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SUMMARY

We present three imaging modalities that live on the crossroads
of seismic and medical imaging. Through the lens of extended
source imaging, we can draw deep connections among the fields
of wave-equation based seismic and medical imaging, despite
first appearances. From the seismic perspective, we underline
the importance to work with the correct physics and spatially
varying velocity fields. Medical imaging, on the other hand,
opens the possibility for new imaging modalities where outside
stimuli, such as laser or radar pulses, can not only be used to
identify endogenous optical or thermal contrasts but that these
sources can also be used to insonify the medium so that images
of the whole specimen can in principle be created.

INTRODUCTION
The fields of seismic and medical imaging are both seeing major
developments in wave-equation based inversion (van Leeuwen
and Herrmann, 2013, 2015; Warner and Guasch, 2016; Guasch
et al., 2019; Huang et al., 2018); in data acquisition with com-
pressive sensing (Herrmann, 2010; Liu et al., 2012; Sharan
et al., 2018), in large-scale solvers for convex optimization
(Zhang et al., 2014; Esser et al., 2018; Peters et al., 2018), and
in machine learning (Hauptmann et al., 2018; Herrmann et al.,
2019). These different techniques are aimed at improving ac-
quisition efficiency (Mosher et al., 2014; Kumar et al., 2017);
image quality, via hand-crafted (Esser et al., 2018; Peters et al.,
2018) or data-driven regularization (Arridge et al., 2019), and
where possible to quantify uncertainty (Siahkoohi et al., 2020).
Obviously, there are important commonalities between these
two fields. They are both are physics based, deal with data col-
lection, intricate wave physics, and both have a need to obtain
high-fidelity and high-resolution images. Despite these simi-
larities, there are also important differences. For instance, in
medical imaging turn around times come at a premium while in
exploration seismology innovations in seismic data acquisition
and imaging are aimed at obtaining images in more and more
complex geological areas.

The fact that the goals and challenges in these fields are so
different in part explains why there are as of yet not been many
examples of successful synergetic developments in the fields of
medical and seismic imaging. In this talk, we try to overcome
some of these hurdles by studying three different examples,
designed to exemplify connections between seismic inversion
with extended volume sources (Huang et al., 2018) and medical
imaging modalities such as photoacoustic (Xu and Wang, 2006)
and thermoacoustic imaging (Ku et al., 2005). Aside from pre-
senting an unified imaging framework for the different imaging
modalities, we also propose a novel imaging modality. Instead
of locating optical or thermal contrasts acoustically, we use the
energy generated by these sources to image spatial variations

in the acoustic properties of the whole specimen that can for
example be used to locate calcium deposits associated with
cancer.

Our paper is organized as follows. First, we briefly describe
our general framework for wave-equation based imaging based
on variable projection. After introducing conventional active
source imaging for an unknown sourcetime signature, we shift
our attention to extended volume source imaging where the ori-
gin time and temporal source signature are known but where the
spatial location and radiation pattern are not. By means of three
examples, we demonstrate how these seemingly disconnected
formulations can be used to solve problems in photo/thermoa-
coustic and seismic imaging.

WAVE-EQUATION BASED IMAGING
Before discussing three different imaging modalities, we first
present a general framework deriving from the method of vari-
able projection (Aravkin and Van Leeuwen, 2012).

Active source imaging
Inversion of Earth subsurface properties (Tarantola, 2005) has
been a longstanding problem in exploration seismology. For
active sources, the following non-linear parameter estimation
problem+ is typically considered:

min
m,s

f (m, s) =
1

2σ2

ns∑
i=1

‖di−F [m]∗t qδ
i [s]‖

2
2 +λRt(s). (1)

In this expression, the pair of unknowns {m, s} represent the
discretized slowness squared and the temporal source signature;
σ is the standard deviation of the noise of multi-experiment
data, {di}ns

i=1, with ns the number of source experiments
(e.g. shot records) generated by {qδ

i }
ns
i=1 delta-like active

sources with known source positions, directivity patterns, and a
typically unknown temporal source signature s. To underline
linearity in the source, and the convolutional relationship
between the source time signature and the receiver restricted
Green’s function F [m] = PrA−1[m]·, with A−1[m]· the inverse
of the discretized wave equation and Pr the receiver restriction
operator, we introduced the symbol ∗t to represent convolutions
over time. To prevent overfitting of the source (see Yang et al.
(2020) for detail), we added the λ -weighted penalty term Rt(s).

