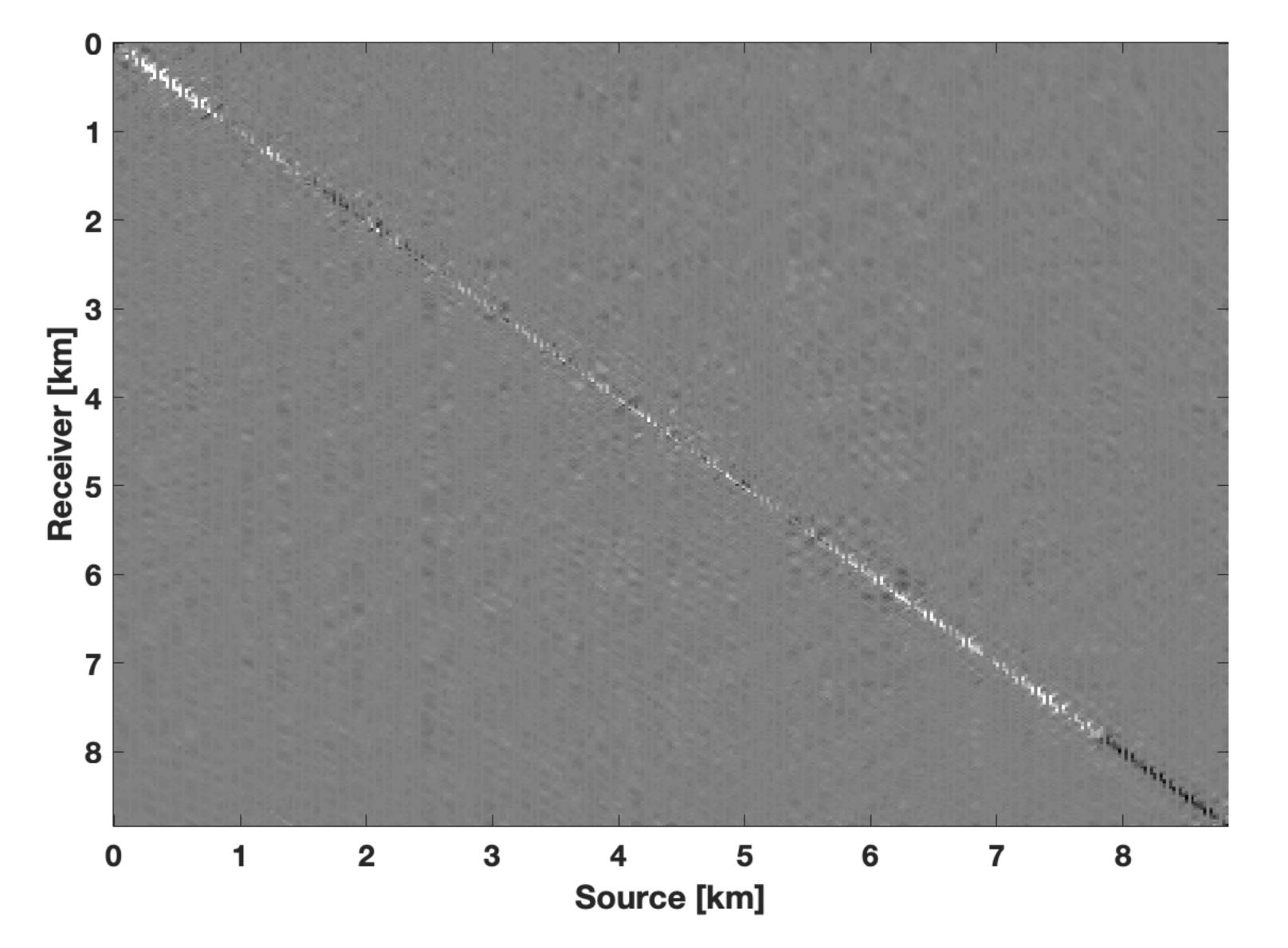
Observed data (75% jittered subsampled)



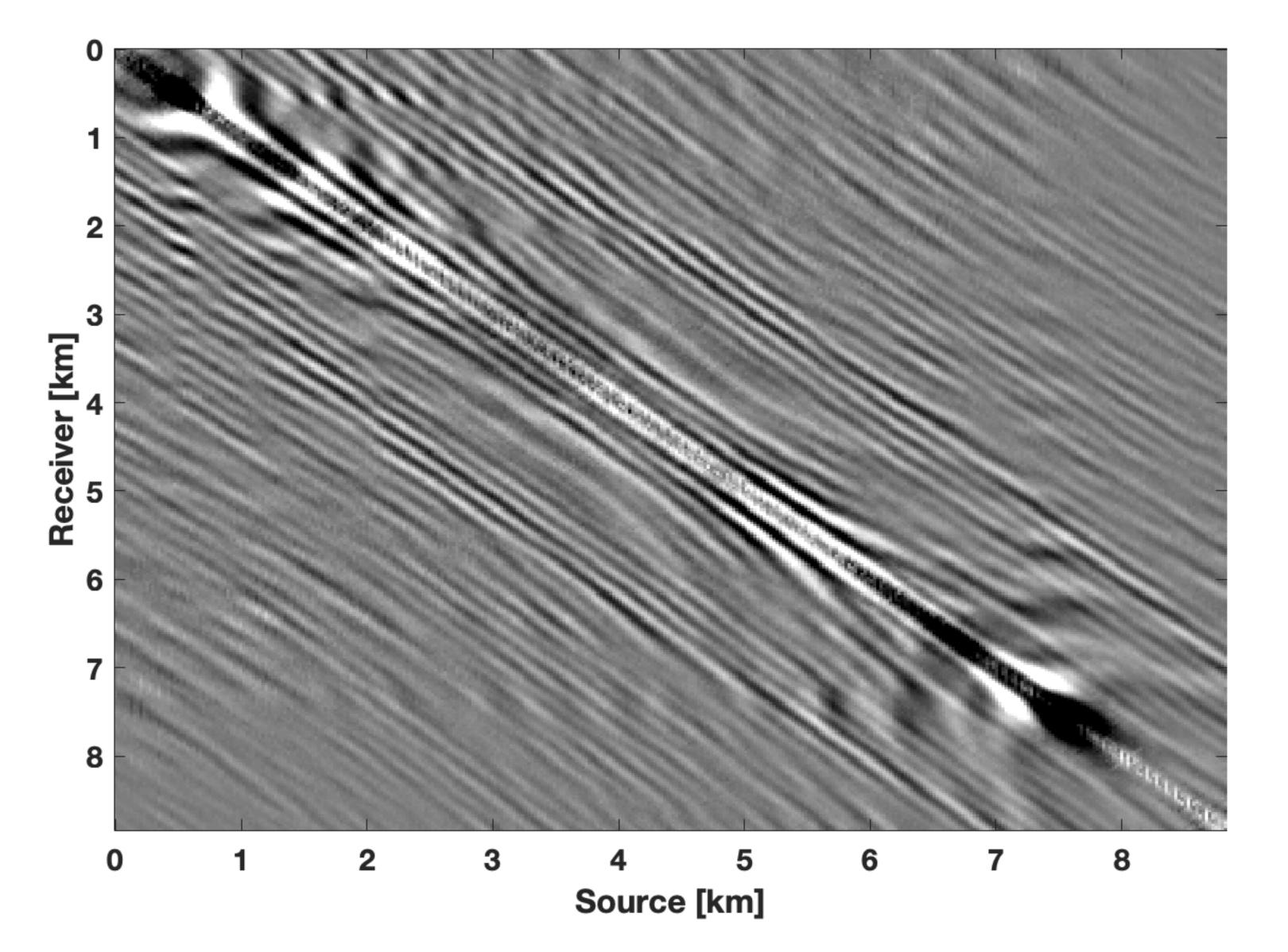
Recovery w/ recursively weighted (rank = 25)



Difference: True - Recovery w/ recursively weighted (rank = 25)

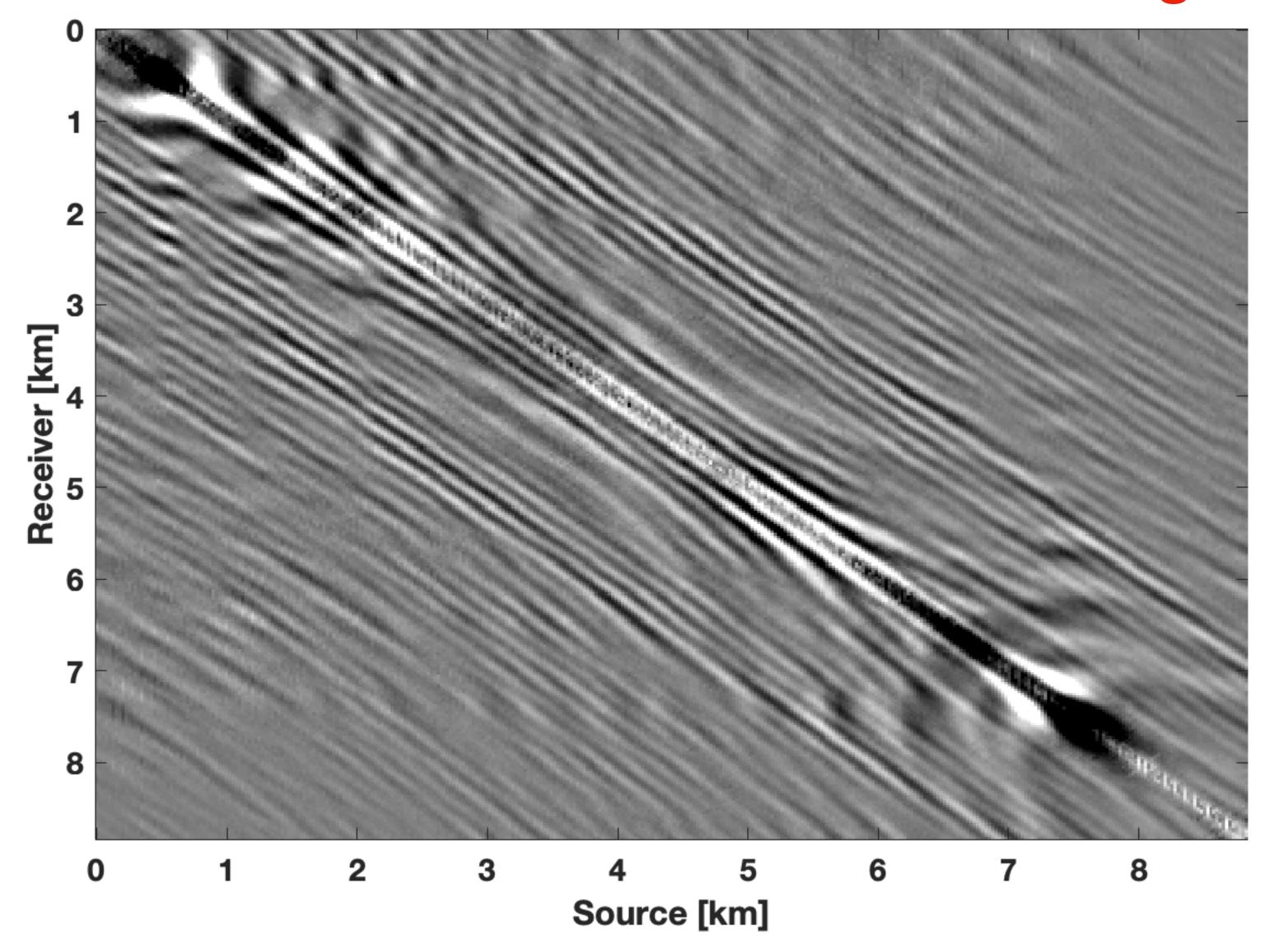


Recovery w/recursively weighted (rank = 85)

