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ABSTRACT

Full subsurface extended image volumes (EIVs) contain abun-
dant information such as subsurface image gathers used in
imaging, interpretation of rock properties or velocity analysis,
but are expensive in term of computational cost and storage
requirement due to their large size. Yet, due to their redundant
information, monochromatic EIVs exhibit a low-rank structure
that allows us to get a good approximation at a computational
cost proportional to the rank k , while conventional techniques
require at least the number of sources. Such low-rank factorized
EIVs are computed thanks to the randomized singular values
decomposition (SVD) algorithm. However, recent develop-
ments on low-rank approximations of EIVs raise two major
questions. First, monochromatic EIVs rely on time-harmonic
wave equation solvers, which do not scale well to realistic 3D
models. Second, the rank of the monochromatic EIVs increases
with the frequency, which yields increasing computational costs
and storage. Here, we propose a construction approach based
on a time-domain finite-difference wave-equation solver with
time stepping, which is combined to power iteration schemes in
the randomized SVD algorithm to accelerate the decay of the
singular values. We compare the performances of simultaneous
iterations, block-Krylov iterations and the original randomized
SVD on the computation of the EIV for a small section of the
Marmousi model. Then, we show further results on the full
Marmousi model to validate our approach.

INTRODUCTION

Extended image volumes (EIVs) contain abundant subsurface
information, including arbitrary subsurface gathers that are
used not only for imaging, but also for the estimation of rock
properties and velocity analysis in complex geological areas
(Symes, 2008,Sava and Vasconcelos (2011)). Lots of compre-
hensive researches have been done to understand the behaviour
and imaging principles of these gathers (Sava and Vasconcelos,
2011,Symes (2008)), which are achieved by taking multidimen-
sional correlations of the source and receiver wavefields. With
a kinematically correct velocity model, the EIVs’ energy will
be mainly focused at zero offset. Migration-velocity analysis
schemes use this property by minimizing an objective func-
tion that focuses the energy at zero offset (Sava and Biondi,
2004,Shen and Symes (2008)). However, these methods are im-
peded by large storage and computational costs that scale with
the number of (horizontal) offsets and sources, respectively.
Aside from these costs, which can become very large, these
approaches almost exclusively work with horizontal subsurface
offsets, which renders them less effective in areas with large

geologic dips. In this latter situation, the practical compro-
mise of limiting the number of subsurface points and horizontal
subsurface-offset range may be inadequate.

van Leeuwen and Herrmann (2012) addressed the issue of EIVs’
computational costs by showing that the expensive combina-
tion of a source loop and explicit computation of the cross
correlation for each offset can be avoided by working with the
“double wave equation” via probing, which involves the evalua-
tion of only two partial differential equations (PDEs) for each
subsurface point. While this probing approach makes it com-
putationally feasible to compute full-subsurface offset EIV’s,
three computational bottlenecks remain. First, the computation
of each EIV involves a multi-dimensional convolution with the
data. While computationally cheaper, the cost associated with
this operation can still be significant. Da Silva et al. (2019)
addressed this issue by using a low-rank tensor factorization
technique with on-the-fly generation of shots. Second, the com-
putational cost of forming full EIVs scale with the number of
subsurface gridpoints, which is undesirable for most applica-
tions of EIVs. Third, so far this work was based on solutions of
the time-harmonic wave equation, which scales poorly to 3D.

To overcome the second issue, Kumar et al. (2018) proposed to
exploit the low-rank structure of monochromatic full subsurface
EIVs, which can by virtue of its inherent redundancy be shown
to have fast decaying singular values. To compute this low-
rank matrix factorization, they used the randomized singular
value decomposition (rSVD) introduced by Halko et al. (2011).
With this technique, they were able to factor the double wave
equation—i.e., EIVs for all subsurface points, in a low-rank
form at a computational cost (PDE solves + multi-dimensional
convolutions with the data) proportional to the rank k. Because
this rank is typically orders of magnitude smaller than the
number of gridpoints and shots, we arrive at a formulation that
is computationally feasible in terms of required storage, number
of data passes (= convolution with the data), and PDE solves.