In active source seismic exploration, the sources {qδ
i }

ns
i=1 are

assumed spatially impulsive and considered as discretizations of
the outer product between spatial Dirac distributions, centered
at the source locations δ (x−xs

i )s(t)
> with x= (x, z) the spatial

coordinates in 2D, and a single unknown but causal source time
function s(t) = 0, t ≤ 0 represented by the vector s.

To solve the above optimization problem, we rely on the tech-
nique of variable projection (Aravkin and Van Leeuwen, 2012)



where the following reduced objective is minimized:

min
m

f̄ (m) = f (m, s̄(m)) where s̄ = argmin
s

f (m, s). (2)

We obtain the reduced objective f̄ (m) in Equation 2 by substi-
tuting the temporal source function that minimizes the objective
f (m,s(for fixed m) into the objective of Equation 1. To arrive
at this approximate first-order accurate formulation, we made
use of the fact that ∇s f (m, s̄) = 0 at the optimal point, which
for a fixed m minimizes the FWI objective.

This solution method proceeds by updating the model vector m
by computing the gradient of the reduced objective that has the
following form:

g = ∇ f̄ (m) =
1

σ2

ns∑
i=1

∇F>i (di−F [m]∗t qi[s̄]) (3)

with ∇Fi the Jacobian for the ith source. In this expression, the
gradient inherited the sum structure of the above FWI objective,
where each term in the sum corresponds to contributions from
different active source experiments with the source locations
considered to be known. Because the temporal source signature
is related to the data through a simple convolution, its inversion
(cf. Equation 2) is relatively straightforward to solve. As re-
cently shown by Yang et al. (2020), this can be done on-the-fly
in the time-domain with code automatically generated by De-
vito (Luporini et al., 2018; Louboutin et al., 2019) and called
by the Julia Devito Inversion framework (JUDI, Witte et al.,
2019a). The combination of these two frameworks allows us to
scale to 3D and to include more complex wave physics.
Extended Volume Source Imaging
While inversions based on active source experiments have their
counterparts in ultrasonic medical imaging, this is not the only
imaging modality available to the medical practitioner. Contrary
to more or less exclusive use of active acoustic sources, such as
dynamite, air guns, or (marine) vibrators, the field of medical
imaging successfully developed alternative modalities where in
situ ultrasonic acoustic sources are triggered by synchronized
external stimuli such laser light pulses, as in photoacoustic
imaging (Xu and Wang, 2006); pulses of radio waves, as in
thermoacoustic imaging (Ku et al., 2005); or even ultrasound
waves themselves, as in acoustic cavitation (Peshkovsky and
Peshkovsky, 2010). In all cases, the external source triggers
ultra-sonic acoustic sources deep inside the medium of interest
and this offers unique possibilities that one normally would not
have in conventional active source imaging. Contrary to the
“seismic” active source setting, the spatial position, and even the
shape, of the stimuli-induced secondary sources are not known.
However, because electro-magnetic waves travel much faster
than acoustic waves, the firing times of these induced sources
are known except for the case of acoustic cavitation where the
outside stimulus itself travels with the speed of sound.

In situations where the firing (origin) times and pulse shapes
are known but where the spatial distribution of the secondary
sources are unknown, our (non-)linear parameter estimation
problem becomes:

min
m,u

f (m, u) =
1

σ2

ns∑
i=1

‖di−F [m]∗t qe[ui]‖2
2 +λRx(ui) (4)

where the extended sources qe[ui], i = 1 · · ·ns are now given
by a discretization of the outer product ui(x)s(t)> between an
extended unknown spatial source distribution u(x) and a known
temporal causal source function s(t) firing at t = 0. As before,
we include a penalty term, Rx(ui), to regularize inversion of the
extended sources. For simplicity, we drop the subscript i for
the optimization variable.

Like with regular FWI, we can derive a reduced objective for
the extended source problem via

min
m

f̄ (m) = f (m, ū(m)) where ū = argmin
u

f (m, u) (5)

and proceed by calculating the gradient via

g = ∇ f̄ (m) =
1

σ2

ns∑
i=1

∇F> (di−F [m]∗t q[ūi]) (6)

where the {ui}ns
i=1 are computed by solving Equation 5 for each

source experiment separately.

