
Event-driven workflows for large-scale seismic imaging in the cloud
Philipp A. Witte1, Mathias Louboutin1, Henryk Modzelewski2, Charles Jones3, James Selvage3 and Felix J. Herrmann1

1 Georgia Institute of Technology, Atlanta, U.S.A.
2 The University of British Columbia, Vancouver, Canada
3 Osokey Ltd., Henley-on-Thames, U.K.

SUMMARY

Cloud computing has seen a large rise in popularity in recent
years and is becoming a cost effective alternative to on-premise
computing, with theoretically unlimited scalability. However,
so far little progress has been made in adapting the cloud for
high performance computing (HPC) tasks, such as seismic
imaging and inversion. As the cloud does not provide the same
type of fast and reliable connections as conventional HPC clus-
ters, porting legacy codes developed for HPC environments to
the cloud is ineffective and misses out on an opportunity to
take advantage of new technologies presented by it. We present
a novel approach of bringing seismic imaging and inversion
workflows to the cloud, which does not rely on a traditional
HPC environment, but is based on serverless and event-driven
computations. Computational resources are assigned dynam-
ically in response to events, thus minimizing idle time and
providing resilience to hardware failures. We test our work-
flow on two large-scale imaging examples and demonstrate that
cost-effective HPC in the cloud is possible, but requires careful
reconsiderations of how to bring software to the cloud.

INTRODUCTION

Reverse-time migration (RTM) (Baysal et al., 1983; Whitmore,
1983) and least-squares reverse-time migration (LS-RTM) (e.g.
Valenciano, 2008) are among the most computationally chal-
lenging applications in scientific computing. RTM and LS-
RTM are both demanding in terms of the number of neces-
sary floating point operations for repeatedly solving large-scale
wave-equations, as well as in terms of the memory required for
storing the source wavefields. The traditional environment for
running realistically sized seismic imaging workflows are high-
performance computing (HPC) clusters, which are widely used
in both academia and the oil and gas industry (e.g. Araya-Polo
et al., 2009). However, due to the immense cost of acquiring
and maintaining HPC clusters, cloud computing, with its pay-
as-you-go pricing model and theoretically unlimited scalability,
has evolved as a possible alternative to the traditional approach
of HPC. Cloud computing and cloud services are already com-
monly used by many companies for hosting web content and
databases, and clients include major companies such as Netflix
or Philips. Increasingly, the customer list also includes compa-
nies from the O&G sector, such as Hess, Woodside, Shell or
GE Oil & Gas (Cus, 2019). According to case studies released
by Amazon Web Services (AWS), the companies are using
AWS for data storage and analytics, as well as marketing and
cybersecurity.

While the cloud is becoming increasingly popular for general
purpose computing tasks and data storage, it has so far fallen

short of offering scalable solutions for HPC (Mauch et al.,
2013). The straight-forward approach of connecting multiple
compute instances of a cloud provider into a (virtual) cluster
cannot offer the same stability, low latency and bandwidth as a
traditional HPC cluster (Jackson et al., 2010). However, cloud
computing offers a range of interesting novel technologies, such
as object storage, event-driven computations, ElastiCache and
spot pricing, which are not available in traditional HPC environ-
ments. These technologies offer new possibilities of addressing
cost, computational challenges and bottlenecks in HPC and
specifically seismic imaging, but they require a rethinking of
how to design the corresponding workflows and software stacks,
away from the classic client-server model.

In this work, we demonstrate a novel approach to HPC in
the cloud, in which we take advantage of the aforementioned
new technologies offered by cloud computing. Our workflow
is based on a serverless computing architecture and is imple-
mented on AWS, but the underlying programming model is
applicable to other cloud providers as well. The workflow is
generally usable for a variety of seismic imaging and inverse
problems, such as LS-RTM or full-waveform inversion (FWI).
We provide a general overview of the workflow and show its
application to two synthetic datasets.