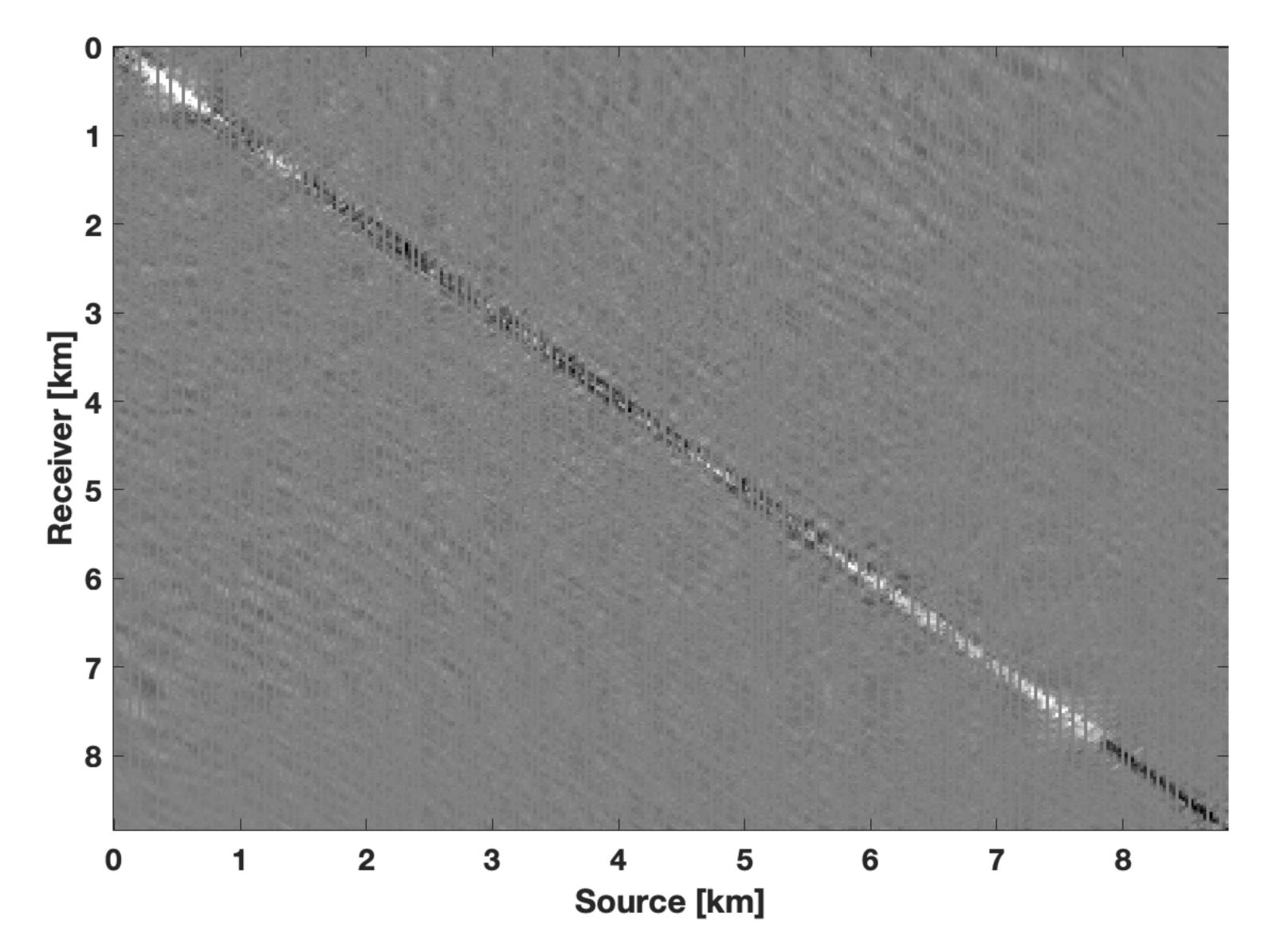


Recovery w/recursively weighted (rank = 85)

Overfitting

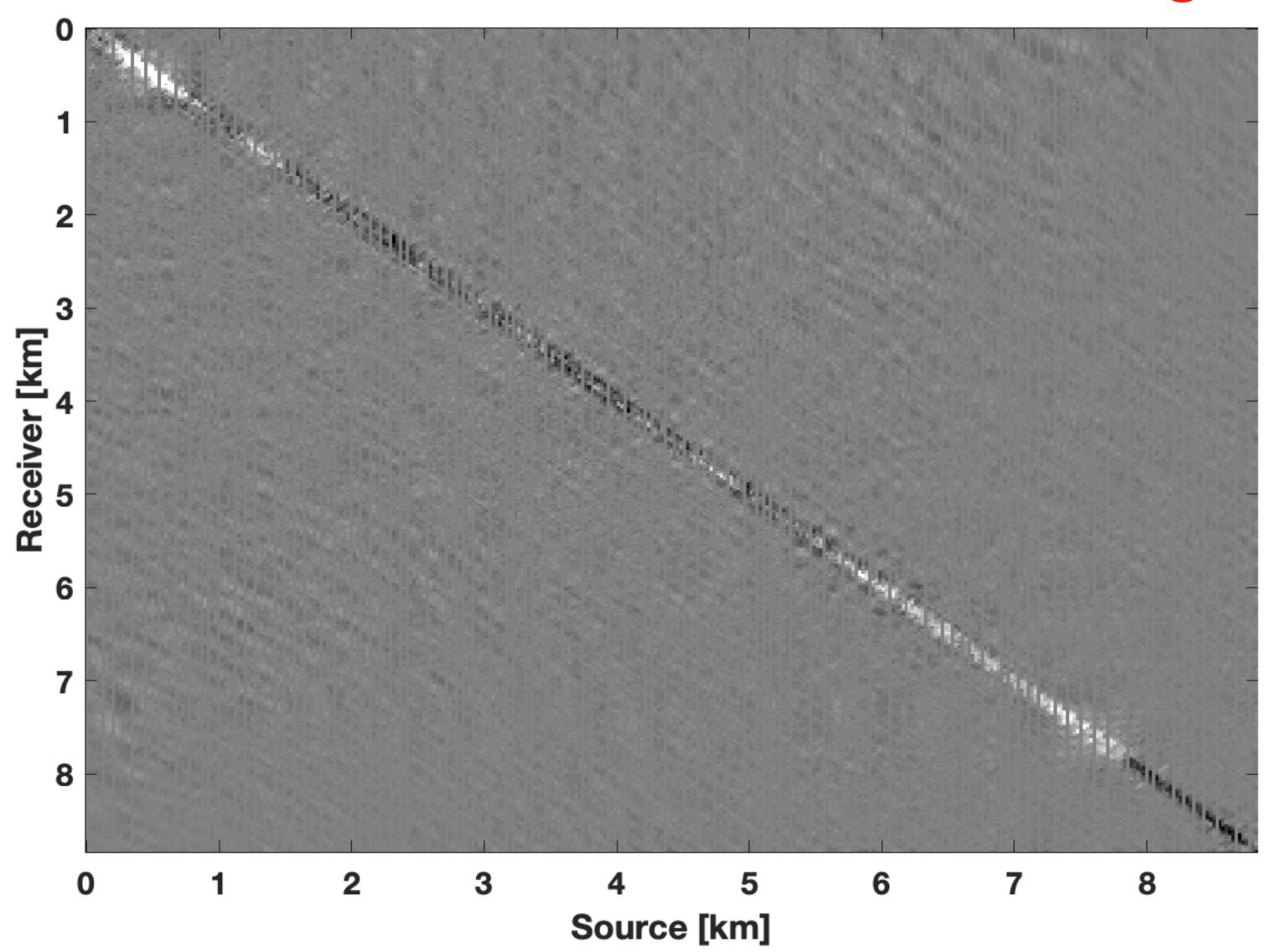


Difference: True - Recovery w/ recursively weighted (rank = 85)



Difference: True - Recovery w/ recursively weighted (rank = 85)

Overfitting



Question

How can we use a higher rank for data reconstruction while avoiding the risk of overfitting?

Question

How can we use a higher rank for data reconstruction while avoiding the risk of overfitting?

Answer:

Limited-subspace weighted method

Why limited-subspace weighted method?

Keeps the higher rank for reconstruction

decreases the approximation errors at higher frequencies

Reduces the rank of prior information

- prevents overfitting
- further improves the wavefield recovery

Matrix completion

Successful reconstruction strategy

- Exploit structure
 - low rank/fast decay of singular values in "transform domain"
- Sample randomly
 - increase rank in "transform domain"
- Optimization
 - via rank-minimization (matrix factorization)

Rank minimization

$$\underset{\mathbf{X} \in \mathbb{C}^{m \times n}}{\text{minimize}} \quad \underset{\mathbf{X} \in \mathbb{C}^{m \times n}}{\text{cank}(\mathbf{X})} \quad \text{subject to} \quad \|\mathcal{A}(\mathbf{X}) - \mathbf{B}\|_F \leq \epsilon$$

number of singular values of X

where
$$\mathcal{A}$$
 acquisition mask
$$\mathbf{B} \in \mathbb{C}^{m \times n} \ \text{ observed data}$$
 $\left\|.\right\|_F$ Frobenius norm

Rank minimization

Hard to solve

$$\underset{\mathbf{X} \in \mathbb{C}^{m \times n}}{\text{minimize}} \quad \underset{\mathbf{X} \in \mathbb{C}^{m \times n}}{\text{cank}(\mathbf{X})} \quad \text{subject to} \quad \|\mathcal{A}(\mathbf{X}) - \mathbf{B}\|_F \leq \epsilon$$

number of singular values of X

where
$$\mathcal{A}$$
 acquisition mask $\mathbf{B} \in \mathbb{C}^{m \times n}$ observed data $\|.\|_F$ Frobenius norm

Low-rank matrix completion

Low-rank matrix completion

Expensive for large scale

Low-rank matrix factorization

minimize
$$\frac{1}{2} \left\| \begin{bmatrix} \mathbf{L} \\ \mathbf{R} \end{bmatrix} \right\|_{F}^{2}$$
 subject to $\left\| \mathcal{A}(\mathbf{L}\mathbf{R}^{H}) - \mathbf{B} \right\|_{F} \le \epsilon$

where
$$\mathbf{X} = \mathbf{L}\mathbf{R}^H$$
 $\mathbf{L} \in \mathbb{C}^{m imes r}$ $\mathbf{R} \in \mathbb{C}^{m imes r}$ $\mathbf{B} \in \mathbb{C}^{m imes n}$

Eftekhari, A. et al. "Weighted matrix completion and recovery with prior subspace information." IEEE Transactions on Information Theory, 2018.

Weighted method

Weighted matrix completion

$$\begin{split} & \underset{\mathbf{X} \in \mathbb{C}^{m \times n}}{\text{minimize}} & & \|\mathbf{Q}\mathbf{X}\mathbf{W}\|_* \quad \text{subject to} \quad \|\mathcal{A}(\mathbf{X}) - \mathbf{B}\|_F \leq \epsilon \\ & \text{where} & & \mathbf{X}_{\text{prior}} \approx \mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^H, \ \mathbf{U} \in \mathbb{C}^{m \times r}, \ \mathbf{V} \in \mathbb{C}^{n \times r} \\ & & \mathbf{Q} = w_1\mathbf{U}\mathbf{U}^H + \mathbf{U}^\perp\mathbf{U}^{\perp H} \\ & & & \mathbf{W} = w_2\mathbf{V}\mathbf{V}^H + \mathbf{V}^\perp\mathbf{V}^{\perp H} \\ & & & \mathbf{Scalars} \ w_1, w_2 \in (0, 1] \text{ are weights} \end{split}$$

Eftekhari, A. et al. "Weighted matrix completion and recovery with prior subspace information." IEEE Transactions on Information Theory, 2018.

Weighted method

Weighted matrix completion

$$\begin{split} & \underset{\mathbf{X} \in \mathbb{C}^{m \times n}}{\text{minimize}} \quad \|\mathbf{Q}\mathbf{X}\mathbf{W}\|_* \quad \text{subject to} \quad \|\mathcal{A}(\mathbf{X}) - \mathbf{B}\|_F \leq \epsilon \\ & \text{where} \qquad \mathbf{X}_{\text{prior}} \approx \mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^H, \ \mathbf{U} \in \mathbb{C}^{m \times r}, \ \mathbf{V} \in \mathbb{C}^{n \times r} \\ & \mathbf{Q} = w_1\mathbf{U}\mathbf{U}^H + \mathbf{U}^\perp\mathbf{U}^{\perp H} \\ & \mathbf{W} = w_2\mathbf{V}\mathbf{V}^H + \mathbf{V}^\perp\mathbf{V}^{\perp H} \\ & \text{Scalars } w_1, w_2 \in (0, 1] \text{ are weights} \end{split}$$

Weighted matrix factorization

minimize
$$\frac{1}{2} \left\| \begin{bmatrix} \mathbf{Q} \mathbf{L} \\ \mathbf{W} \mathbf{R} \end{bmatrix} \right\|_F^2$$
 subject to $\left\| \mathcal{A} (\mathbf{L} \mathbf{R}^H) - \mathbf{B} \right\|_F \le \epsilon$

Weighted method

Computation expensive

Weighted matrix completion

Higher rank increases potential overfitting

$$\begin{split} & \underset{\mathbf{X} \in \mathbb{C}^{m \times n}}{\text{minimize}} & & \|\mathbf{Q}\mathbf{X}\mathbf{W}\|_* \quad \text{subject to} \quad \|\mathcal{A}(\mathbf{X}) - \mathbf{B}\|_F \leq \epsilon \\ & \text{where} & & \mathbf{X}_{\text{prior}} \approx \mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^H, \ \mathbf{U} \in \mathbb{C}^{m \times r}, \ \mathbf{V} \in \mathbb{C}^{n \times r} \\ & & \mathbf{Q} = w_1\mathbf{U}\mathbf{U}^H + \mathbf{U}^\perp\mathbf{U}^{\perp H} \\ & & & \mathbf{W} = w_2\mathbf{V}\mathbf{V}^H + \mathbf{V}^\perp\mathbf{V}^{\perp H} \\ & & & \mathbf{Scalars} \ w_1, w_2 \in (0, 1] \text{ are weights} \end{split}$$