While the reduced formulations in Equations 2 and 5 are con-
ceptually similar, inverting the source-time function is, because
of the convolutional structure, simpler and does not need evalu-
ations of F [m] and its adjoint to project out the temporal source.
This is not the case for the volume extended source, whose esti-
mation is expensive and requires regularization via the spatial
penalty term Rx(u) or via constraints. In the next section, we
show how this formulation serves as the basis of an integrated
imaging framework for seismic and medical imaging.

CONNECTING THE DOTS
We will now show how Equations 4 and 6 can be used to solve
seemingly different problems in medical and seismic imaging.
Constraints on the extended source are implemented with the
software SetIntersectionProjection (Peters et al. (2018)).

Case I—Photoacoustic imaging w/ constraints
Perhaps the most straightforward application of Equation 4
is in photoacoustic imaging where an unknown distribution
of endogenous optical or thermal contrast sources, the object
of interest, are stimulated by laser beams or radio waves. In
most applications of this imaging modality, the constant or
smoothly varying acoustic velocity model is assumed to be
known and the “exploding reflector” induced by the laser pulse
is the unknown. While good results via back propagation of the
observed wavefields are possible, these results typically rely on
high fidelity data collected at high spatial sampling rates (Cox
et al., 2007), which puts pressure on the acquisition system
where large numbers of channels come at a premium. We show
that by adding a hand-crafted constraint (total-variation norm
in this case, see also Zhang et al. (2014); Sharan et al. (2018))
to Equation 4, we can remove subsampling related artifacts by
solving for a given smooth background velocity model m0

min
u

1
σ2 ‖d−F [m]∗t qe[u]‖2

2 s.t. ‖u‖TV ≤ τ. (7)

In this equation, we added the total-variation norm as a hand-
crafted constraint using the approach of Peters et al. (2018).
To evaluate the performance of this approach, we consider
a thermoacoustic imaging example of a miniaturized Shepp

https://github.com/devitocodes/devito
https://github.com/devitocodes/devito
https://github.com/slimgroup/JUDI.jl
https://github.com/slimgroup/SetIntersectionProjection.jl


Logan phantom, which we converted to acoustic wavespeeds
(Clement, 2013). This imaging problem that operated at 5MHz
is challenging because of the skull, which has a high velocity
of 2.5km/s. Assuming that radio waves can penetrate the skull,
a thermoacoustic response can be triggered emanating from the
white-color blood vessels (see Figure 1a). To further compli-
cate things, we fivefold randomly subsampled the receivers and
compare the reconstruction via back propagation with solving
Equation 7. Data is generated in the true velocity model while
the inversion is carried out in a smoothed kinematically correct
velocity model. The results are summarized in Figure fig:case-I
from which we can draw the following conclusions: (i) as pre-
dicted by compressive sensing, inversions with the TV-norm
constraint are robust w.r.t. randomized receiver subsampling
compared to imaging via back propagation (cf. Figures 1b & 1c)
and (ii) carrying out the imaging in a spatially varying velocity
model (not constant water speed) is essential in order to image
through the skull (cf. Figures 1c & 1d).

(a) (b)

(c) (d)

Figure 1: Compressive Imaging in miniaturized Shepp Logan
Phantom. (a) Experimental setup with 100 randomly receivers
(yellow ·’s) and blood vessels of interest in white. (b) Recon-
structed image using back propagation. (c) The same using
inversion of Equation 7 with the TV-constraint. (d) The same
but imaged with constant water velocity.

Case II — Seismic imaging w/ extended sources
Even though Equation 4 seems outside the realm of regular
exploration seismology, there is a direct relation between this
equation and recently proposed extensions of FWI designed
to mitigate the effects of cycle skipping—i.e., the existence of
parasitic local minima. To mitigate the possible adverse effects
of these local minima, several “explain away” approaches have
been proposed where additional slack/latent variables are in-
troduced that give the problem more freedom to fit observed
data even though the starting model for the velocities is wrong.
Without these extra variables, the gradient has a tendency to
point in the wrong direction sending FWI on a road of failure.