WORKFLOW

We are interested in building workflows in the cloud for seismic
inverse problems, such as FWI and LS-RTM. Mathematically,
these problems correspond to solving optimization problems of
the following form:

minimize
m

Φ(m) =

ns∑
i=1

||F (m)i−di||22, (1)

where F (m)i is a linear or non-linear partial differential opera-
tor, such as the acoustic forward modeling operator or the lin-
earized Born scattering operator (e.g. Tarantola, 1984; Virieux
and Operto, 2009). The vector m denotes the unknown param-
eters such as a velocity model or a seismic image and di are
the observed shot records of the ith source location. Instances
of this problems such as FWI and LS-RTM are commonly ad-
dressed with gradient-based optimization algorithms such as
(stochastic) gradient descent, the nonlinear conjugate gradi-
ent method, (Gauss-) Newton methods or sparsity-promoting
techniques (e.g. Pratt, 1999; Herrmann, 2010). The algorithms
require that the gradient is computed for all (or a subset of) in-
dices of the objective function, which is followed by summing
the gradient parts and using it to update the model/image.

Conventionally, these steps are implemented as a single pro-
gram, in which the work intensive parts such as the gradient

computations are realized by distributing the workload to a
range of workers using shared or distributed memory paral-
lelism. Nodes or workers communicate via message passing
(e.g. MPI) and rely on low latency and that connections are not
interrupted within the duration of the program. These require-
ments pose a challenge in the cloud, where compute instances
are oftentimes physically distributed over various locations and
latency is several times larger than on HPC systems (Jackson
et al., 2010). Furthermore, when using spot pricing, which can
significantly reduce cost, instances are at risk of being shut
down with a two minute warning at any given time (Spo, 2019).

Rather than implementing our workflow for seismic inversion
as a single program which runs on a virtual cluster, we com-
pose our workflow of individual specialized AWS services.
The workflow is serverless in the sense that no user process
is required to stay alive during the entire execution time of
the program. Individual tasks of the workflow such as com-
puting or summing gradients are managed by AWS, including
the handling of resilience in case of hardware failures. The
basic structure of our workflow is implemented with AWS Step
Functions, which allow to compose different AWS services
into a serverless visual workflow (Figure 1). The design is
inspired by a high-throughput genomics workflow as described
in Friedman and Pizarro (2017). The workflow consists of an
iterative loop, in which we subsequently compute the gradient
of the objective function and update the optimization variable.
The Iterator and IsCountReached tasks keep track of the
iteration number and end the job after the final iteration number
has been processed.

Figure 1: Seismic inversion workflow using AWS Step Func-
tions.

Computing gradients

The most work intensive part of seismic imaging and inversion
workflows are the computation of the gradient of the objective
function. This task involves solving a forward wave-equation to
compute the predicted data and forward wavefields, as well as
solving an adjoint wave-equation to compute the gradient. The
gradient has to be computed for each source location, but the
process of computing (individual) gradients is embarrassingly
parallel.

AWS offers a service called AWS Batch that was exactly de-
signed for this task, i.e. for running massively parallel batch
computing jobs (Bat, 2019). The user submits individual jobs
(i.e. computing a single gradient) to a job queue, while AWS
Batch schedules the jobs and assigns the amount of computa-
tional resources for the duration required to run each job. As
such, Batch does not only handle the responsibilities of a classic
workload manager such as Slurm, but also chooses the opti-
mal instance type for each job, which defines the amount of
assigned storage, memory and number of CPUs. This flexibility
is one of the strong points of cloud computing, as it gives user
access to a wide range of instances that range from two core
instances with 4 GB of memory to instances with up to 96 cores
and 768 GB of memory.

AWS Batch runs individual jobs as Docker containers, which
requires users to containerize the code for computing a single
gradient as a Docker image. Generally, it is possible to add
modeling codes of any programming language to a Docker
container, but it is important to consider that user interfaces
for the cloud (e.g. for writing results to buckets) exist only for
high-level languages such as Python, but not for Fortran or
C. In our workflow, we use the Julia Devito Inversion frame-
work (JUDI) to compute individual gradients by solving the
corresponding forward and adjoint wave-equations (Witte and
Louboutin, 2018; Witte et al., 2019). JUDI is implemented
in the Julia programming language and consists of symbolic
operators and data containers that allow us to express modeling
operations and gradients for seismic inversion in terms of linear
algebra expression. For solving the underlying wave-equations,
the framework uses Devito, a domain-specific language com-
piler for automatic code generation (Louboutin et al., 2018a;
Luporini et al., 2018). Wave-equations in Devito are speci-
fied as symbolic Python expressions, from which optimized
finite difference stencil code in C is generated and just-in-time
compiled during run time.

