Uncertainty quantification in imaging and automatic horizon tracking—a Bayesian deep-prior based approach

Ali Siahkoohi, Gabrio Rizzuti, and Felix J. Herrmann

School of Computational Science and Engineering
Georgia Institute of Technology
Seismic imaging

estimate reflectivity δm given observed data $\{d_i\}_{i=1}^{n_s}$
\[
\min_{\delta m} \frac{1}{2\sigma^2} \sum_{i=1}^{n_s} \| \delta d_i - J(m_0, q_i) \delta m \|^2_2
\]

linearized Born operator, \(J(m_0, q_i) \)

linearized data, \(\delta d_i \)

noise variance, \(\sigma^2 \)
Challenges

expensive forward operator

inconsistent, mildly ill-conditioned
2D slice from Parihaka dataset

finite-difference simulations w/ Devito

δm—"true" reflectivity model obtain from Parihaka dataset
\(\mathbf{m}_0 \) — made up background squared-slowness model \(\left(\frac{s^2}{\text{km}^2} \right) \)
205 sources w/ 25 m sampling rate

410 receivers w/ 12.5 m sampling rate

1.5 s recording time

Ricker source wavelet w/ 30 Hz central frequency
Noise-free (left) and noisy (right) linearized data — SNR: -8.7466 dB
Maximum likelihood estimate

$$\min_{\delta m} \frac{1}{2\sigma^2} \sum_{i=1}^{n_s} \| \delta d_i - J(m_0, q_i)\delta m \|^2_2$$
MLE—no regularization (prior)
Deep priors

regularization w/ an untrained CNN
Deep priors in seismic data reconstruction

denoising

Deep priors in seismic imaging

full-waveform inversion

Deep prior

\[\delta m = g(z, w), \quad w \sim N(0, \lambda^{-2}I) \]

untrained CNN, \(g(z, w) \)

CNN weights, \(w \)

fixed input, \(z \)

Negative-log posterior

\[- \log \pi_{w|\delta d}(w | \{\delta d_i\}_{i=1}^{n_s})\]

\[= \frac{1}{2\sigma^2} \sum_{i=1}^{n_s} \|\delta d_i - J(m_0, q_i)g(z, w)\|_2^2 + \frac{\lambda^2}{2} \|w\|_2^2 + \text{const} \]

negative-log likelihood

negative-log prior

Ind. of \(w\)
Posterior distribution, $\pi_{w|\delta d}$

MAP, conditional mean, pointwise standard deviation (UQ), ...
MAP estimate, $\hat{\delta m}_{MAP} = g(z, \hat{w}_{MAP})$

$\hat{w}_{MAP} := \arg \max_w \pi_{w|d} (w | \{\delta d_i\}_{i=1}^{n_s})$
conditional (posterior) mean, \(\hat{\delta m}_{CM} \)

\[
\hat{\delta m}_{CM} := \mathbb{E}_{w \sim \pi_{w|\delta d}} [g(z, w)] \approx \frac{1}{n_W} \sum_{j=1}^{n_W} g(z, \hat{w}_j),
\]

samples from posterior, \(\{\hat{w}_j\}_{j=1}^{n_W} \sim \pi_{w|\delta d}(w | \{\delta d_i\}_{i=1}^{n_s}) \)
pointwise standard deviation (UQ)

\[\hat{\sigma}^2 := \frac{1}{n_w - 1} \sum_{j=1}^{n_w} \left(g(z, \hat{w}_j) - \hat{\delta m}_{CM} \right) \odot \left(g(z, \hat{w}_j) - \hat{\delta m}_{CM} \right), \]

samples from posterior, \(\{ \hat{w}_j \}_{j=1}^{n_w} \sim \pi_{w|\delta d}(w | \{ \delta d_i \}_{i=1}^{n_s}) \)
Comparison