While this formulation based on the rSVD allowed us to ma-
nipulate the “unmanageable” large construct of full-subsurface
offset gathers at all gridpoints, which is quadratic in the di-
mensionality of the image itself, two main challenges remain
namely the use of time-domain wave-equation solvers and slow
decay of singular values at the higher frequencies. We present
solutions for both of these, which in principle allows us to com-
pute subsurface-offset gathers at any (non-horizontal) offset
and to carry out velocity continuation based on the invariance
relationship presented by Kumar et al. (2018). Our construc-
tion is designed to scale to 3D. While we will incur one-time
costs to carry out the low-rank factorization, the fact that we
are low rank allows us to carry out subsequent manipulations,
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e.g. changing the velocity model, at costs that scale with the
rank instead of the number of shots.

The paper is organized as follows: First, we present the equation
for full EIVs and their low-rank representation using probing
techniques. Next, we propose the modified low-rank represen-
tation based on time-domain finite-difference wave-equation
solvers with time stepping. We then present our cost-effective
computation of the low-rank representation with rSVD and
power iterations. The latter allows us to deal with higher fre-
quencies. We conclude by comparing the performance of con-
ventional rSVD and power iteration schemes followed by an
example from the Marmousi model.

LOW-RANK REPRESENTATION OF EXTENDED IM-
AGE VOLUMES

Full subsurface extended image volumes

According to van Leeuwen et al. (2016), monochromatic ex-
tended image volumes (EIVs), containing subsurface offsets in
all directions, can be formed as the outer product between the
forward and adjoint wavefields:

E = H−∗PT
r DQ∗PsH−∗, (1)

where H denotes the time-harmonic discretized Helmholtz op-
erator. The matrix Q of size Ns ×Ns, with Ns the number
of shots, contains discretized spatial sources. The matrix D,
of size Nr×Ns with Nr the number of receivers, contains re-
flection data with monochromatic shot records collected in its
columns. Finally, the matrices Ps and Pr represent operators
that restrict the wavefield to the source and receiver locations,
respectively. We reserved the symbols T , ∗, and −∗ to matrix
transpose, conjugate transpose, and conjugate inverse.

Contrary to conventional subsurface-offset gathers, E contains
subsurface offsets in all directions. Given the fact that E is a
Nx×Nx matrix with Nx being the number of grid points makes
E an object impossible to form and manipulate explicitly.

Low-rank representation using probing techniques

Instead of working with E directly, we work with E in low-rank
factorized form (Kumar et al., 2018) that is accessible through
probing (van Leeuwen et al., 2017)—i.e., through matrix-free
actions of E on vectors that come at the cost of two wave-
equation solves each. They justify this approach by arguing
that the singular values of E decay fast (Kumar et al., 2018) (its
rank k is maximally ns) so E can be approximated accurately
by a rank k matrix.

As long as we have access to matrix-free actions of E and E∗,
there are several ways to compute low-rank factorized E. We
follow Kumar et al. (2018) and use the randomized SVD (rSVD)
proposed by (Halko et al., 2011) and described in Algorithm 1.
For a detailed explanation of this Algorithm, which costs 4k
PDE solves and data passes, we refer to Kumar et al. (2018).

Given the approximate low-rank factorization: E ≈ LR∗ we
have access to conventional zero-offset RTM images (see (Ku-

mar et al., 2018)), to common image points (CIPs), and to
images at different offsets.

