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SUMMARY

Acquired seismic data is normally not the fully sampled data
we would like to work with since traces are missing due to
physical constraints or budget limitations. Rank minimization
is an effective way to recovering the missing trace data. Unfor-
tunately, this technique’s performance may deteriorate at higher
frequency because high-frequency data can not necessarily be
captured accurately by low-rank matrix factorizations albeit
remedies exist such as hierarchical semi-separable matrices. As
a result, recovered data often suffers from low signal to noise
ratio S/Rs at the higher frequencies. To deal with this situa-
tion, we propose a weighted recovery method that improves
the performance at the high frequencies by recursively using
information from matrix factorizations at neighboring lower
frequencies. Essentially, we include prior information from
previously reconstructed frequency slices during the wavefield
reconstruction. We apply our method to data collected from
the Gulf of Suez, which shows that our method performs well
compared to the traditional method without weighting.

INTRODUCTION

Seismic data acquisition is one of the key steps in initial phase
of oil & gas exploration. Due to operational complexity and
operational costs, acquired seismic data is usually not fully
sampled, a prerequisite to subsequent steps such as multiple
removal and migration all of which require densely sampled
data.

Wavefield recovery is an important tool to solve the problem of
poor sampling. In the last decade, wavefield recovery methods
based on sparsity promotion in different transform domains,
such as the Radon (Bardan, 1987), wavelet (Villasenor et al.,
1996), and curvelet (Herrmann et al., 2007; Herrmann and Hen-
nenfent, 2008) domain have been developed. Although these
methods are valuable in terms of the quality of recovered data,
they are relatively complex and computationally expensive.
Fortunately, matrix completion methods (Kumar et al., 2015)
based on low-rank matrix factorizations are relatively simple
and computationally cheaper. The latter use the property that
fully-sampled frequency slices permit accurate low-rank repre-
sentations when organized in midpoint/offset. In Kumar et al.
(2015); Oropeza and Sacchi (2011), authors exploit the fact that
presence of noise or missing traces increases the rank of these
frequency slices. We use this property to recover frequency
slices via factored rank minimization (Kumar et al., 2014).
While this matrix factorization method performs well at the low
to mid frequencies, it struggles to recover high-frequency data,
which need higher ranks to be accurately represented.

Recent work by Aravkin et al. (2014); Eftekhari et al. (2018)

has shown that reliable prior information on the row and column
subspaces of the underlying low rank matrix can be used to
further improve wavefield recovery via matrix completion. For
seismic data, we have access to this information when there
is a strong similarity between adjacent frequency slices. In
that case, the row and column subspaces can serve as prior
information. This principle was first demonstrated by Aravkin
et al. (2014) and we extend this line of research by recursively
invoking prior as we work our way from the relatively low
frequencies to the high frequencies where conventional matrix
completion methods typically perform poorly.

We organize our paper as follows. First, we discuss wavefield
recovery via matrix completion. Next, we discuss how to incor-
porate prior information on the row and column subspaces from
neighboring lower frequencies in our matrix completion frame-
work. We conclude demonstrating our approach on a field data
example from the Gulf of Suez and show its better performance
compared to conventional matrix completion especially at the
higher frequencies.

METHODOLOGY

Low-rank matrix factorization

In Kumar et al. (2015) and Aravkin et al. (2014), authors exploit
low rank of fully sampled seismic data by solving for each
frequency problem of the type

minimize
Xi

‖Xi‖∗ subject to ‖A (Xi)−bi‖2 ≤ ε. (1)

In this expression, the matrices Xi for i = 1 · · ·n f with n f
the number of angular frequencies represent fully sampled
monochromatic frequency slices in the midpoint/offset domain,
A is the sampling operator collecting the data into a vector, and
bi represents the observed data at the ith frequency. For each
frequency, we recover the fully sampled data by minimizing
the nuclear norm ‖ ·‖∗ on each Xi subject we fit the data within
ε . The nuclear norm itself is defined as the sum of the singular
values. We solve Equation 1 for all the frequencies to obtain
our recovered data X ∈ Cn f×nm×nh , where nm is the number of
midpoints and nh the number of offsets. As reported by Kumar
et al. (2015), randomized sampling increases the rank of 2D
seismic data in midpoint offset domain, which is a favorable
condition for matrix completion.

