Wavefield recovery with limited-subspace weighted matrix factorizations
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SUMMARY

Modern-day seismic imaging and monitoring technology in-
creasingly rely on dense full-azimuth sampling. Unfortunately,
the costs of acquiring densely sampled data rapidly become pro-
hibitive and we need to look for ways to sparsely collect data,
e.g. from sparsely distributed ocean bottom nodes, from which
we then derive densely sampled surveys through the method
of wavefield reconstruction. Because of their relatively cheap
and simple calculations, wavefield reconstruction via matrix
factorizations has proven to be a viable and scalable alternative
to the more generally used transform-based methods. While
this method is capable of processing all full azimuth data fre-
quency by frequency slice, its performance degrades at higher
frequencies because monochromatic data at these frequencies
is not as well approximated by low-rank factorizations. We ad-
dress this problem by proposing a recursive recovery technique,
which involves weighted matrix factorizations where recovered
wavefields at the lower frequencies serve as prior information
for the recovery of the higher frequencies. To limit the adverse
effects of potential overfitting, we propose a limited-subspace
recursively weighted matrix factorization approach where the
size of the row and column subspaces to construct the weight
matrices is constrained. We apply our method to data collected
from the Gulf of Suez, and our results show that our limited-
subspace weighted recovery method significantly improves the
recovery quality.

INTRODUCTION

Seismic data acquisition plays a key role in the initial phase of
oil & gas exploration. It also represents a significant budget
item for monitoring of carbon sequestration. For these reasons,
it is a challenge to come up with new acquisition methodolo-
gies that improve acquisition productivity (Mosher et al., 2014)
without sacrificing data quality. Randomized acquisition ac-
cording to the principles of compressive sensing (Herrmann
et al., 2012) in combination with large-scale wavefield recon-
struction algorithms (Kumar et al., 2015) has proven a viable
tool to improve the acquisition productivity both in marine and
land seismic settings.

So far, many of the employed approached of wavefield recon-
struction are based transform-domain sparsity, which is deigned
to explore local smoothness typically in small windows in up to
five dimensions. While these approaches have been applied suc-
cessfully on production data, they do no exploit redundancies
present in the data over long distances. Recovery techniques
based on low-rank matrix factorizations (Kumar et al., 2015)
do not suffer from this shortcoming because this method works

with monochromatic frequency slices that contain data from
the complete survey instead of working within small windows
limiting the apperture. By organizing the data in the appro-
priate domain, e.g. midpoint-offset domain for seismic lines,
monochromatic frequency slices permit approximations in low-
rank form, which can be used to recover fully sample wavefields
from subsampled data.

While low-rank factorizations have been employed successfully
for low and midrange frequencies, their performance deteri-
orates at high frequencies because monochromatic frequency
slices can no longer be approximated accurately by low-rank
factorizations. In this work, we overcome this problem by using
the fact that factorizations at neighboring frequencies live in
close-by subspaces. As described in early work by Aravkin et al.
(2013); Eftekhari et al. (2018), this property can be exploited by
introducing matrix weights defined in terms of factorizations of
near-by frequency slices. Recent work by Zhang et al. (2019)
took this initial a step further by proposing a recursive approach
where factorizations of frequency slices at lower frequencies
are used as weight for factorizations at the higher frequencies
starting at the low frequencies and working its way up.

While this approach has had some success (see e.g. Zhang
et al. (2019)), there is challenge related to the fact that high
frequencies require higher rank factorizations and this can lead
to overfitting when using this higher rank throughout. We avoid
this overfitting, by adapting the rank of the weighting matri-
ces such that overfitting is avoided. We do this by actively
limiting the row and column subspaces of the weight matrices.
Because we avoid overfitting, we are able to further improve
the wavefield recovery. We also introduce an alternative formu-
lation where the weight matrices are moved from the constraint,
as in Kumar et al. (2015), to the data misfit objective, which
leads to a significant improvement (20 to 25 times speedup)
computational efficiency.

‘We organize our paper as follows. First, we review the recur-
sively weighted wavefield recovery via matrix factorization
including the new formulation where the weight appear in the
data misfit term. Next, we discuss how to limit the subspace
of our weighted matrix factorizations. We conclude by demon-
strating our approach on a field data example from the Gulf
of Suez, which shows improved recovery quality compared to
conventional recursively weighted matrix completion.