Algorithm 1 Randomized SVD algorithm from (Halko et al.,
2011).
1. generate k random Gaussian vectors W = [w1, . . . ,wk]
2. Y = EW, Y ∈ CNx×k

3. [N,T] = qr(Y),N ∈ CNx×k

4. Z = E∗N,Z ∈ CNx×k

5. [U,S,V] = svd(Z∗), svd computes the top k singular vectors
6. set U← NU
7. L = V

√
S,R = U

√
S, here L and R are (Nx× k) matrices

8. E≈ Ẽ = LR∗

Low-rank factorization in the time domain

While the proposed randomized SVD based framework can
arguably circumvent the computational and memory bottleneck
for 3D seismic data, monochromatic wave-equation solves do
not scale well to 3D, which is problematic because step 2 and
4 of Algorithm 1 rely heavily on these solves. To address this
issue, we proprose to use time-domain finite differences wave-
equation based on the implementations provided by Devito
(Lange et al., 2016) to factorize E in its low-rank form. To
incorporate time-domain solvers in our low-rank factorization,
we probe with bandwidth limited vectors (white Gaussian noise
for each subsurface point convolved with the temporal source
waveform) as opposed to monochromatic Gaussian probing
vectors in step 2 and 4 of Algorithm 1. We then carry out the
multi-dimensional convolution with the data and the subsequent
factorization in the Fourier domain. While we incur the cost
of the Fourier transform, we are in this way able to use highly
optimized finite-difference kernels for our wave simulations.

Following this procedure, we solve steps 2 and 4 with a time-
domain solver. After Fourier transformation, we automatically
get all the monochromatic probed results along frequencies,
and we perform the sequent procedures of QR factorization and
SVD monochromatically to the probed results.

POWER ITERATIONS FOR RANDOMIZED SVD

Although the time domain wave equation solvers outwit the
computational limitations of solving the wave equations in 3D,
we still face the issue of extending the low-rank factorization
of EIV to higher frequencies. This is due to the increased spa-
tial wave number content at these higher frequencies. As a
result of that the singular values of EIVs decay more slowly at
higher frequencies and we need to use higher ranks k to get rea-
sonable quality EIVs. Unfortunately, this results in increasing
computational costs negate the premise of our low-rank rSVD
framework. To alleviate this problem, we propose to use power
iterations (Musco and Musco, 2015), which use the fact that
powers of EIV have faster decaying singular values while the
singular vectors remain the same. While implementation of
these power iterations increases the number of required wave
equation solves, we only incur these additional costs once since
the invariance relation will allow us to map the factors from
one velocity model to another through velocity continuation
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at a cost proportional to the rank k. We are now in a position
to control these size of k. We explain power-based rSVD as
below:

Algorithm 2 Simultaneous iteration
1. generate k random Gaussian vectors W = [w1, · · · ,wk]
2. given power q, K := (EE∗)qEW,K ∈ CNx×k

3. [N,T] = qr(K),N ∈ CNx×k

4. Z = E∗N,Z ∈ CNx×k

5. [U,S,V] = svd(Z∗), svd computes the top k singular vectors
6. set U← NU
7. L = V

√
S,R = U

√
S

8. E≈ Ẽ = LR∗

Compared to original rSVD (Algorithm 1), rSVD with power
iteration( Algorithm 2) (we mention as simultaneous iteration,
SI) involves powers of the form (EE∗)q. These terms come with
extra costs in wave equation solves and data paths because we
work with matrix-free products, and may also converge slowly
as a function of q (Musco and Musco, 2015). To overcome
this problem, we replace the expression for K in Algorithm 2
line 2 by K := [EW,(EE∗)EW, · · · ,(EE∗)qEW],K ∈ CNx×qk,
resulting a faster convergence of q2 as recently proposed by
Musco and Musco (2015).

NUMERICAL RESULTS

We now compare the performance of SI and BKI on the Mar-
mousi model, with 1100× 314 grid points respectively in x
and z dimensions, discretized by 10m× 10m. We consider
550 sources and receivers spreading over the model at depth
15m with 20m intervals. The data is generated by Born model-
ing trigged with Ricker wavelet centered at 23Hz. To analyse
the convergence of SI and BKI compared with rSVD, we first
save out one explicit toy EIV at 25Hz of one small section of
100×100 grid points from Marmousi model, shown in Figure 1.
The same exercise on the full Marmousi model would result into
a matrix of order 1012, which is too big to get stored explicitly.
Then we will compare different image gathers, e.g. RTM im-
ages and CIPs from the low-rank represented EIV of Marmousi,
recovered by the three algorithms: rSVD, SI and BKI.