Weighted matrix factorization

minimize
$$\frac{1}{2} \left\| \begin{bmatrix} \mathbf{Q} \mathbf{L} \\ \mathbf{W} \mathbf{R} \end{bmatrix} \right\|_F^2$$
 subject to $\left\| \mathcal{A} (\mathbf{L} \mathbf{R}^H) - \mathbf{B} \right\|_F \le \epsilon$

Smaller weights correspond to more confidence on prior information (similarity)

Weighted method (Efficient)

Weighted matrix completion

$$\begin{split} & \underset{\bar{\mathbf{X}} \in \mathbb{C}^{m \times n}}{\text{minimize}} \quad \left\| \bar{\mathbf{X}} \right\|_* \quad \text{subject to} \quad \left\| \mathcal{A} (\mathbf{Q}^{-1} \bar{\mathbf{X}} \mathbf{W}^{-1}) - \mathbf{B} \right\|_F \leq \epsilon \\ & \text{where} \quad \bar{\mathbf{X}} = \mathbf{Q} \mathbf{X} \mathbf{W} \\ & \mathbf{Q}^{-1} = \frac{1}{w_1} \mathbf{U} \mathbf{U}^H + \mathbf{U}^\perp \mathbf{U}^{\perp H} \\ & \mathbf{W}^{-1} = \frac{1}{w_2} \mathbf{V} \mathbf{V}^H + \mathbf{V}^\perp \mathbf{V}^{\perp H} \end{split}$$

Weighted matrix factorization

$$\begin{split} & \underset{\bar{\mathbf{L}}, \bar{\mathbf{R}}}{\text{minimize}} & & \frac{1}{2} \left\| \begin{bmatrix} \bar{\mathbf{L}} \\ \bar{\mathbf{R}} \end{bmatrix} \right\|_F^2 \quad \text{subject to} \quad \left\| \mathcal{A} (\mathbf{Q}^{-1} \bar{\mathbf{L}} \bar{\mathbf{R}}^{\mathbf{H}} \mathbf{W}^{-1}) - \mathbf{B} \right\|_F \leq \epsilon \\ & \text{where} \quad & \bar{\mathbf{X}} = \bar{\mathbf{L}} \bar{\mathbf{R}}^{\mathbf{H}} \\ & \mathbf{X} = \mathbf{Q}^{-1} \bar{\mathbf{X}} \mathbf{W}^{-1} \end{split}$$

Weighted method (Efficient)

Weighted matrix completion

$$\begin{split} & \underset{\bar{\mathbf{X}} \in \mathbb{C}^{m \times n}}{\text{minimize}} \quad \left\| \bar{\mathbf{X}} \right\|_* \quad \text{subject to} \quad \left\| \mathcal{A} (\mathbf{Q}^{-1} \bar{\mathbf{X}} \mathbf{W}^{-1}) - \mathbf{B} \right\|_F \leq \epsilon \\ & \text{where} \quad \bar{\mathbf{X}} = \mathbf{Q} \mathbf{X} \mathbf{W} \\ & \mathbf{Q}^{-1} = \frac{1}{w_1} \mathbf{U} \mathbf{U}^H + \mathbf{U}^\perp \mathbf{U}^{\perp H} \\ & \mathbf{W}^{-1} = \frac{1}{w_2} \mathbf{V} \mathbf{V}^H + \mathbf{V}^\perp \mathbf{V}^{\perp H} \end{split}$$

Weighted matrix factorization

Limited-subspace weighted method

Limited-subspace weighted matrix factorization

 $r_s < r$, r is the rank used to recovery, r_s is the rank for limited-subspace

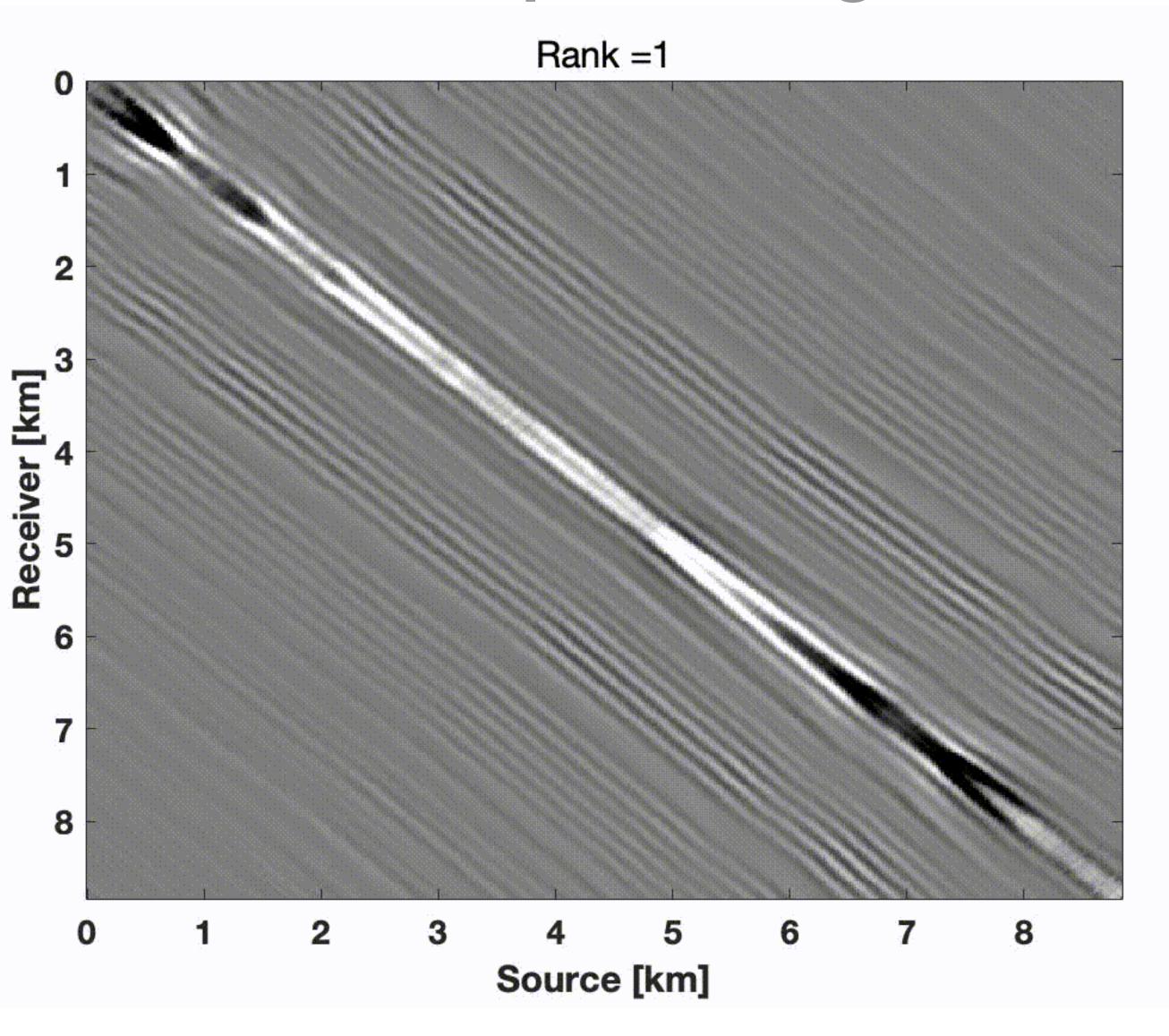
$$ilde{\mathbf{U}} \subset \mathbf{U}$$
 , $\tilde{\mathbf{V}} \subset \mathbf{V}$

Questions

1. Is the limited-subspace enough to represent the prior information?

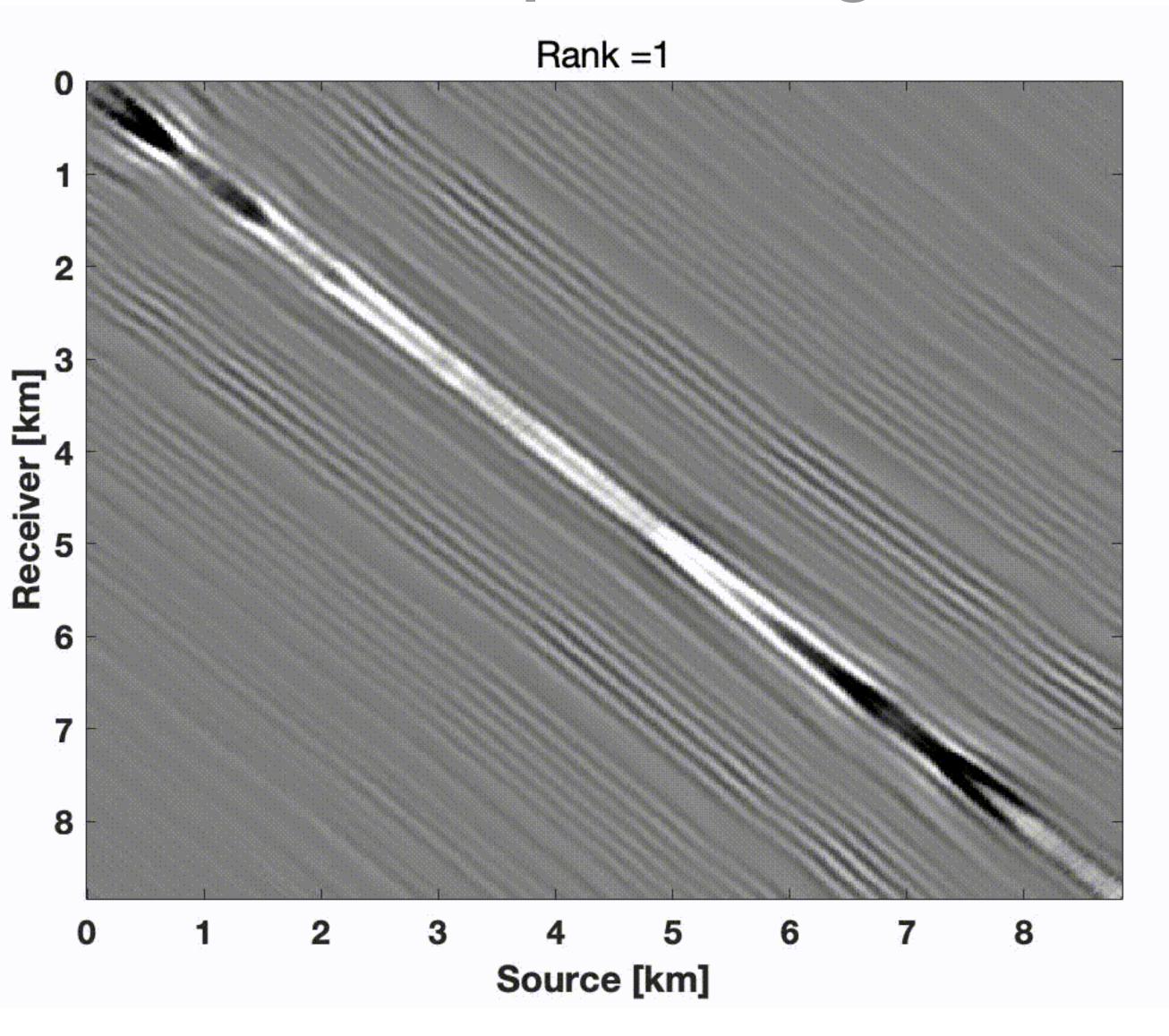
2. Does the limited-subspace break the similarity between the prior information and recovery?

Limited-subspace weighted method



- Higher rank includes lots of null space
- Prior information includes null space increases chances of overfitting
- Limited-subspace weighted method removes null space to prevent overfitting

Limited-subspace weighted method



- Higher rank includes lots of null space
- Prior information includes null space increases chances of overfitting
- Limited-subspace weighted method removes null space to prevent overfitting

Questions

1. Is the limited-subspace enough to represent the prior information?

2. Does the limited-subspace break the similarity between the prior information and recovery?

Eftekhari, A. et al. "Weighted matrix completion and recovery with prior subspace information." IEEE Transactions on Information Theory, 2018.

Limited-subspace weighted method

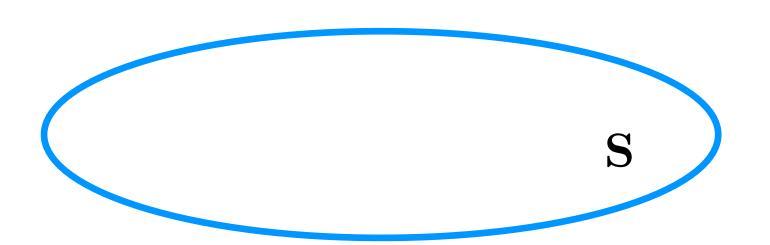
Eftekhari, A. et al. "Weighted matrix completion and recovery with prior subspace information." IEEE Transactions on Information Theory, 2018.

Limited-subspace weighted method

Eftekhari, A. et al. "Weighted matrix completion and recovery with prior subspace information." IEEE Transactions on Information Theory, 2018.