METHODOLOGY

We start by introducing wavefield reconstruction via weighted
matrix factorization. To improve computational efficiency, we
move the weight matrices to the data misfit term so we no longer
have to carry out numerically expensive weighted projections



as in (Aravkin et al., 2013). Aside from allowing for a much
more computationally efficient implementation, this alterna-
tive formulation also forms the basis for our limited-subspace
approach designed to prevent overfitting at the low frequencies.

Weighted low-rank matrix factorization

Our proposed extension to wavefield reconstruction via recur-
sively weighted matrix factorization derives from earlier work
by Kumar et al. (2015), Aravkin et al. (2013), and Zhang et al.
(2019), where we solve
minimize || QX;W]||«
X M

subjectto ||/ (X;)—bil2 <7

to within a noise-level dependent data misfit tolerance 7. In
this expression, the matrix X; corresponds to a monochromatic
frequency slice in the midpoint/offset domain (in case of 2D)
at the ith frequency (i € [1,--- ,ns] with with n; the number of
frequencies).

During the wavefield recovery, fully sampled frequency slices
are represented by the complex valued matrix, X € C"/*"m>"h
where n,, is the number of midpoints and n;, the number of
offsets. The symbol .27 (-) stands for the subsampling operator,
which collects monochromatic data at the observed source/re-
ceiver combinations into the vector b;. Given these observa-
tions, we solve for the fully sampled X; for each frequency by
minimizing equation 1 with weight matrices Q and W given by

Q=wuv” +utut” @)

and
W =w,VVI L vIyLH, (3)

In these expressions for the weight matrices, the U € C"»*"
and V € C™*" are the column and row subspaces that derive
from the low-rank factorization of the nearby frequency slice.
U and V have orthonormal columns that span top column and
row subspaces of nearby frequency slice. Because these weight
matrices include information on the subspaces of the current fac-
torization, they serves as prior information aiding the wavefield
recovery via the weighted nuclear norm minimization (denoted
by |QXW/|. = >>"_, o; with o} the j™ singular value). De-
pending on whether we have confidence in the fact that the
neighboring frequency slice has an overlapping subspace, we
chose the weights wi and w; close to 0 if we have confidence
and close to 1 if we do not.

While the above weighted formulation has resulted in major
improvements in the recovery when reliable information on a
neighboring frequency slice is available (Kumar et al., 2015,Ar-
avkin et al. (2013), and Zhang et al. (2019)), the minimization in
equation 1 is complicated by the presence of the weighting ma-
trices in the nuclear norm objective. As a result, the minimiza-
tion becomes computationally expensive. To avoid this com-
plication, we replace the optimization variable by X; = QX; W,
and rewrite equation 1 as

minimize || X; ||«
X
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where the modified weighting matrices
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and |
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are moved from the objective to the data misfit constraint. To
reflect that we changed the problem, we introduced barred quan-
tities from which the solution original solution can be readily
computed—i.e., we recover the solution X; = Q™ X, W1 since
X; = QX; W solves the above optimization problem. Compared
to equation 1, this new formulation does not require nuclear
norm projections onto weighted matrices while its solution is
equivalent to equation 1.

Like the original formulation, our new formulation lends also
itself to be cast into a low-rank (r < max(ny,,ny,)) factorized
form so that expensive SVDs are avoided in the nuclear norm.
After factorization our wavefield reconstruction involves
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where the symbol # denotes the Hermitian transpose and || - ||
is the Frobenius norm (2-norm of the vectorized matrix) (Kumar
etal., 2015; Aravkin et al., 2013; Zhang et al., 2019). Compared
to the original representation for frequency slices, the above
factored form is compressed since it entails the low-rank pair
{Li, R;} ,where X; = ;R and does not rely on storage and
manipulation of the original and dense optimization variable
X; or X;. Despite gains in computation, because of the factored
form and redefined data misfit term, challenges remain with
recursive weighted matrix factorizations (Zhang et al., 2019) at
the high frequencies and as we will show these have to do with
overfitting.