To avoid computationally expensive singular-value decompo-
sitions (SVD) while solving 1, we employ a low-rank matrix
factorization approach. For this purpose, we factor the matrices
(for notational simplicity we drop the subscript i) X∈Cnm×nh in
Problem 1 into the low-rank factors L ∈ Cnm×r and R ∈ Cnh×r

both of rank r. To avoid expensive SVDs, we follow Rennie
and Srebro (2005) and replace the nuclear norm in Problem 1
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by

minimize
L,R

1
2

∥∥∥∥[L
R

]∥∥∥∥2

F
subject to ‖A (LRH)−b‖F ≤ ε,

(2)

where H is the Hermitian transpose and ‖ · ‖F the Frobenius
norm (2-norm of the vectorized matrix). Following Kumar et al.
(2015) and Aravkin et al. (2014), we solve Problem 2 with
spectral-projected gradients (Van Den Berg and Friedlander,
2008).

As we mentioned earlier, the performance of low-rank factor-
ization methods degrade with increasing frequency reflected
in increasing poor signal to noise ratios (SNRs) (Kumar et al.,
2015). To improve the recovered data quality at higher frequen-
cies, we include weighted matrix completion (Aravkin et al.,
2014; Eftekhari et al., 2018).

Weighted low-rank matrix factorization

The key of our methodology is that we approximate fully sam-
pled data in low-rank factored form. When using SVDs, this
factored form reads

X≈ UΣVH , (3)

where U∈Cnm×r and V∈Cnh×r are column and row subspaces
of X, respectively. Σ ∈ Cr×r is a diagonal matrix containing
the largest r singular values of the matrix X.

As shown by Aravkin et al. (2014); Eftekhari et al. (2018),
information on these subspaces can be used to rewrite Problem 1
into its weighted form—i.e., we have

minimize
X

‖QXW‖∗ subject to ‖A (X)−b‖2 ≤ ε, (4)

where
Q = w1UUH +U⊥U⊥H (5)

and
W = w2VVH +V⊥V⊥H (6)

are projection matrices on subspaces spanned by U, V and their
orthogonal complements U⊥, V⊥. The scalars w1 ∈ (0,1] and
w2 ∈ (0,1] are weights that depend on the confidence we have
in the priors—i.e., how close the matrix X is to the actual Xi we
are dealing with at frequency i. Small values for the weights w1
and w2 mean that we have confidence in the prior (the matrix X
is close). When w1 ↑ 1 and w2 ↑ 1, solving Problem 4 becomes
equivalent to solving the original Problem 1.

As before, we can rewrite Problem 4 into a weighted low-rank
factored form (Aravkin et al., 2014):

minimize
L,R

1
2

∥∥∥∥[QL
WR

]∥∥∥∥2

F
subject to ‖A (LRH)−b‖2 ≤ ε.

(7)

The question now is which subspaces to use for the columns and
rows. Because frequency slices have information in common
from frequency to frequency, we follow Aravkin et al. (2014);
Eftekhari et al. (2018) and use the U and V from the previous
lower frequency.

While Aravkin et al. (2014) somewhat successfully applied
this approach for a single frequency slice, these authors never
justified this approach and neither did they apply the weighting
recursively working from the low to the higher frequencies. For
this purpose, we quantify similarities (in the form of angles, see
Eftekhari et al. (2018)) between subsequent frequency slices
for the Gulf of Suez data. This will allow us to predict the
performance of our method.

Quantifying similarity

Similarity between subsequent frequency slices depends on
the largest principal angles (Eftekhari et al., 2018) between
column subspaces and between row subspaces of subsequent
frequency slices. Smaller angles correspond to more similarity
between subspaces of subsequent frequency slices and vice
versa. Therefore, we can choose smaller weights w1 and w2
when the angles are smaller. Smaller weights correspond to
larger penalties (Eftekhari et al., 2018) on matrices that have
subspaces orthogonal to U and V in 4. When weights are small,
we have more confidence in U and V and less confidence in their
orthogonal counterparts. In Figure 1, we show angles between
column subspaces (Figure 1b) and row subspaces (Figure 1a)
for subsequent frequency slices of the Gulf of Suez data. We
observe an overall decreasing trend in angles with increasing
frequencies for both row and column subspaces. This trend
indicates increasing similarity between subsequent frequency
slices with increasing frequency. This trend is consistent with
high-frequency approximate behavior of wavefields—i.e., as
the frequency increases solutions become more and more like
the high-frequency solution, and this gives us a handle how to
choose the weights as the frequency increases.

Figure 1 shows that as the frequency increase, the largest angles
between the subspaces of neighboring frequencies decreases.
Smaller the angle, more similar are subspaces. This angle test
have demonstrated that the weighted matrix completion will
perform better in high frequency band because of smaller angle
in comparison to its lower frequency counterpart.