SLIM 🕀

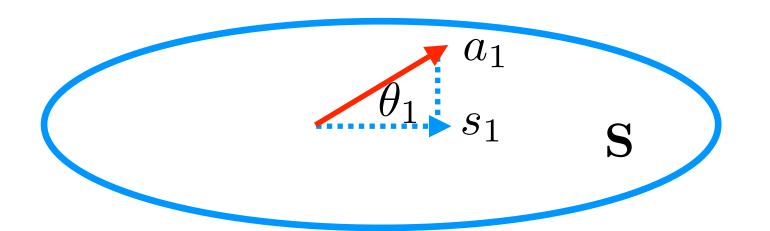
Limited-subspace weighted method



Eftekhari, A. et al. "Weighted matrix completion and recovery with prior subspace information." IEEE Transactions on Information Theory, 2018.

SLIM 🕀

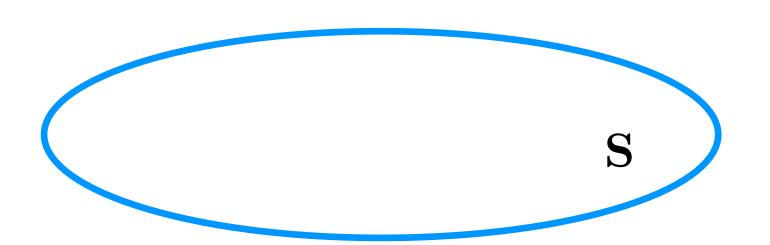
Limited-subspace weighted method



Eftekhari, A. et al. "Weighted matrix completion and recovery with prior subspace information." IEEE Transactions on Information Theory, 2018.

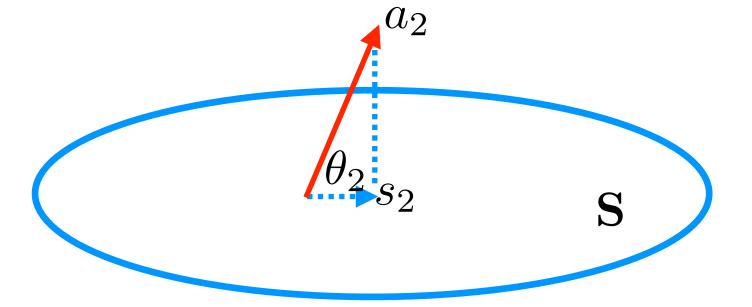
SLIM 🕀

Limited-subspace weighted method



Eftekhari, A. et al. "Weighted matrix completion and recovery with prior subspace information." IEEE Transactions on Information Theory, 2018.

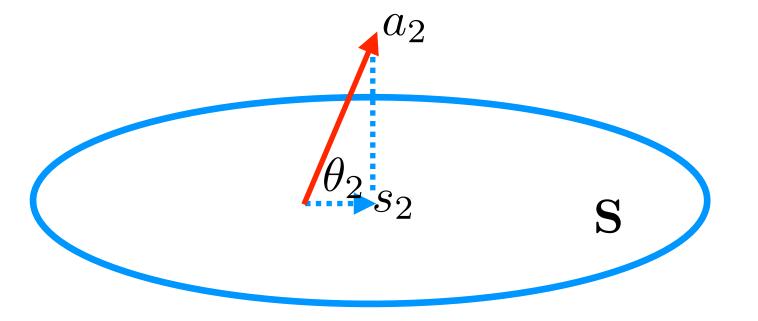
Limited-subspace weighted method



Eftekhari, A. et al. "Weighted matrix completion and recovery with prior subspace information." IEEE Transactions on Information Theory, 2018.

Limited-subspace weighted method

Similarity depends on largest angle between prior information and space of recovery



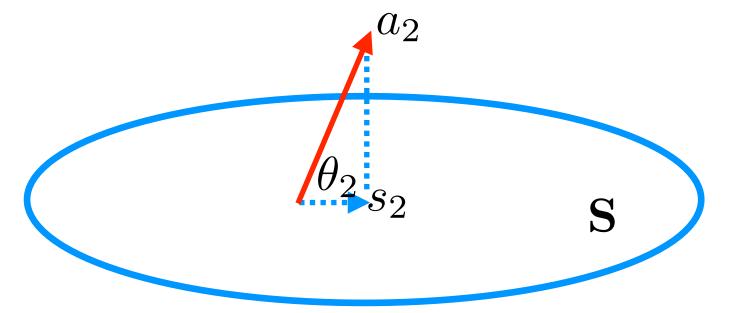
 θ_2, a_2 indicates the similarity

Eftekhari, A. et al. "Weighted matrix completion and recovery with prior subspace information." IEEE Transactions on Information Theory, 2018.

SLIM 🔮

Limited-subspace weighted method

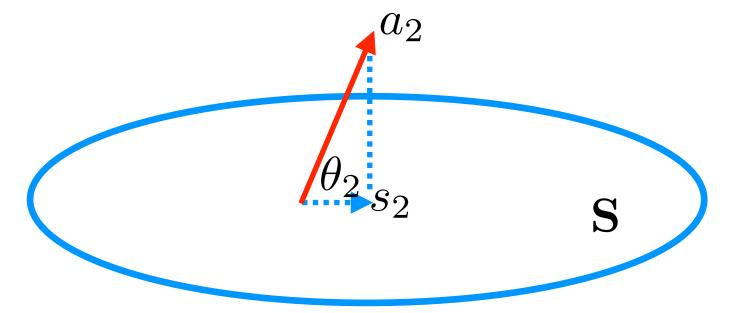
Similarity depends on largest angle between prior information and space of recovery



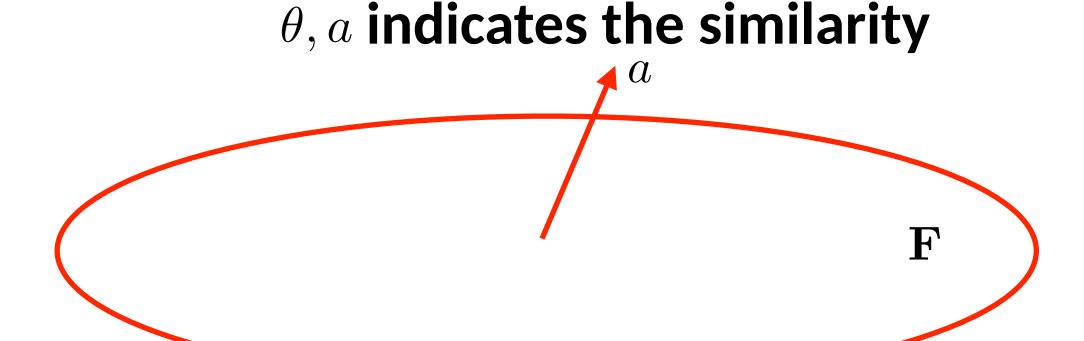
does not affect the similarity between adjacent frequencies

Full-subspace of prior information

Similarity depends on largest angle between prior information and space of recovery

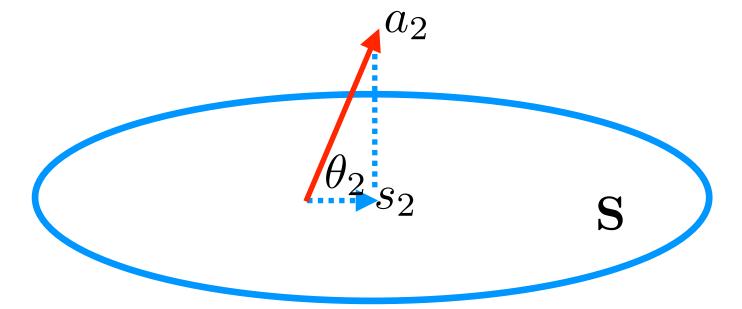


does not affect the similarity between adjacent frequencies

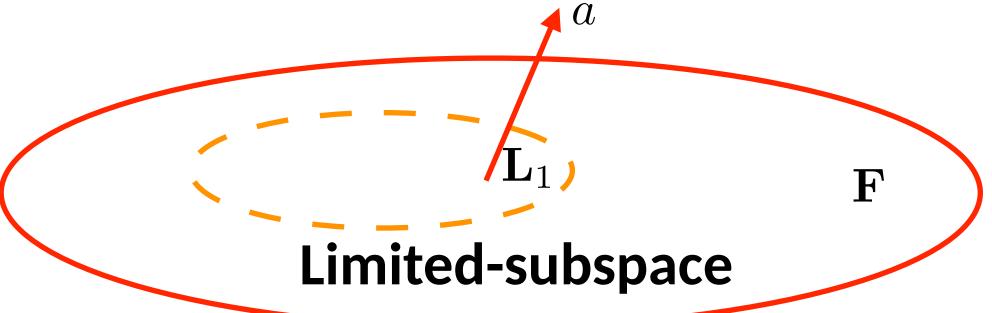


Full-subspace of prior information

Similarity depends on largest angle between prior information and space of recovery

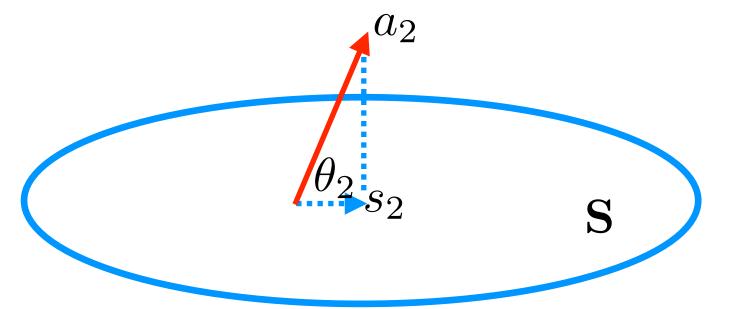


does not affect the similarity between adjacent frequencies θ, a indicates the similarity

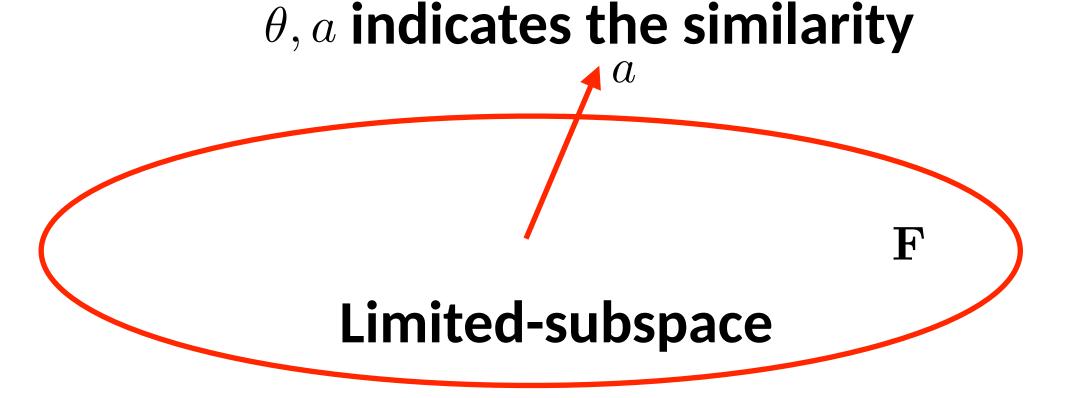


Full-subspace of prior information

Similarity depends on largest angle between prior information and space of recovery

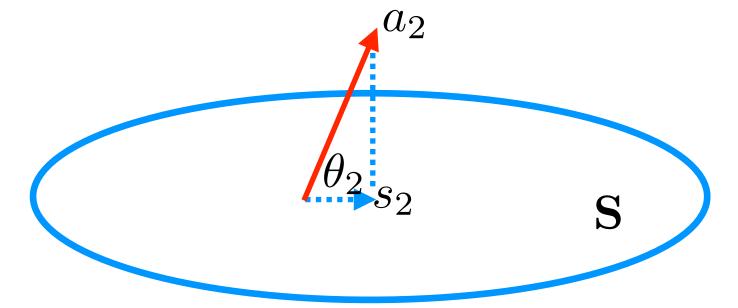


does not affect the similarity between adjacent frequencies

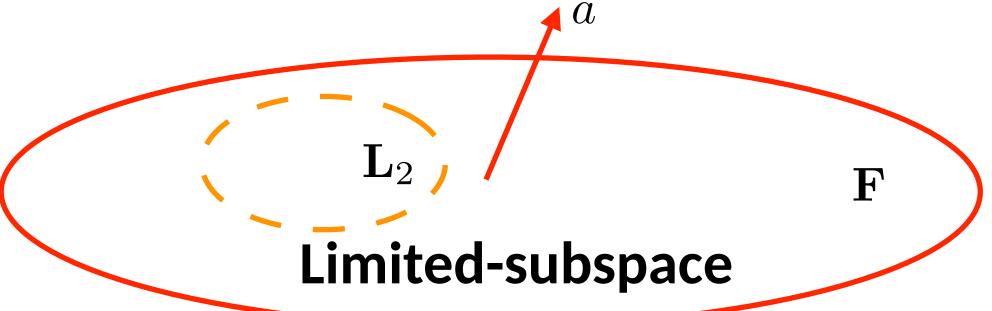


Full-subspace of prior information

Similarity depends on largest angle between prior information and space of recovery



does not affect the similarity between adjacent frequencies θ, a indicates the similarity