Limited subspace weighted implementation

To reduce approximation errors at the high frequencies, we
can increase the rank of the factorization throughout. While
increasing the rank leads to better approximations at the high
frequencies adapting this higher rank at the lower frequencies
can lead to overfitting. The resulting poor reconstructions at the
lower frequencies can in turn have a detrimental effect on the
reconstruction at higher frequencies, which information from
the lower frequencies as the recursive algorithm sweeps from
the low to the high frequencies.

By choosing the rank for the limited subspace, we reduce the
size of the subspaces of the weight matrices to prevent overfit-
ting at the lower frequencies. In equations 2, 3, 5 and 6, we
notice that the size of the weight matrices Q and W are inde-
pendent of rank r. Therefore, we can use a limited subspace to
remove the influence of overfitting and get better results.

By limited subspace, we mean that at a given frequency slice,
instead of using a rank r for row and column subspaces U and
V respectively, we can use a lower rank r;. In this way, we
can choose higher rank r to reconstruct each frequency but



use lower rank ry to construct the weight matrices (Q and W).
By choosing smaller rank for the subspaces, we mitigate the
negative influence of overfitting. Therefore, in the limited-
subspace method, we are free to choose smaller values for the
rs for each frequency slice and higher values for the rank r for
the factorization itself (not for the weights) for each frequency.

NUMERICAL EXPERIMENTS

To demonstrate the advocacy of the proposed method, we use
2D field seismic data acquired in the Gulf of Suez with number
of sources, Ny = 355, and number of receivers, N, = 355. The
total number of time samples in this dataset is Ny = 1024 and
the sampling interval is 0.004s. We use a jittered subsampling
(Herrmann and Hennenfent, 2008) mask to remove 75% of
the sources to obtain the subsampled data. When data is orga-
nized in the midpoint-offset domain, we know that randomized
jittered subsampling method breaks the inherent low-rank prop-
erty of seismic data while controlling the largest gap size of the
subsampled data (Herrmann and Hennenfent, 2008). Control-
ling largest gap is important because very large gaps are not
suitable for wavefield reconstruction using sparsity-promotion
or low-rank matrix completion. We use the weighted method
as described by Zhang et al. (2019) to reconstruct frequency
slices starting at 10Hz and working our way up to 70Hz. We
use constant rank across all the frequencies for weight matrices
and matrix factorization. We base these choices for ry < r on
visual inspection of the recovered frequency slices. To avoid
overfitting at lower frequencies we select rank r, of the limited
subspace constant across all the frequencies. And to better
approximation of higher frequencies we choose higher rank
r across all the frequencies. Combination of higher rank for
matrix factorization and smaller rank for limited subspace avoid
the risk of overfitting and at the same time improves the data
reconstruction quality.

To demonstrate that the limited-subspace recursively weighted
method gives improved results compared to conventional re-
cursively weighted method (Zhang et al., 2019), we first show
results in the frequency domain. For each frequency slice, we
perform 150 iterations for both the methods. For the limited-
subspace weighted method, we use rank r = 85 and limited
subspace rank of ry = 25. For comparison with the conventional
weighted method, we perform two experiments with a fixed
high rank of = 85 and lower rank of r = 25. We choose lower
rank for conventional weighted method to show that smaller
rank itself is not sufficient for significant improvement in data
reconstruction at higher frequencies. On the other hand we
choose higher rank of 85 for conventional weighted method to
show that higher rank is alone not sufficient to improve the qual-
ity of reconstructed data at higher frequencies because of the
overfitting at lower frequencies. We show reconstruction results
for a frequency slice at 22 Hz in Figure 1. Due to overfiting, the
conventional method with rank r = 85 gives a reconstruction
with a smaller S/R of 13.09dB compared to the wavefield re-
construction (Figures 1c and 1d) obtained with the smaller rank
r =25 for which we get S/R of 15.50dB (Figures le and 1f).
We get S/R of 19.52dB for the reconstructed data (Figures 1g)
using the limited-subspace weighted method. Figure 1h shows
the data residual with respect to the ground truth (Figure 1a).
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Figure 1: Reconstruction for missing source for a frequency
slice at 22Hz shown in the source-receiver domain but re-
constructed in the midpoint-offset domain. (a) Ground truth,
(b) 75% subsampled seismic data with jittered subsampling.
(c) and (d) recovery by weighted matrix factorization (S/R =
13.09dB) using conventional recursively weighted approach
with fixed rank r = 85 and corresponding residual w.r.t. the
ground truth, respectively. (e) and (f) contain recovery (S/R =
15.50dB) for conventional recursively weighted with a rank
r = 25 and corresponding residual w.r.t. the ground truth re-
spectively. (g) and (h) represent recovery (S/R = 19.52dB)
using limited-subspace weighted method with limited-subspace
rank ry = 25 and corresponding residual w.r.t. the ground truth
respectively.



