Deep-learning based ocean bottom seismic wavefield recovery

Ali Siahkoohi, Rajiv Kumar, and Felix J. Herrmann
Problem setup

Ocean bottom node (OBN) geometry:

- assume a desirable source sampling, via (simultaneous-source) randomized marine acquisition
- very sparse receivers scattered throughout the ocean bottom, **but** on a grid

Objective:

Reconstruct the information in the missing receivers
Why a neural net?

Most of previous methods rely on linear mathematical models:
► superposition of prototype waveforms from a fixed or learned dictionary or in terms of a matrix factorizations
► Particularly, matrix completion can be considered as a two-layer linear neural net

Using a nonlinear neural net, we find an implicit deep factorization
A supervised learning technique for wavefield reconstruction that does not need any external training data

i.e., training data is extracted from the acquired data
Seismic data in a 3D survey

Seismic data is 5D:

\[(t, \text{Src} \, x, \text{Src} \, y, \text{Rec} \, x, \text{Rec} \, y)\]

Taking Fourier transfer w.r.t. time:

\[(\omega, \text{Src} \, x, \text{Src} \, y, \text{Rec} \, x, \text{Rec} \, y)\]

Monochromatic seismic data is 4D:

\[(\text{Src} \, x, \text{Src} \, y, \text{Rec} \, x, \text{Rec} \, y)\]
Matricization of monochromatic seismic data

Our framework operators on monochromatic frequency slices

Two choices for matricization of monochromatic seismic data

- $\text{Rec } x, \text{Rec } y \times \text{Src } x, \text{Src } y$
- $\text{Rec } y, \text{Src } y \times \text{Rec } x, \text{Src } x$
Fully-sampled data
$(\text{Rec}_y, \text{Src}_y) \times (\text{Rec}_x, \text{Src}_x)$ domain
Observed data – Sampling rate 10%
(Rec \(y, \) Src \(y\)) \(\times\) (Rec \(x,\) Src \(x\)) domain
Fully-sampled data
\((\text{Rec} \, x, \, \text{Rec} \, y) \times (\text{Src} \, x, \, \text{Src} \, y)\) domain
Observed data – Sampling rate 10%
\((\text{Rec } x, \text{ Rec } y) \times (\text{Src } x, \text{ Src } y)\) domain
Objective: Recovering missing receivers

Observed data - Sampling rate: 10% - Frequency: 10Hz

Reconstructed data - SNR: 23.46 dB
Proposed method

0. Pre-train a neural network (more on this soon. For now, assume we have this)

1. Extract single-source frequency slices
 i.e., columns of \((\text{Rec } x, \text{ Rec } y) \times (\text{Src } x, \text{ Src } y)\)

2. Reconstruct the missing values by feeding the extracted slices to the pre-trained neural network
Proposed method:
Step 1: Extract and reshape
Proposed method:
Step 2: Reconstruction via the pre-trained neural net

g_{θ^*} is the pre-trained neural net.
Pre-training a neural net: Training data

Problem:

► we need training data pairs, i.e., subsampled and fully-sampled frequency slices

Solution:

► extract fully-sampled single-receiver frequency slices and subsample them with an arbitrary training mask

Underlying assumption:

► source-receiver reciprocity holds + dense source sampling
Steps to Extract training pairs

1. Extract and reshape single-receiver slices for existing receivers (fully sampled rows in \((\text{Rec } x, \text{ Rec } y) \times (\text{Src } x, \text{ Src } y)\) domain)
 - as many slices as recording receivers we have in the field
 - desired output of the network during training

2. Choose a training mask

3. Apply the training mask to artificially subsampled extracted single-receiver slices
 - input of the network during training
Training data: fully-sampled slices

Extract single-receiver slices for existing receivers, i.e., from acquired data
Training data: subsampled slices

What about the the input for supervised learning?

\[G_\theta \]
Steps to Extract training pairs

1. Extract and reshape single-receiver slices for existing receivers (fully sampled rows in $(\text{Rec } x, \text{ Rec } y) \times (\text{Src } x, \text{ Src } y)$ domain)
 - as many slices as recording receivers we have in the field
 - desired output of the network during training

2. Choose a training mask

3. Apply the training mask to artificially subsampled extracted single-receiver slices
 - input of the network during training
Training data: subsampled slices

Arbitrarily subsample the extracted fully-sampled slice with a training mask.
Choosing training mask?

Reminder: The objective is to fill-in the columns

Observed data - Sampling rate: 10% - Frequency: 10Hz

- Source x, Source y

Reshape

- Partial measurements (10% sampling)

Graph

- Grid showing partial measurements with color coding for in-line and cross-line direction (m)
Training mask

We are free in choosing the training mask for artificial subsampling.

We choose a random training mask equal to the randomly missing receiver sampling mask.

