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Surface-related multiple elimination

Prediction and subtraction problem

» SRME

Inverse problem w/ primary reflections as unknowns
» EPSI

Both are computationally expensive, especially in 3D




Questions to investigate

Can we approximate the action of EPSI and SMRE via CNNs?

Supervised learning: What should be input/output pairs for training CNNs?

Can CNNs handle the intricacies of field data?

Can the trained CNN be applied to data from another seismic survey?
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Hornik, K., M. Stinchcombe, and H. White, 1989, Multilayer feedforward networks are universal approximators: Neural networks, 2,
359-366.

Approximating EPSI w/ CNNs

EPSI and SRME algorithms can be considered as functions such that,

» they “map” data with multiples, to predicted primaries.

Answer:

» in theory, yes
P universal approximation theory: NNs can approximate any continuous
function defined on a compact subspace, with arbitrary precision




Nelson field data set

After exploiting reciprocity and applying near-offset
interpolation:

» 401 shot records

» Each shot, 401 traces

» 1024 time samples per trace

» Time sampling interval: 4 ms

» Source/receivers spacing: 12.5 m
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Multiple elimination w/ EPSI
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Questions to investigate

Can we approximate the action of EPSI and SMRE via CNNs?

Supervised learning: What should be input/output pairs for training CNNs?

Can CNNs handle the intricacies of field data?

Can the trained CNN be applied to data from another seismic survey?



Questions to investigate

2. Supervised learning: What should be input/output pairs for training CNNs?

3. Can CNNs handle the intricacies of field data?

Answer:

» We conduct two experiments w/ different input/output pairs to train CNN
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Training: Input/output pairs of CNN

Experiment 1:
» Input: shot records w/ multiples
» Output: predicted primaries by EPSI

Experiment 2:

» Input: shot records w/ multiples and a relatively poor prediction of the multiples
» Output: predicted primaries and multiples by EPSI

201 shot locations for training, by picking every other shot location.

Data augmentation by flipping the shot records with respect to the offset axis.



Mao X, Li Q, Xie H, Lau RY, Wang Z, Paul Smolley S. Least squares generative adversarial networks. In Proceedings of the IEEE International
Conference on Computer Vision 2017, pages 2794-2802.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros. Image-to-Image Translation with Conditional Adversarial Networks. In The
|IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 5967-5976, July 2017.

Training framework: GANs

min B [(1=Dy(Gs(x) + AGs(x) — vl ]
0 x~px(x), y~py () , ,

min B [(Dy(@x)” +(1-Dy(y)’].
¢ x~px(x), y~py(y)

{X, ¥} Input/output pairs, drawn from the probability distributions pX(X) and py(y)
Gp(x) Generator

ng Discriminator

gl-norm misfit term weighted by )\ ensures that each realization of gg(x) maps to a particulary, i.e, X — ¥y

rather than solely fooling the discriminator.
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He, K., X. Zhang, S. Ren, and J. Sun, 2016, Deep Residual Learning for Image Recognition: The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 770- 778.

CNN architecture

Generator: modified CNN architecture introduced by Quan et al. (2016)

» 16 blocks, including eight encoding and eight decoding blocks
» Encoding blocks: a Residual Block (He et al., 2016), and a convolutional layer with stride two
» Decoding blocks: a Residual Block and a transposed convolutional layer with stride two

» Fori=1,2, ..., 7, the output of i"th block is concatenated with the output of (15-i)’th block

Discriminator: PatchGAN classifier (Isola et al. (2017))
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Multiple elimination - Experiment 1
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Results on test data - Experiment 1
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Multiple elimination w/ EPSI
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Multiple elimination - Experiment 2
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Results on test data - Experiment 2
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Multiple elimination w/ EPSI
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EPSI vs Experiment 1 - 150 m offset trace
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EPSI vs Experiment 2 - 150 m offset trace
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Questions to investigate

21

Can we approximate the action of EPSI and SMRE via CNNs?

Supervised learning: What should be input/output pairs for training CNNs?

Can CNNs handle the intricacies of field data?

Can the trained CNN be applied to data from another seismic survey?
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Does it generalize?

CNNs maintain the quality of performance if,
» data from new survey is drawn from the same distribution as training data

Challenging, because of the Earth's heterogeneity and differing acquisition settings

Siahkoohi et al. (2019) demonstrate that transfer learning can be used to finetune

a pre-trained network to the pertinent survey
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Does it generalize?
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To mimic this situation,
» we train on shots in first half of the seismic line, and
P we test on the rest fo the seismic line

» i.e., non-overlapping

To add variety to training data, we include flipped shot records w/ respect to

offset axis during training




Experiment 2 - overlapping vs non-overlapping
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Experiment 2 - non-overlapping train/test set
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Multiple elimination w/ EPSI
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EPSI vs Experiment 2 - non-overlapping
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EPSI vs Experiment 2 - overlapping
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Conclusions

Providing the CNN with a relatively cheap prediction of multiples leads to better
results

CNNs are able to approximate the action of EPSI while preserving the intricate

details in field data

The CNN generalized, to some extent, we we used non-overlapping

training/testing sets

Future directions: Pre-training a CNN on neighbouring survey + finetuning with

small percentage of processed data from pertinent survey
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