Full-subspace of prior information

2D Field data example: Gulf of Suez

Data acquisition area: Gulf of Suez

Data dimension: 355 x 355 x 1024 (nr x ns x nt)

Dimension of each frequency slice: 355 x 355

Source sampling interval: 25 m

Receiver sampling interval: 25 m

Field data example: Gulf of Suez

Observed data: 75 % missing sources

Result shown for Frequency slice: 22 Hz

Optimization information

Number of iterations per frequency: 150

Scenarios compared

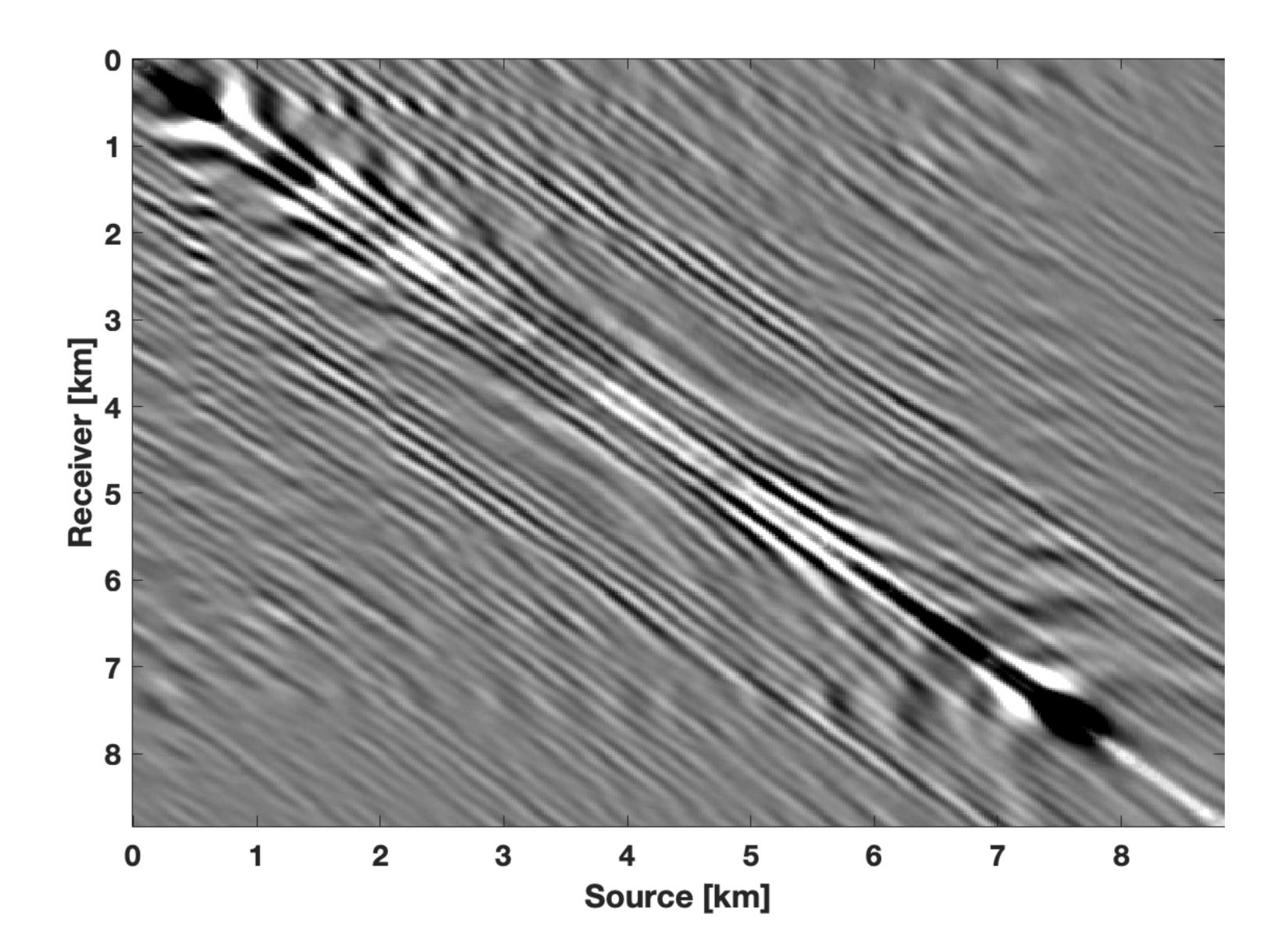
Scenario 1: using recursively weighted matrix completion (rank = 85, subspace rank = 85)

Scenario 2: using recursively weighted matrix completion (rank = 25, subspace rank = 25)

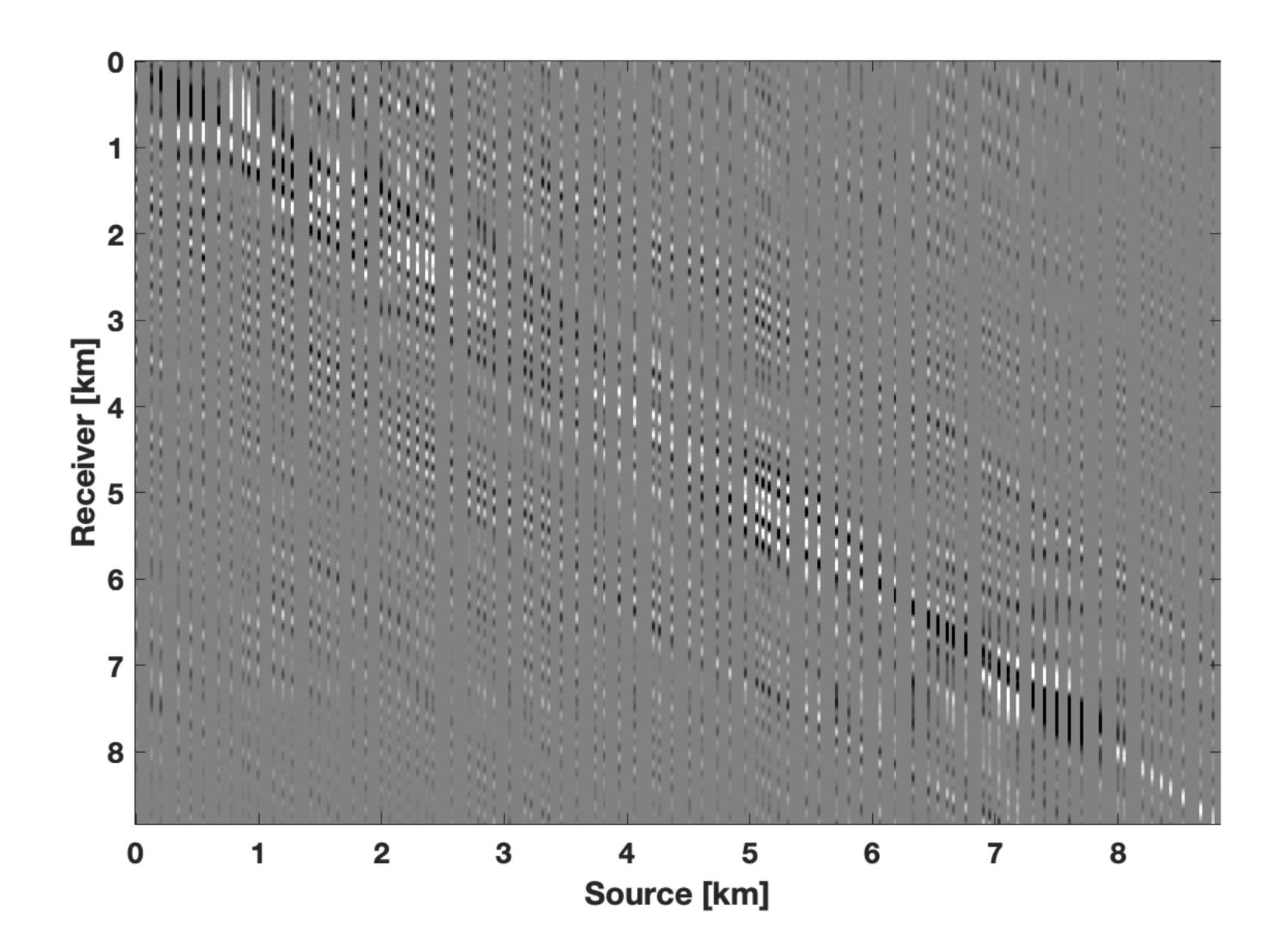
Scenario 3: using recursively limited-subspace weighted matrix completion (rank = 85, subspace rank = 25)

Frequency slice: 22 Hz

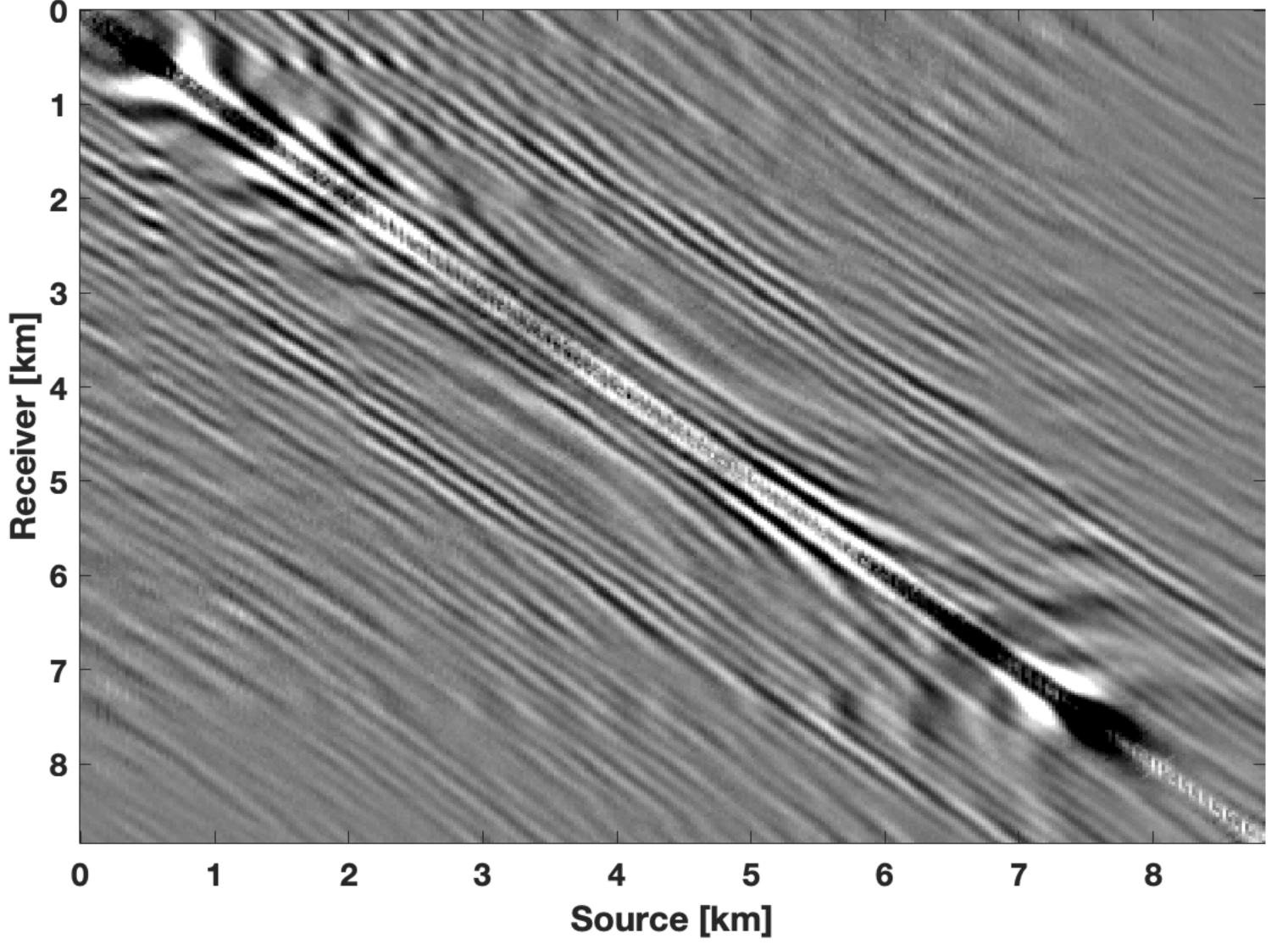
Fully sampled data



Observed data (75% jittered subsampled)