Clearly, our limited-subspace weighted method outperforms
the conventional weighted method in terms of improved quality
of reconstructed data.

To further compare our limited-subspace method with the origi-
nal method, we repeat wavefield reconstructions over a range
of frequencies 7 — 74 Hz. In Figure 2, we show the comparison
of the S/R’s across the whole frequency range. As expected,
we observe that limited-subspace weighted method (red line in
Figure 2) outperforms conventional weighted method for both
ranks of 25 (blue line in Figure 2) and 85 (black line in Figure 2)
for most of the frequencies. This is because of using limited
subspace we avoid risk of overfitting at lower frequencies and
hence get improvement in quality of reconstructed data.

onal weighted method, rank = 85 and weight = 0.65
ighted method, rank = 25 and weight = 0.65
method, rank =85 and weight = 0.65
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Figure 2: S/R of reconstructed data vs frequency based on our
limited-subspace weighted method (red color), conventional
weighted method with rank equals to 85 (black color) and 25
(blue color).

To show the recovery improvement in the time domain, we
included Figure 3. To make fair comparison, we construct a
bandpass filter with pass frequency 7 — 74 Hz with a transition
width at both ends of 3.66 Hz. We apply this bandpass filter
on the true data, the subsampled data, and on recovered data
recovered using the three scenarios described above. After ap-
plying the filter, we transform the filtered data back to the time
domain. As we can see from Figure 3e, we observe less leak-
age of coherent signal in the data residual for results obtained
with our limited-subspace weighted method in comparison to
the data residual yielded by the conventional weighted method
with ranks of r = 85 (Figure 3c) and r = 25 (Figure 3d). With
the conventional weighted method for rank equals to » = 85,
we get S/R of 10.69dB, and for rank r = 25, we get S/R of
11.49dB. With the limited-subspace weighted method we get
S/R of 13.31dB, which is a significant improvement.

CONCLUSIONS

In this work, we proposed a limited-subspace weighted method
to further improve the performance of recursively weighted
method in terms of better data reconstruction quality. By ex-
ploiting the fact that dimensions of weight matrices are in-
dependent of the rank of the subspaces, our method allows
us to use higher ranks for data reconstruction while avoiding
the risk of overfitting at the lower frequencies. Matrices with
higher rank allow for a better approximation of the frequency
slices at higher frequencies and hence allow for better quality

Time [s]

Figure 3: Wavefield reconstruction results in the time-domain.
(a) Ground truth. (b) 75% subsampled seismic data with jittered
subsampling. (c) using conventional weighted method (S/R =
10.69dB) for rank equals to r = 85, (d) using conventional
weighted method (S/R = 11.49dB) for rank equals to r = 25,
(e) using limited subspace weighted method (S/R = 13.31dB)
with limited subspace rank ry = 25.

of reconstructed data if we prevent overfitting by working with
limited-subspace weights. Through experiments we performed
on a field data acquired in the Gulf of Suez, we demonstrated
the advantage of our method in comparison to the recursively
weighted method without using limited subspace. We also intro-
duced a computationally more efficient formulation by moving
the weight matrices to the data-misfit term. In future work ,
we would like to extend the application of limited-subspace
weighted method to large scale 3D data examples.

RELATED MATERIALS

In order to facilitate the reproducibility of the results herein
discussed, Matlab & Julia implementation of this work are
made available on the SLIM GitHub page https://github.com/
slimgroup/Software. SEG2020.
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