As shown in Figure 1(c), both the singular values of the EIV for
the toy-example and of the corresponding data decay fast, the
former decaying even faster than the latter. We recover this EIV
with rSVD, SI and BKI with limited probing size r = 14, which
corresponds to recover 95% of the energy of the EIV. To avoid
the bias of randomness, we design statistical experiments to run
1000 times. In the experiment, we display the mean errors and
the observed error ranges with realization for the three methods
in Figure 2.

Figure 2 clearly shows that with r = 14, SI with q = 1 beats
rSVD with much lower mean error. The error range of the
former is narrower than that of the latter. And the realization
colorbar shows clearly how many times we observe the errors
in 1000 experiments. SI with q = 2 brings the error down a
little compared with q = 1, but not significantly with respect to
the additional required computational cost. BKI performs best

among these three methods, offering the lowest mean errors and
narrowest standard deviation. BKI with q = 1 works even better
than SI with q = 2. The increase of the power for BKI doesn’t
bring notable benefits since the mean errors don’t decrease
obviously.

Based on the above observations from Figure 2 we only run
power q up to 1 for SI and BKI for the Marmousi model. We
now consider the full model and set the probing size r = 25
to recover the EIV. We expect the images extracted from EIV
recovered by rSVD, shown in Figure 3(b) and Figure 4(b), con-
tain good quality of low frequency components but with noise
of high frequency components, compared to the corresponding
exact images shown in Figure 3(a) and Figure 4(a). This is
because the fixed probing size r = 25 is not large enough to
recover the EIVs of higher frequencies whose singular values
decay relatively slower. Figures 3(c) and 4(c) indicate that
the corresponding images recovered by SI have better quality
with higher frequency components recovered out than those of
rSVD. Figures 3(d) and 4(d) recovered by BKI are better than
those from SI. They demonstrate that BKI is the best for a fixed
probing size r.

a b

c d

Figure 1: (a) Smoothed toy model with 100×100 grid points,
cut from the Marmousi, labeled with physical distance and
depth. (b) EIV of this toy model at 25Hz. (c) singular values of
data at 25Hz. (d) Singular values of EIV and zoomed-in figure.

CONCLUSION

Exploiting the low-rank structure of monochromatic full subsur-
face EIVs enables us to obtain an accurate approximation of the
EIV at a reduced computational cost. This is possible by using
the randomized SVD algorithm. The resulting computational
cost is then proportional to the rank k, which is much smaller
than the number of shots or subsurface spatial grid points deter-
mining the cost of earlier techniques. However, this low-rank
approach based on the time-harmonic wave equation did not
prove will likely scale poorly in 3D. Therefore, we proposed
to develop a low-rank approach to compute EIV based on the
time-domain wave equation that involves all the frequencies at
once. We also explored power iteration schemes in the rSVD
algorithm, which accelerate the decay of the singular values
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Figure 2: Comparison of the three algorithms in the reconstruc-
tion of the EIV for the toy Marmousi model, with a probing
size of r = 14 and 1000 realizations.

a
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c

d

Figure 3: The RTM images formed from (a) the exact diagonal
of EIV, (b) EIV recovered by rSVD, (c) EIV recovered by SI
with q = 1, (d) EIV recovered by BKI with q = 1.

a
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d

Figure 4: The CIP images located at (3335m,435m), extracted
from (a) exact corresponding column of EIV, (b) EIV recovered
by rSVD, (c) EIV recovered by SI with q= 1, (d) EIV recovered
by BKI with q = 1.

without enlarging the rank k. We compared the performances
of simultaneous iterations (SI), block Krylov iterations (BKI)
and rSVD on a small section of the Marmousi model, and then
on the full model. Our results demonstrated that BKI proves
to give a more accurate approximation with reasonable com-
putational costs and storage requirements. We observed the
results on extracted components, such as RTM images and CIP
gathers, for the different variations of the iteration schemes.
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