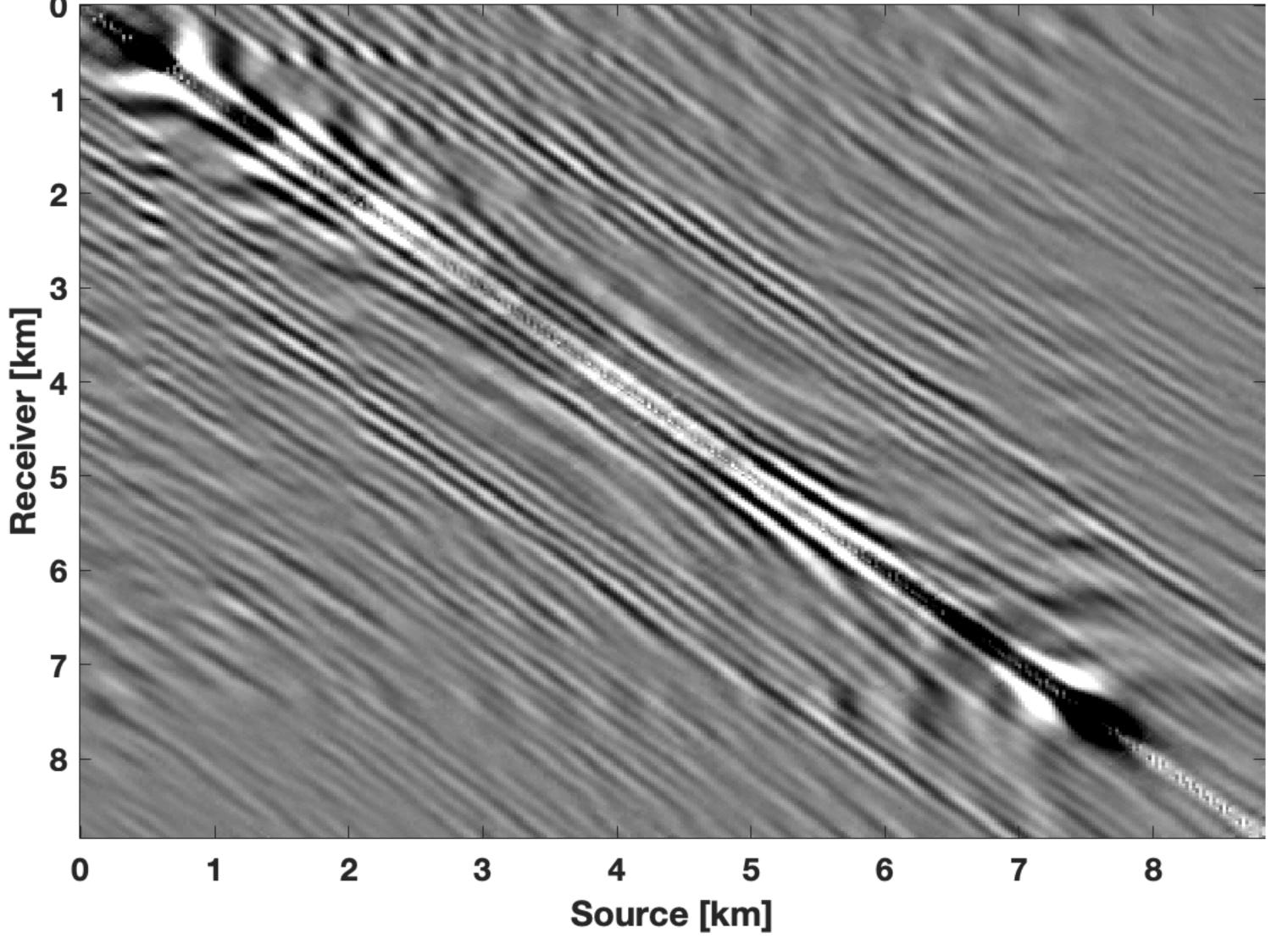


Recovery w/ weighted (rank = 85)



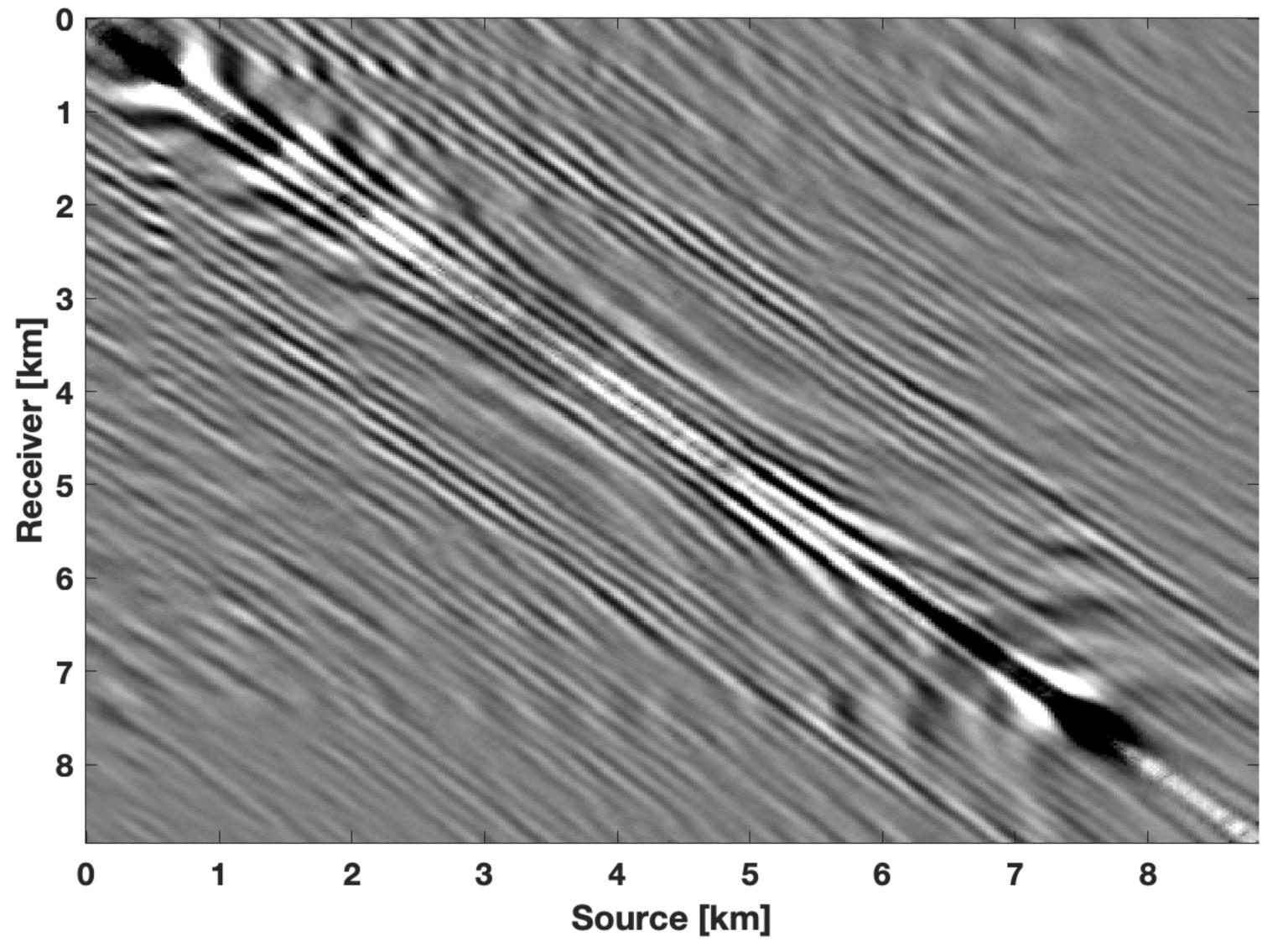
SNR = 13.09 dB **Rank** = 85 **Subspace** rank = 85

Recovery w/ weighted (rank = 25)



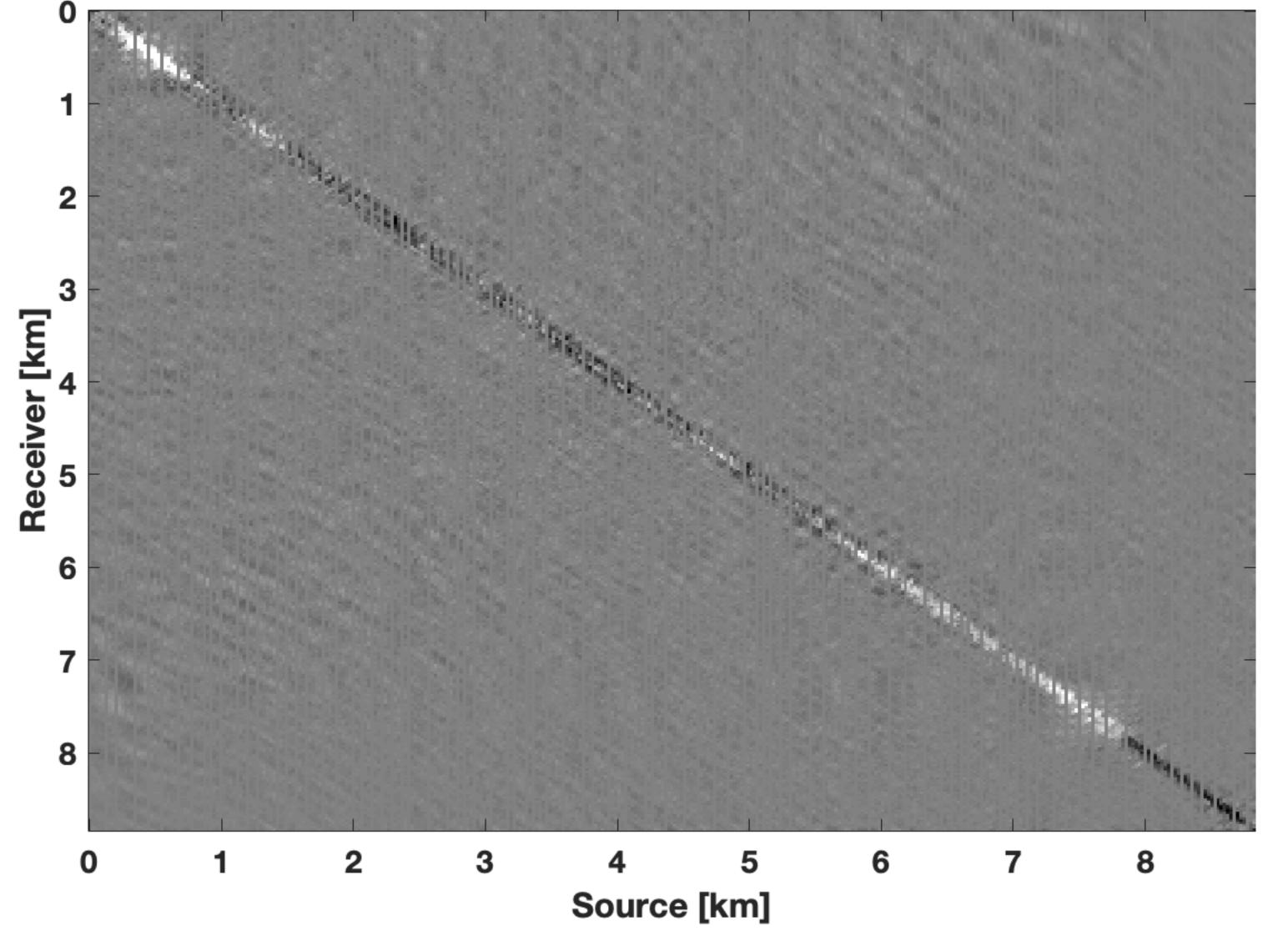
SNR = 15.50 dB **Rank** = 25 **Subspace** rank = 25