Extended formulations, on the other hand, may overcome this

problem, in certain situations, by fitting the data, by minimizing
over the slack variable first, followed by computing the gradient
of the reduced objective as described above (cf. Equations 4
and 5). Examples of this type of approach include Adaptive
Waveform Inversion (AWI, Warner and Guasch, 2016), where
trace-by-trace Wiener filters are introduced that match the ob-
served and simulated traces, followed by a model update de-
signed to turn these filters into zero-phase spikes; Wavefield
Reconstruction Inversion (WRI, van Leeuwen and Herrmann,
2013, 2015), where a data-augmented wave equation is solved
that matches the physics as well as the observed data, followed
by taking a gradient step that updates the velocity model such
that the wave equation itself holds (i.e., by focusing the aug-
mented wavefield onto the sources); and extended waveform
inversion with volumetric sources (Huang et al., 2018), where
source extensions are used to match the observed data, followed
by computing the gradient of the reduced objective. Equation 4
is an instance of this latest approach where a source focus-
ing penalty term is added as regularization. In this case we
have, R(u) = ‖Wu‖2

2 where W is an annihilator constructed in
such a way that the extended source is in its null space when
focussed—i.e., R(δ (x− xs)) = 0. This can be achieved by
setting Wu = |x−xs|u (Huang et al., 2018).

While the above approach has been used successfully to miti-
gate some of the effects of local minima in FWI, we show that
this approach can also be used to migrate by solving for ū first,
by running LSQR on Equation 4 first, followed by computing
the gradient of the reduced objective with the inverse-scattering
imaging condition (Witte et al., 2019b), which is designed to
reduce tomographic artifacts. As we can see in Figure 2, this
approach is indeed capable of producing high-fidelity images
in complex models without the need to know the exact location
and the directivity pattern of the sources. The interesting aspect
of this two-stage approach is that we can image as long as we
know the firing times of the different source experiments, which
opens a new perspective on medical imaging.

Case III — Photoextended imaging
Contrary to seismic imaging, the field of medical imaging com-
prises of a wide range of different imaging modalities where dif-
ferent external stimuli are used to create an image with induced
ultrasonic waves. Photoacoustic imaging is a good example of
such an approach where laser light induces ultrasonic contrast
sources, which can be imaged as we described under Case I.
However, we can take this imaging modality a step further by
using the methodology described under Case II. Contrary to
conventional photoacoustic imaging, we use these contrasts as
“active” sources insonifying the specimen as a whole.

For this purpose, let us consider a 2D example of breast imaging
where we are interested in finding microcalcifications (calcium
oxalate) that could be indicative of breast cancer. To create an
image, we assume that we are able to carry out independent
photo-source experiments where ultrasonic “point sources” are
triggered with laser light. We assume that these sources are
located in blood vessels. We repeat this multiple times. Since
we do not know where the blood vessels are, we do not apply
focussing but instead we solve for each source separately using
5 iterations of LSQR, followed by computing the gradients, as



(a)

(b)

(c)

Figure 2: Comparison of extended source imaging and con-
ventional reverse-time migration. (a) Experimental setup with
90 sources and 500 receivers. (b) Result obtained by conven-
tional migration with the inverse-scattering imaging condition.
(c) Result obtained by solving for the extended sources first
by minimizing Equation 4 for u, followed by computing the
gradient of the reduced objective (Equation 6) with the inverse-
scattering condition. While there are some differences in the
frequency content and amplitudes, the overall image quality
is similar albeit that the bottom salt is improved by extended
source imaging.

in Equation 6, which we stack into a single image. The setup for
our experiment is depicted in Figure 3a and includes 7 different
opto-induced sources placed in blood vessels and denoted by
the white crosses and densely sampled receivers placed in a
circular fashion around the breast.

OBSERVATIONS
We believe that these experiments demonstrate that imaging
algorithms originally motivated by specific challenges encoun-
tered in seismic problems can be applied in some interesting
medical imaging scenarios. We make this assertion under the
assumption that we are in the correct physical regime and that
we have access to adequate computational resources. If this is
indeed the case, there are exciting possibilities because wave-

(a)

(b)

(c)

Figure 3: Example of photoextended imaging where blood ves-
sels act as sources for a breast with speckle microcalcifications
present. (a) Experimental setup with 7 sources denoted by white
×’s, 512 receivers denoted by red ·’s, and actual wavespeed
in the color image. (b) Image obtained for a single extended
source in a smoothly varying background velocity model. (c)
Stacked image over 7 extended sources places throughout the
breast. Aside from clearly observing the cluster of microcal-
cifications, we also obtain an image of fat and fibroglandular
tissue.

equation based inversion, in tandem with regularization with
contraints and deep priors, opens the way towards high-fidelity
high-resolution images including uncertainty quantification.

Related materials

In order to facilitate the reproducibility of the results herein
discussed, a Julia implementation of this work is made avail-
able on the SLIM GitHub page https://github.com/slimgroup/
Software.SEG2020.
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