MLE (no deep prior), MAP, and conditional mean
MLE—no (deep) prior
MAP estimate—SNR: 8.77 dB
\(\delta m \) — "true" reflectivity model obtained from Parihaka dataset
Conditional mean estimate—SNR: 9.66 dB
Pointwise marginals at (0.73 km, 0.32 km)
Pointwise marginals at (1.55 km, 1.18 km)
Pointwise marginals at (4.55 km, 1.74 km)
Sampling from the posterior, $\pi_{\mathbf{w}|\delta \mathbf{d}}$

stochastic gradient Langevin dynamics (SGLD)
SGLD—an stochastic-approximation based MCMC sampling approach

\[
\mathbf{w}_{k+1} = \mathbf{w}_k + \frac{\epsilon}{2} \mathbf{M} \nabla_{\mathbf{w}} \left[n_s \log \pi_{\text{like}} (\delta \mathbf{d}_i | \mathbf{w}_k) \right. \\
+ \log \pi_{\text{prior}} (\mathbf{w}_k) \left. \right] + \mathbf{\eta}_k, \quad \mathbf{\eta}_k \sim \mathcal{N}(0, \epsilon \mathbf{M}),
\]

Devito4PyTorch

integrating Devito’s PDE solvers into PyTorch

Horizon tracking and uncertainty analysis
Contribution

propagate uncertainties from imaging into horizon tracking

\[\pi_{h|\delta d}^* \]

* \(h \) horizons (random variable)
Assumption

horizon tracker does not directly use observed data
Horizon tracking inference

\[\mathbb{E}_{\mathbf{h} \sim \pi_{\mathbf{h} | \delta d}} [f(\mathbf{h})] = \mathbb{E}_{\delta \mathbf{m} \sim \pi_{\delta \mathbf{m} | \delta d}} \mathbb{E}_{\mathbf{h} \sim \pi_{\mathbf{h} | \delta \mathbf{m}}} [f(\mathbf{h})] \]

nonuniqueness in horizon tracking

nonuniqueness in seismic imaging

arbitrary function, \(f \)—e.g.,

\[f(\mathbf{h}) = \mathbf{h} \]

\[f(\mathbf{h}) = (\mathbf{h} - \mathbb{E}[\mathbf{h}]) \odot (\mathbf{h} - \mathbb{E}[\mathbf{h}]) \]
Automatic horizon tracker, \mathcal{H}

uses local slopes of the image

needs control points

open-source software

deterministic horizon tracker, \mathcal{H}

\[
\mathbb{E}_{h \sim \pi_h|\delta_d} \left[f(h) \right] \approx \frac{1}{n_w} \sum_{j=1}^{n_w} f \left(\mathcal{H} \left(g \left(z, \hat{w}_j \right) \right) \right)
\]

samples from posterior, $\{\hat{w}_j\}_{j=1}^{n_w} \sim \pi_{w|\delta_d}(w \mid \{\delta_d_i\}_{i=1}^{n_s})$
Five sets of control points identifying 25 horizons of interest
Uncertainty in horizon tracking due to uncertainties in imaging
Uncertainty in horizon tracking due to uncertainties in imaging
Uncertainty in horizon tracking due to uncertainties in imaging
Uncertainty in horizon tracking due to uncertainties in imaging
Uncertainty in horizon tracking due to uncertainties in imaging
nondeterministic horizon tracker, \mathcal{H}

\[
\mathbb{E}_{h \sim \pi_{h|\delta}} \left[f(h) \right] \approx \frac{1}{n_c n_W} \sum_{j=1}^{n_W} \sum_{k=1}^{n_c} f\left(\mathcal{H}(c_k, g(z, \hat{w}_j)) \right)
\]

sets of control points, $\{c_k\}_{k=1}^{n_c}$
Uncertainty in horizon tracking due uncertainties in imaging and control points
Conclusions

imaging w/ deep prior—expensive but circumvents artifacts

SGLD—reasonable first and second moments of posterior

uncertainties from imaging affect deep, close to boundary, and complex horizons
Contributions

regularization w/ deep priors

imaging uncertainty analysis via SGLD

propagate uncertainties from imaging into horizon tracking

github.com/slimgroup/Software.SEG2020