Recovery w/ limited subspaces weighted



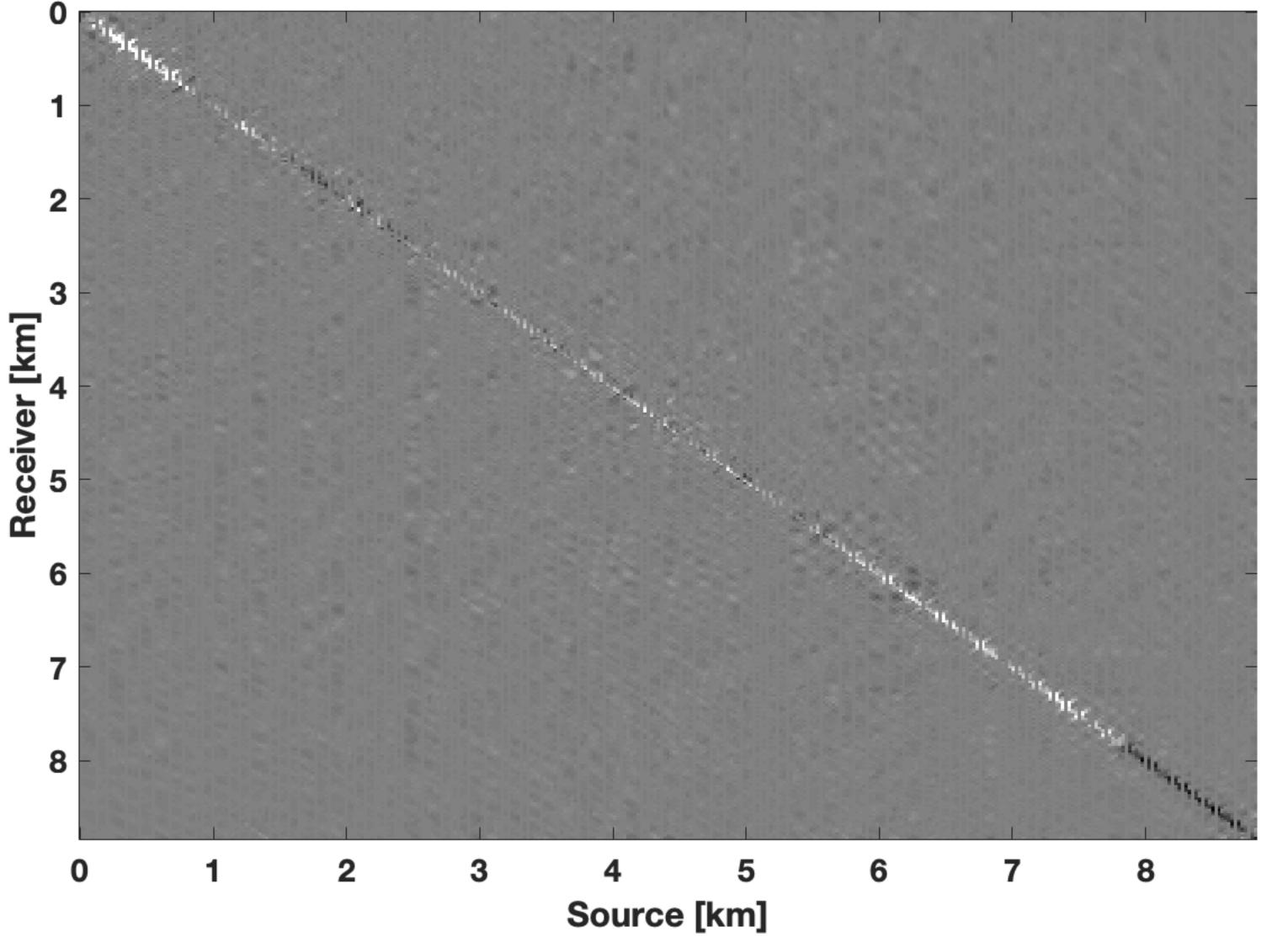
SNR = 19.52 dB Rank = 85 Subspace rank = 25

Difference: True - Recovery w/ weighted (rank = 85)



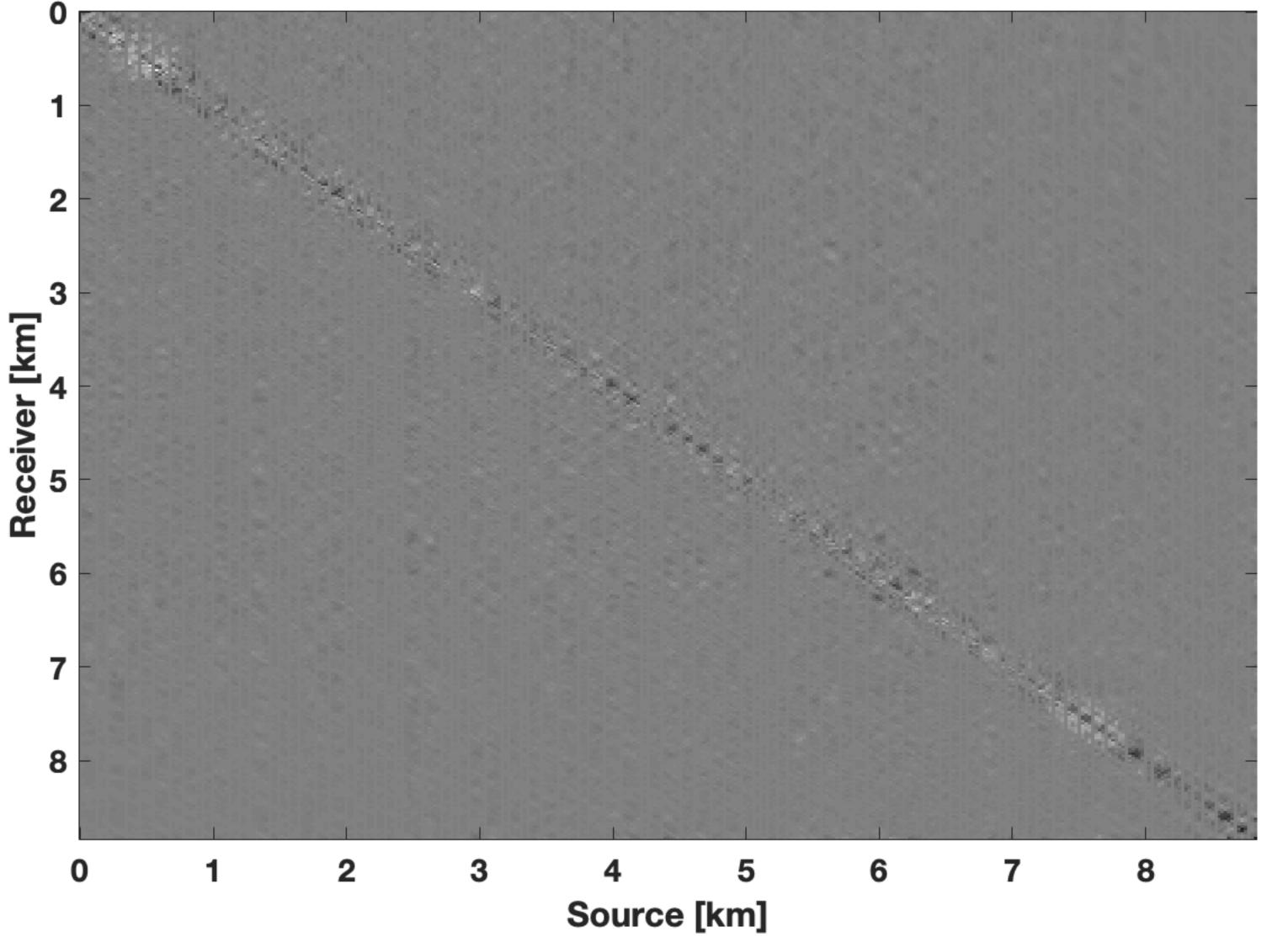
SNR = 13.09 dB Rank = 85 Subspace rank = 85

Difference: True - Recovery w/ weighted (rank = 25)



SNR = 15.50 dB Rank = 25 Subspace rank = 25

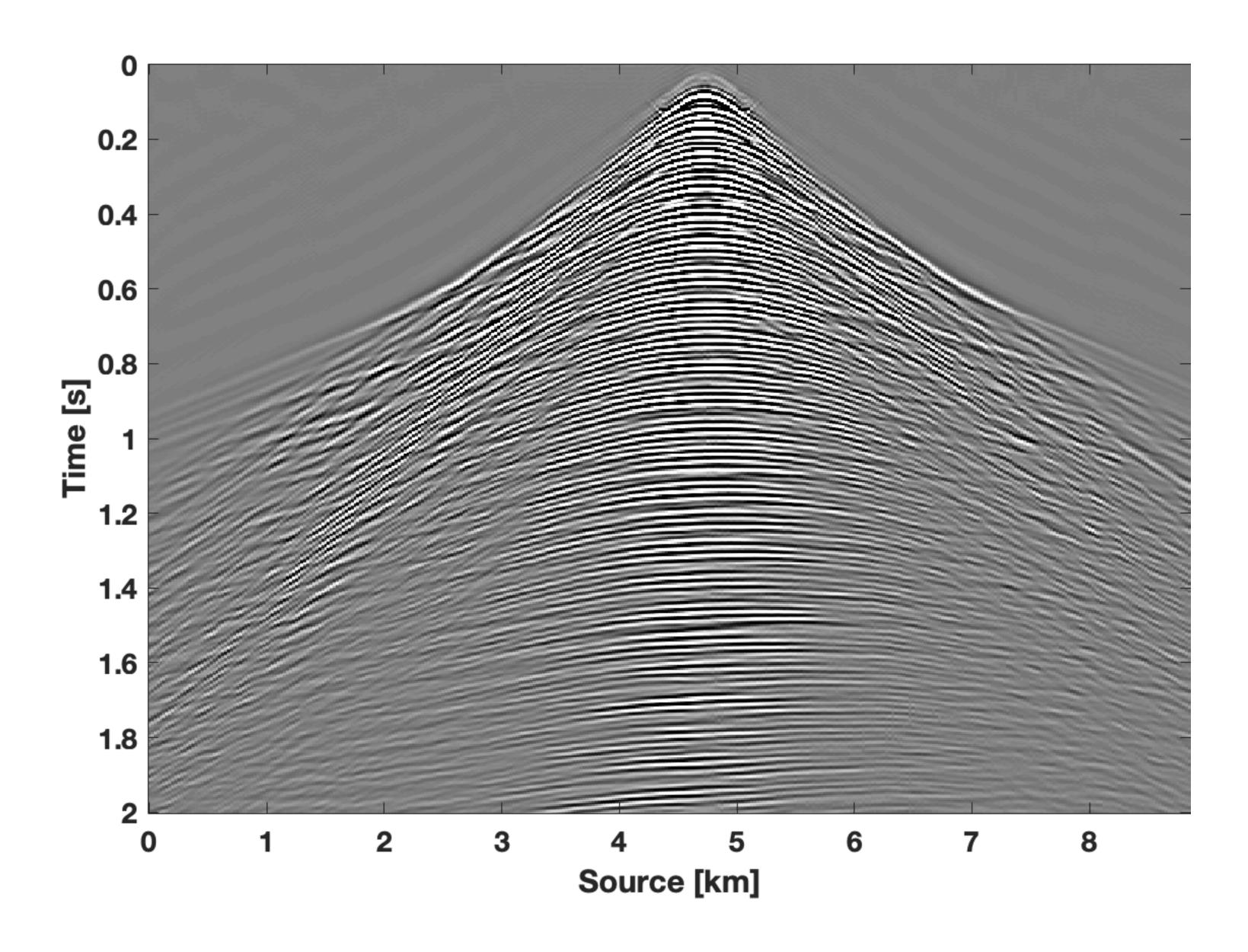
Difference: True - Recovery w/ limited subspaces weighted



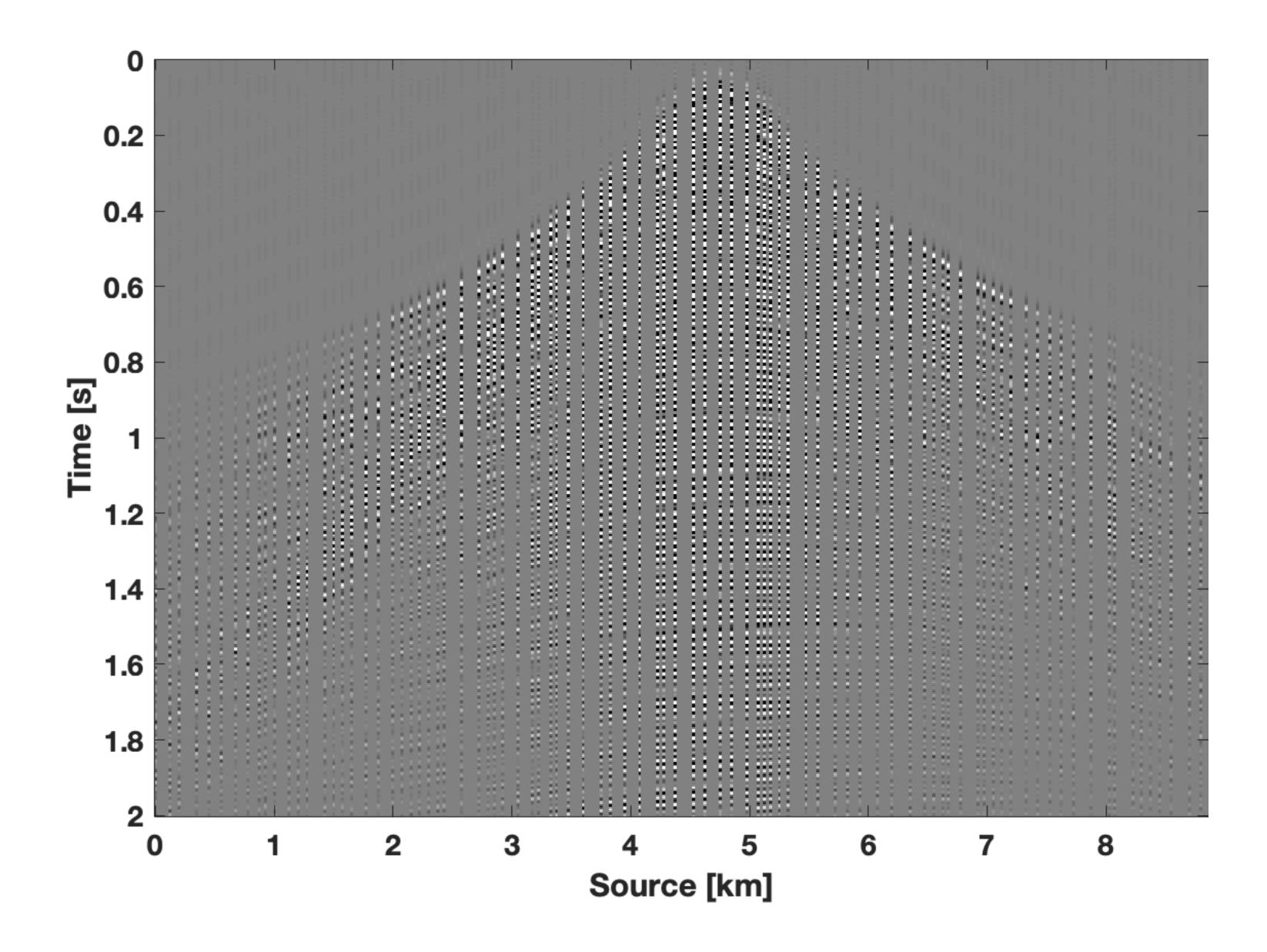
SNR = 19.52 dB Rank = 85 Subspace rank = 25