In our workflow, AWS Batch is responsible for computing
gradients for separate shot locations and the resulting files
are stored as objects in AWS’ Simple Storage System (S3)
(Figure 2). Since the gradients still need to be summed, each
job also sends the filename of its result to a message queuing
system (SQS), which in turn automatically invokes the gradient
summation as soon as at least two files are available. The
Batch jobs for computing the gradients itself are triggered by
the ComputeGradient task in our Step Function workflow
(Figure 1) and the jobs are automatically submitted to the Batch
queue by an AWS Lambda function.

Figure 2: Parallel computation of the gradient of the objective
function using AWS Batch. The Batch job is invoked through
a Lambda function by the ComputeGradient task of the Step
Functions. The results are written to an S3 bucket and each file
name is send to an SQS queue. AWS Batch supports running
each job on single or multiple compute instances.

Gradient reduction

As AWS Batch is only designed to schedule and execute par-
allel jobs, but without the possibility to communicate between
jobs, the summation of the individual gradients has to be im-
plemented separately. For industry sized surveys, the number
of summable gradients is typically very large (up to 1e6 gra-
dients) and each gradient can be many gigabytes large. Since
AWS Batch does not necessarily launch all jobs at the same
time and the execution time per job may vary, results arrive
in the S3 bucket at different times. We take advantage of this
fact, by implementing an event-based gradient summation using
AWS Lambda functions – serverless tasks that are launched
in response to events. Each time a Batch worker computes a
gradient and sends the resulting filename to our SQS queue,
SQS triggers a Lambda function that reads up to 10 messages
(i.e. filenames) from the queue (Figure 3). The Lambda function
streams the files from S3, sums them and writes the summed
gradient back to the bucket. The new file name is then added
to the SQS queue and this process is repeated until all gra-
dients have been computed and summed into a single file, at
which point the Step Functions advance the workflow to the
UpdateVariable task. This event-based approach ensures
that the gradient reduction happens asynchronously (i.e. dur-
ing the gradient computation), as soon as at least two files are
available. Furthermore, the reduction happens in parallel, as
multiple Lambda functions can be invoked at the same time.

Variable update

Once all gradients have been summed into a single file, the
Step Functions progress the workflow to the subsequent task,
in which we update our image or velocity model according to
the update rule of a specific optimization algorithm. This can

Figure 3: Gradient reduction step: each gradient file name is
added to an SQS queue, which invokes Lambda functions that
sum up to 10 gradients at a time and write the new file to S3.
Lambda then sends the new file name back to the queue and the
process is repeated until all n gradients have been summed into
a single file.

range from simple updates using multiplications with scalars
(i.e. gradient descent), to more computationally demanding
updates such as sparsity promotion, applying constraints or
Gauss-Newton updates. Since Lambda functions are limited to
3 GB of memory and a maximum execution time of 15 minutes,
we use AWS Batch for the more compute-heavy image/variable
updates. The source code for the update is prepared as a Docker
image and launched by the Step Function as a single job. The
container reads the current image/model as well as the gradient
from S3, updates the variables and writes it back to the bucket,
which concludes a single iteration of our workflow.

NUMERICAL EXAMPLES

The workflow presented here is very general and can be applied
to various seismic or non-seismic inverse problems with high
compute and/or memory demands. The workflow can also be
used to perform RTM by executing only a single iteration and
omitting the variable update.

In our first numerical example, we use our workflow to per-
form RTM of the BP TTI 2007 dataset (Shah, 2007) (Figure
4 a). The model has a size of 78.7 by 11.3 km (12,596 by
1,801 grid points) and the dataset consists of 1641 marine shot
records. The workload of the Batch job for migrating the shot
records consists of 1641 individual jobs, which are submitted
to the Batch queue by the ComputeGradient task. We use a
pseudo-acoustic formulation of the acoustic TTI wave-equation
(Zhang et al., 2011), with forward and adjoint equations that are
implemented and solved with Devito (Louboutin et al., 2018b).

In this example, we demonstrate the possibility to use MPI-
based domain decomposition in combination with AWS Batch,
which is a feature that has been recently introduced by AWS.
Multi-instance batch jobs allow us to use cheaper instances with
less memory due to distributed memory parallelism. However,
the downside of this approach is that AWS does not support
spot pricing for multi-instance batch jobs, making this strat-

Figure 4: (a) RTM image of the BP TTI model. The cost for computing this example on AWS is around 420 $. (b) Final LS-RTM
image of the BP 2004 model after 20 iterations of the linearized Bregman method and using 200 random shots per iteration, which
corresponds to three passes through the data. With spot pricing, the total cost for computing this image is less than 120 $.

egy comparatively more expensive. An overview of the job
parameters, runtime and costs are provided in Table 1.