NUMERICAL EXPERIMENTS

We demonstrate effectiveness of recursive weighted matrix
completion method over the conventional matrix completion
method and the weighted method just using previous frequency
slice (named as single pair weighted method) in terms of data
reconstruction quality. In single pair weighted method, we
reconstruct previous frequency slice using conventional ma-
trix completion. We use real 2D seismic data with number of
sources, Ns = 354, and number of receivers, Nr = 354 acquired
in Gulf of Suez for this comparison. Total number of time
samples for this data set is Nt = 1024 with sampling interval of
0.004s. Most of the energy of the seismic line is concentrated in
20Hz to 70Hz frequency band (Figure 3b). To get the subsam-
pled data (Figures 2b & 4b), we remove 75% of sources using
a jittered subsampling mask. Jittered subsampling method not
only breaks the inherent properties such as low rank of fully
sampled seismic data but also controls the maximum gap size
of the incomplete data (Herrmann and Hennenfent, 2008). We
show the results and comparisons in both frequency domain
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(a)

(b)

Figure 1: Largest angle between (a) row and (b) column sub-
spaces for subsequent frequency slices of Gulf of Suez data

and time domain. For every frequency slice, we perform 150
iterations of spectral projected gradient algorithm for all these
methods. Figure 2 shows results on a frequency slice at 30Hz.
Recovery with the unweighted method gives the result with S/R
of 11.43dB. Whereas recovery with the single pair weighted
method gives a higher S/R of 15.20dB, our recursive weighted
method gives the highest S/R of of 18.48dB, 7.05dB improve-
ment in S/R over the unweighted method. Figure 2d, Figure 2f
and Figure 2h show differences between these three different
methods and ground truth data. The reconstruction using re-
cursive prior knowledge gives the least residual in Figure 2h
among these three methods. The residual of reconstruction
without using any prior knowledge is Figure 2d and the residual
of single pair weighted reconstruction is Figure 2f.

Figure 3a shows recursive weighted method’s performance
(red color plot) over range of frequencies in terms of signal
to noise of completion. Recursive weighted recovery clearly
outperforms the conventional recovery without weight (black
color plot in Figure 3a) and the single pair weighted recovery
(blue color plot in Figure 3a) in the frequency range which
contains most of the energy (Figure 3b).

To further compare these three methods for time domain data,
we apply them on all frequency slices and transfer results back
to time domain. Figure 4 shows results and differences for
one common receiver gather extracted from complete time
domain data. With the conventional recovery we get S/R of
6.87dB, whereas with single pair weighted recovery we get S/R
of 7.85dB and with recursive weighted recovery we get S/R of

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2: Missing trace recovery for a frequency slice at 30Hz
in source-receiver domain. (a) Ground truth, (b) 75% subsam-
pled seismic data with jittered subsampling. (c) and (d) rep-
resent recovery (S/R = 11.43dB) using conventional method
and its difference w.r.t. the ground truth respectively. (e) and (f)
represent recovery (S/R = 15.20dB) using single pair weighted
method and its difference w.r.t. the ground truth respectively.
(g) and (h) represent recovery (S/R = 18.48dB) using recur-
sive weighted method and its difference w.r.t. the ground truth
respectively.

11.63dB. With recursive weighted recovery we get almost 5dB
improvement for complete time domain data over conventional
recovery. It is also obvious to see the advantage of the recursive
weighted method from three differences in Figure 4d, Figure 4f
and Figure 4h. The residual is significantly reduced in Figure 4h
in contrast to Figure 4d and Figure 4f.
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(a) (b)

Figure 3: (a) S/R vs frequency of recovery using recursive weighted method (Red color), single pair weighted method (Blue color)
and conventional method (Black color). (b) Plot of energy of frequency slices vs frequency.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4: Missing trace recovery of time domain data. (a) Ground truth. (b) 75% subsampled seismic data with jittered subsampling.
(c) and (d) represent recovery (S/R = 6.87dB) using conventional method and its difference w.r.t. the ground truth respectively. (e)
and (f) represent recovery (S/R= 7.85dB) using single pair weighted method and its difference w.r.t. the ground truth respectively. (g)
and (h) represent recovery (S/R = 11.63dB) using recursive weighted method and its difference w.r.t. the ground truth respectively.

CONCLUSIONS

In this work, we have proposed recursive weighted matrix com-
pletion to improve data reconstruction quality especially at high
frequencies where the conventional matrix completion method
performs poorly. In contrast to conventional low-rank matrix
factorization without weighting or with non-recurrent pairwise
weighting, our recursively weighted method performs better at
the high frequencies, especially at frequencies where the data
has the most energy. We also demonstrated the effectiveness
of our recursive recovery on real data. Future work will be to
extend the application of recursive weighted matrix comple-
tion to realistic size 3D seismic data reconstruction and also to
simultaneous source acquisition.
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