► we know the missing pattern of receivers

Our experiments show that a random training mask is essential for successful wavefield recovery, even when receivers are on a periodic grid.
We use Generative Adversarial Networks (GANs) (Goodfellow et al., 2014)

GANs are based on an adversarial training procedure, i.e. involves two networks:
- Generator: is trained to reconstruct the artificially subsampled single-receiver slices
- Discriminator: is trained to distinguish between true single-receiver slices and reconstructed slices

We use a ResNet (He et al., 2016) based architecture for Generator and a fully-convolutional CNN with down-sampling for Discriminator.
Training framework: GANs

\[
\begin{align*}
\min_{\theta} \quad & \mathbb{E}_{x \sim p_X(x), y \sim p_Y(y)} \left[(1 - D_\phi(G_\theta(x)))^2 + \lambda \| G_\theta(x) - y \|_1 \right], \\
\min_{\phi} \quad & \mathbb{E}_{x \sim p_X(x), y \sim p_Y(y)} \left[(D_\phi(G_\theta(x)))^2 + (1 - D_\phi(y))^2 \right].
\end{align*}
\]

\{x, y\} \quad \text{Input/output pairs, drawn from the probability distributions } p_X(x) \text{ and } p_Y(y) \\
G_\theta(x) \quad \text{Generator} \\
D_\phi \quad \text{Discriminator}

\ell_1\text{-norm misfit term weighted by } \lambda \text{ ensures that each realization of } G_\theta(x) \text{ maps to a particular } y, \text{i.e., } x \mapsto y \text{ rather than solely fooling the discriminator.}
Testing Stage: reconstruction

Extract all the single-source slices (columns)
Testing Stage: reconstruction
Apply the trained neural network to all columns
Desirable source sampling, i.e., finely sampled sources

Source-receiver reciprocity holds under certain conditions

We hope Convolutional Neural Networks to perform well on testing data, i.e., reciprocal frequency slices

does not need any external training data
Dataset

Numerically simulated data on 3D BG Compass model
► 172×172 2D periodic grid of sources
► 172×172 2D periodic grid of receivers
► 25 m spatial sampling in both horizontal directions
► strong vertical and lateral variations

We processed the data for imaging by muting direct/turning waves
Numerical experiments

Applied to 3, 5, 10, and 15 Hz monochromatic data:

- missing 90% of receivers, randomly
- missing 90% of receivers, periodically

Training mask:

- experiments show that using a periodic training mask degrades the results
- for both cases (random and periodic), we train a single neural net using a random training mask
Fully-sampled data - 10 Hz
Observed data – Sampling rate 10%, randomly
Recovered data - 10 Hz - random case
\((\text{Rec } y, \text{ Src } y) \times (\text{Rec } x, \text{ Src } x)\) domain

Reconstructed data - SNR: 23.46 dB

Reconstruction error
Observed data – Sampling rate 10%, periodically
Recovered data - 10 Hz - periodic case
\((\text{Rec } y, \text{ Src } y) \times (\text{Rec } x, \text{ Src } x)\) domain

Reconstructed data - SNR: 20.83 \(\text{dB}\)

Reconstruction error
Fully-sampled data - 15 Hz
Observed data – Sampling rate 10%, randomly

Observed data - Sampling rate: 10% - Frequency: 15Hz

Receiver y, Source y

Receiver x, Source x

Observed data - Sampling rate: 10% - Frequency: 15Hz

Receiver x, Receiver y

Source x, Source y
Recovered data - 15 Hz - random case
(Rec y, Src y) × (Rec x, Src x) domain

Reconstructed data - SNR: 17.32 dB

Reconstruction error
Observed data – Sampling rate 10%, periodically

Observed data - Sampling rate: 10% - Frequency: 15Hz

Observed data - Sampling rate: 10% - Frequency: 15Hz
Recovered data - 15 Hz - periodic case
\((\text{Rec } y, \text{ Src } y) \times (\text{Rec } x, \text{ Src } x)\) domain

Reconstructed data - SNR: 9.12 dB

Reconstruction error
Reconstruction quality

<table>
<thead>
<tr>
<th>Sampling mask</th>
<th>Frequency</th>
<th>Average recovery SNR</th>
</tr>
</thead>
<tbody>
<tr>
<td>random</td>
<td>3 Hz</td>
<td>32.66 dB</td>
</tr>
<tr>
<td>random</td>
<td>5 Hz</td>
<td>29.07 dB</td>
</tr>
<tr>
<td>random</td>
<td>10 Hz</td>
<td>23.46 dB</td>
</tr>
<tr>
<td>random</td>
<td>15 Hz</td>
<td>17.31 dB</td>
</tr>
<tr>
<td>periodic</td>
<td>3 Hz</td>
<td>32.17 dB</td>
</tr>
<tr>
<td>periodic</td>
<td>5 Hz</td>
<td>28.32 dB</td>
</tr>
<tr>
<td>periodic</td>
<td>10 Hz</td>
<td>20.82 dB</td>
</tr>
<tr>
<td>periodic</td>
<td>15 Hz</td>
<td>9.12 dB</td>
</tr>
</tbody>
</table>

Table 1: Average reconstruction SNR for 90% random/periodic missing receivers.
Proposed method

vs

matrix completion method
Conclusions

The method does not need any external training data, assuming:

- source-receiver reciprocity
- desirable source sampling

Experiments show that random training mask is beneficial for recovery:

- missing either randomly, or periodically

Future work: perform FWI with data obtained by reconstructing low-frequency spectrum of the observed data.