In our second example, we demonstrate an example of run-
ning an iterative imaging workflow using the BP Synthetic
2004 dataset (Billette and Brandsberg-Dahl, 2005) (Figure 4 b).
Specifically, we perform 20 iterations of a sparsity-promoting
LS-RTM workflow with shot subsampling, using the linearized
Bregman method (Cai et al., 2009). The model has a size of
67.4 by 11.9 km (10,789 by 1,911 grid points) and the dataset
contains 1348 shot records. Each iteration involves comput-
ing the gradient for a subset of 200 randomly selected shots
and updating the current image with curvelet-based sparsity-
promotion (Herrmann et al., 2015). In comparison to our pre-
vious example, we only use a single AWS instance for each
gradient computation, which allows us to use spot pricing. Even
though this increases the runtime per gradient, as we have to
use optimal checkpointing (Griewank and Walther, 2000), it
reduces the cost per data pass by a factor 3−4 in comparison
to on-demand pricing (Table 1).

CONCLUSIONS

Cloud-computing is a cost-effective alternative to conventional
HPC with theoretically unlimited scalability. However, due to
the fundamental differences of these computing environments,
researchers have to rethink the way of designing software for
HPC in the cloud, in a way that does not rely on the conventional
client-server model. We introduce a serverless, event-driven
workflow architecture, which makes use of AWS services to
handle scheduling, cost effective resource assignment and re-

BP TTI 2007 BP 2004

No. of shots 1641 1348
Instances/gradient 6 1
Instance type m5.xlarge r5.large
Runtime/gradient 13.5 minutes 45 minutes
On-demand price/

gradient
0.26 $ 0.0945 $

Spot price/gradient N/A 0.027 $
On-demand price/

data pass
425.35 $ 127.39 $

Spot price/data pass N/A 35.99 $

Table 1: Overview of the job parameters and the cost for running
our examples on AWS. The BP TTI example uses anisotropic
acoustic modeling, while the BP Synthetic 2004 example uses
isotropic modeling.

silience. Our event-driven approach ensures that resources are
only allocated as long as they are needed and that hardware fail-
ures and interruptions do not bring down the whole workflow.
We demonstrate that this allows us to run large-scale RTM and
LS-RTM examples on AWS at very competitive costs.

ACKNOWLEDGEMENTS

We would like to thank to Geert Wenes from Amazon Web
Services for his feedback and support. This research was carried
out as part of the SINBAD II project with the support of the
member organizations of the SINBAD Consortium.

REFERENCES

2019, AWS documentation: Aws Batch: https://docs.aws.
amazon.com/batch/latest/userguide/what-is-batch.html.

2019, AWS documentation: How spot instances work:
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/
how-spot-instances-work.html.

2019, AWS enterprise customer success stories: https://aws.
amazon.com/solutions/case-studies/enterprise.

Araya-Polo, M., F. Rubio, R. De la Cruz, M. Hanzich, J. M.
Cela, and D. P. Scarpazza, 2009, 3d seismic imaging through
reverse-time migration on homogeneous and heterogeneous
multi-core processors: Scientific Programming, 17, 185–
198.

Baysal, E., D. D. Kosloff, and J. W. C. Sherwood, 1983, Reverse
time migration: GEOPHYSICS, 48, 1514–1524.

Billette, F., and S. Brandsberg-Dahl, 2005, The 2004 BP ve-
locity benchmark., in 67th Annual International Meeting,
EAGE, Expanded Abstracts: EAGE, B035.

Cai, J.-F., S. Osher, and Z. Shen, 2009, Linearized Bregman
iterations for compressed sensing: Mathematics of Compu-
tation, 78, 1515–1536.

Friedman, A., and A. Pizarro, 2017, Building high-
throughput genomics batch workflows on AWS:
https://aws.amazon.com/blogs/compute/building-
high-throughput-genomics-batch-workflows-on-aws-
introduction-part-1-of-4/.

Griewank, A., and A. Walther, 2000, Algorithm 799: Revolve:
An implementation of checkpointing for the reverse or ad-
joint mode of computational differentiation: Association for
Computing Machinery (ACM) Transactions on Mathemati-
cal Software, 26, 19–45.