Common receiver gather

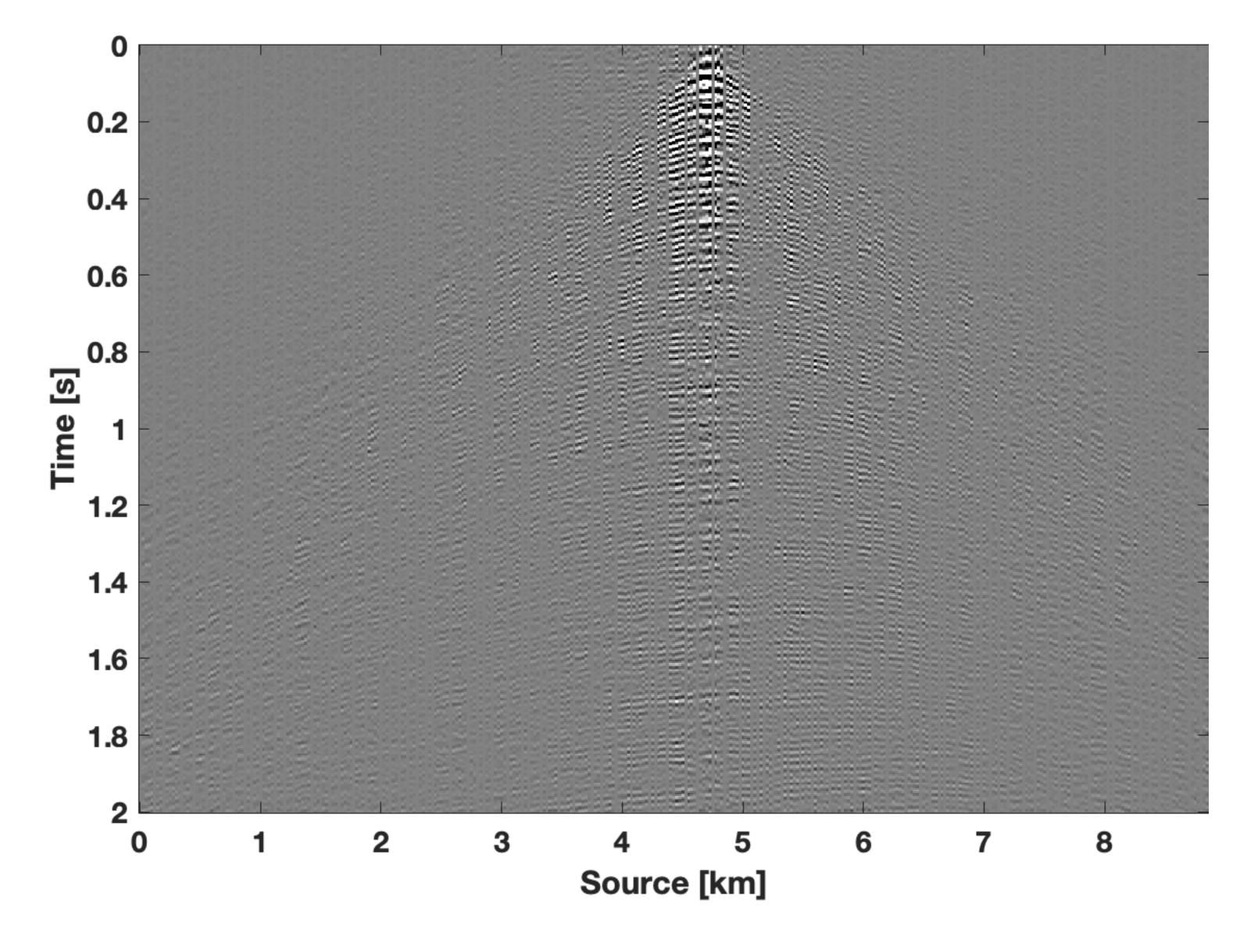
Fully sampled data



Observed data (75% jittered subsampled)

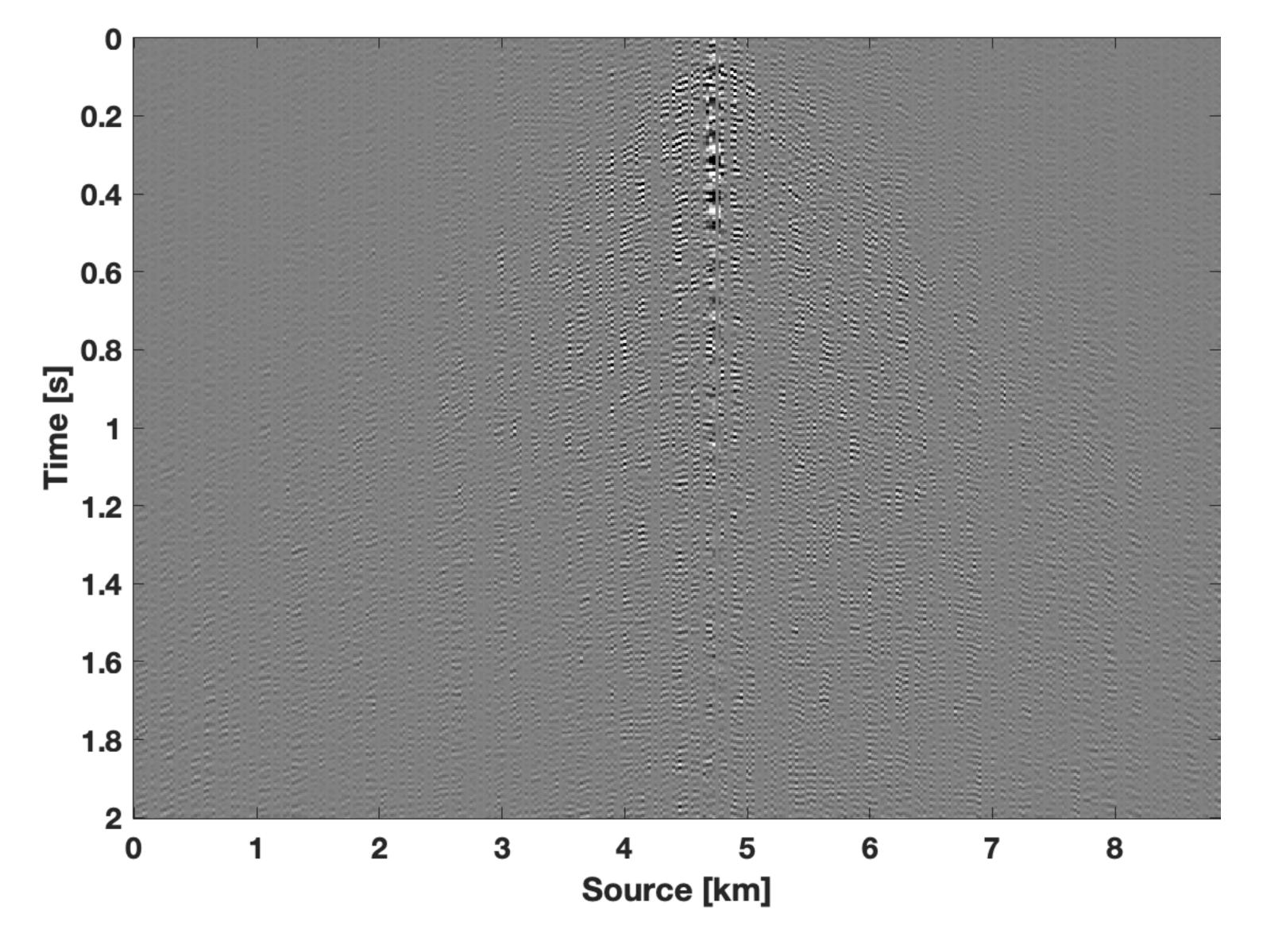


Difference: True - Recovery w/ weighted (rank = 85)



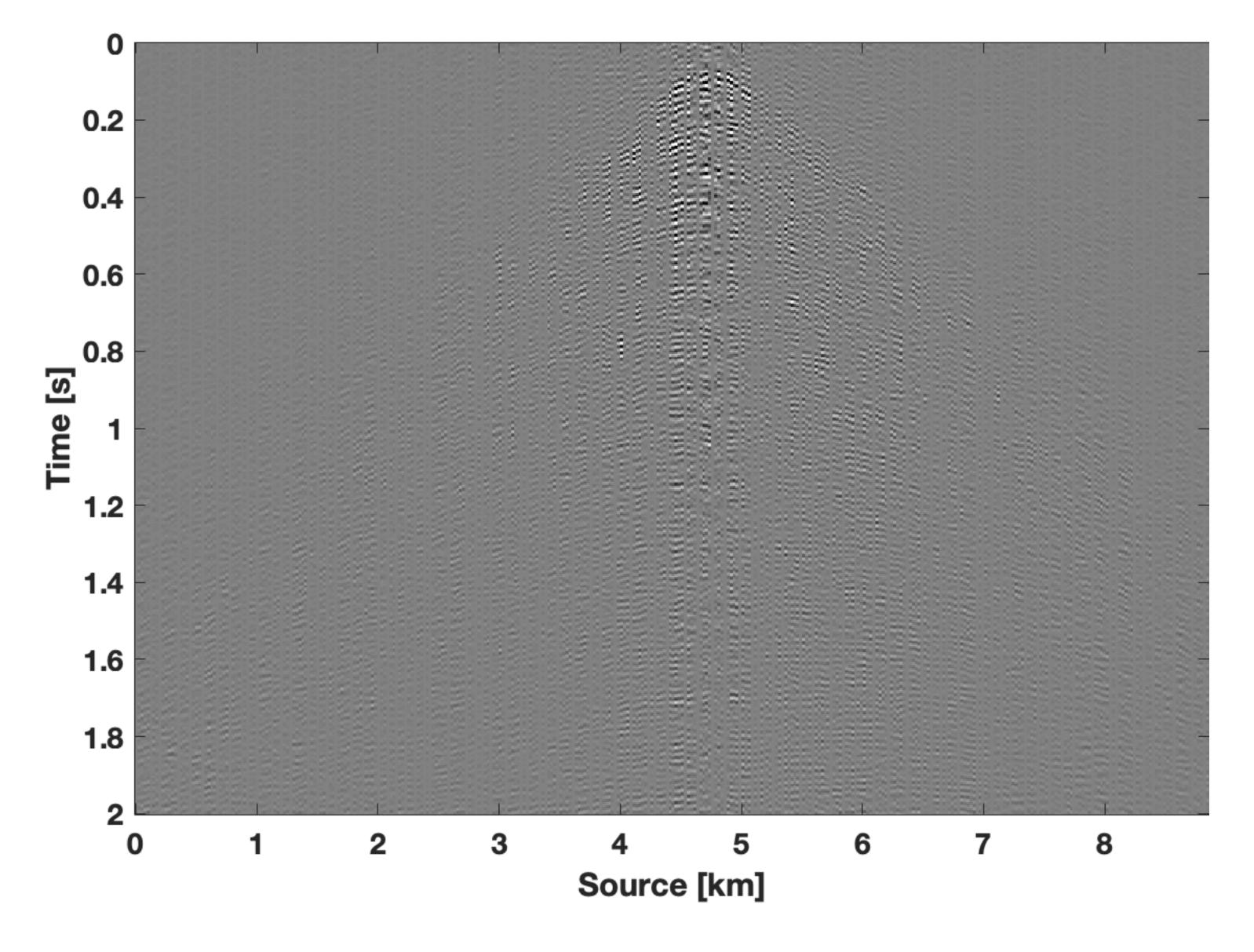
SNR = 10.69 dB Rank = 85 Subspace rank = 85

Difference: True - Recovery w/ weighted (rank = 25)



SNR = 11.49 dB **Rank** = 25 **Subspace** rank = 25

Difference: True - Recovery w/limited subspaces weighted



SNR = 13.31 dB Rank = 85 Subspace rank = 25

Conclusion & future work

Limited weighted strategy

- prevents overfitting at lower frequencies
- improves SNR at higher frequencies

Simultaneous source separation

Acknowledgement

We would like to thank the Georgia Institute of Technology for funding this research

Thank you for your attention!