Herrmann, F. J., 2010, Randomized sampling and sparsity:
Getting more information from fewer samples: Geophysics,
75, WB173–WB187.

Herrmann, F. J., N. Tu, and E. Esser, 2015, Fast "online" mi-
gration with Compressive Sensing: 77th Conference and
Exhibition, EAGE, Expanded Abstracts.

Jackson, K. R., L. Ramakrishnan, K. Muriki, S. Canon, S.
Cholia, J. Shalf, H. J. Wasserman, and N. J. Wright, 2010,
Performance analysis of high performance computing ap-
plications on the amazon web services cloud: 2010 IEEE
second international conference on cloud computing tech-
nology and science, IEEE, 159–168.

Louboutin, M., M. Lange, F. Luporini, N. Kukreja, P. A. Witte,
F. J. Herrmann, P. Velesko, and G. J. Gorman, 2018a, De-
vito: An embedded domain-specific language for finite
differences and geophysical exploration: ArXiv preprints,
arXiv:1808.01995.

Louboutin, M., P. A. Witte, and F. J. Herrmann, 2018b, Effects
of wrong adjoints for RTM in TTI media: SEG Technical
Program Expanded Abstracts, 331–335. ((SEG, Anaheim)).

Luporini, F., M. Lange, M. Louboutin, N. Kukreja, J. Hückel-
heim, C. Yount, P. A. Witte, P. H. J. Kelly, G. J. Gorman,
and F. J. Herrmann, 2018, Architecture and performance of
Devito, a system for automated stencil computation.

Mauch, V., M. Kunze, and M. Hillenbrand, 2013, High per-
formance cloud computing: Future Generation Computer
Systems, 29, 1408 – 1416.

Pratt, R. G., 1999, Seismic waveform inversion in the frequency
domain, part 1: Theory and verification in a physical scale
model: Geophysics, 64, 888–901.

Shah, H., 2007, 2007 BP Anisotropic Velocity Bench-
mark: https://wiki.seg.org/wiki/2007_BP_Anisotropic_
Velocity_Benchmark.

Tarantola, A., 1984, Inversion of seismic reflection data in the
acoustic approximation: Geophysics, 49, 1259.

Valenciano, A. A., 2008, Imaging by wave-equation inversion:
PhD thesis, Stanford University.

Virieux, J., and S. Operto, 2009, An overview of full-waveform
inversion in exploration geophysics: GEOPHYSICS, 74,
WCC127–WCC152.

Whitmore, N. D., 1983, Iterative depth migration by backward
time propagation: 1983 SEG Annual Meeting, Expanded
Abstracts, 382–385.

Witte, P. A., and M. Louboutin, 2018, The Julia Devito Inver-
sion Framework (JUDI): https://github.com/slimgroup/JUDI.
jl.

Witte, P. A., M. Louboutin, F. Luporini, N. Kukreja, M. Lange,
G. J. Gorman, and F. J. Herrmann, 2019, A large-scale
framework for symbolic implementations of seismic inver-
sion algorithms in Julia: Geophysics, 84, A31 – V183.

Zhang, Y., H. Zhang, and G. Zhang, 2011, A stable TTI reverse
time migration and its implementation: Geophysics, 76,
WA3–WA11.

https://docs.aws.amazon.com/batch/latest/userguide/what-is-batch.html
https://docs.aws.amazon.com/batch/latest/userguide/what-is-batch.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/how-spot-instances-work.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/how-spot-instances-work.html
https://aws.amazon.com/solutions/case-studies/enterprise
https://aws.amazon.com/solutions/case-studies/enterprise
https://aws.amazon.com/blogs/compute/building-high-throughput-genomics-batch-workflows-on-aws-introduction-part-1-of-4/
https://aws.amazon.com/blogs/compute/building-high-throughput-genomics-batch-workflows-on-aws-introduction-part-1-of-4/
https://aws.amazon.com/blogs/compute/building-high-throughput-genomics-batch-workflows-on-aws-introduction-part-1-of-4/
https://wiki.seg.org/wiki/2007_BP_Anisotropic_Velocity_Benchmark
https://wiki.seg.org/wiki/2007_BP_Anisotropic_Velocity_Benchmark
https://github.com/slimgroup/JUDI.jl
https://github.com/slimgroup/JUDI.jl

