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PDE-constrained optimization

Vectors:

data

source

model

wavefield

Operators:

wave equation

receiver restriction
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PDE-constrained optimization (all-at-once full-space)

[Haber, E., and Ascher, U. M., 2001; Biros, G., and Ghattas, O., 2005; Grote et al, 2011]

Pros:
cheap evaluation and gradient computation (no need for PDE solution)

Cons:
 need simultaneous storage of wavefields and multipliers
   (for each source and time/frequency sample)
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PDE-constrained optimization (reduced space)

[Tarantola, A., ‘84; Haber, E., et al, 2000; Epanomeritakis, I., et al, 2008]

Pros:
no simultaneous wavefield storage for all sources and frequencies (compute 

and discard)

Cons:
 highly non-convex (needs good starting model)
 requires exact PDE solutions (prohibitive in 3D for frequency domain)
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PDE-constrained optimization (penalty method)

[van den Berg, P. M., and Kleinman, R. E., 1997; van Leeuwen, T. and Herrmann, F. J., 2013]

PDE penalty
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PDE-constrained optimization (WRI)

[van Leeuwen, T. and Herrmann, F. J., 2013]

Pros:
no simultaneous wavefield storage for all sources and frequencies 

(compute and discard)

Cons:
 needs augmented PDE solution

frequency domain: does not effectively scale to 3D
time domain:           no explicit time-marching scheme

augmented wave equation
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Early attempt to circumvent WRI shortcomings

augmented wave equation

 [Wang et al, 2016, Huang et al, 2018]:

Variable projection approximation:
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Denoising reformulation of WRI

[Wang, R., and Herrmann, F. J., 2017]

data constraintPDE misfit
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Dual formulation of WRI - Lagrangian

Saddle-point problem:

data constraintPDE misfit
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Dual formulation of WRI – Augmented wave equation

Solving for u ...

augmented wave equation

Saddle-point problem:
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Dual formulation of WRI – Objective and gradients

Dual saddle-point formulation (= after u substitution):

Gradients:

generalized-source data residual
+ relaxation term

similar to conventional FWI gradient
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Dual formulation of WRI (recap)

Obtained model extension along data space:

Pros:
 amenable to time-domain methods
 extra variable storage is affordable

Cons:
 extra time complexity (2x PDE solutions wrt FWI)
 non trivial optimization strategy

Dual saddle-point formulation:
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Other issues (1): Dual variable scaling

unbalanced contributions of physical and augmented sources

Dual saddle-point formulation:
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Other issues (1): Dual variable scaling

Solving for the scaling parameter...
r: data residual

(variable projection!)

Dual saddle-point formulation:
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Dual saddle-point formulation (scaled):

Other issues (1): Dual variable scaling

Gradients:
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Other issues (2): Optimization strategy

Theoretical/numerical studies evidence:

 alternating update approach: ineffective
 variable projection for y (fixed m) = WRI: expensive
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Other issues (2): Optimization strategy

To avoid non-linear 
system in y

Theoretical/numerical studies evidence:

 alternating update approach: ineffective
 variable projection for y (fixed m) = WRI: expensive
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Other issues (2): Optimization strategy

Theoretical/numerical studies evidence:

y ≈ r data residual cheap approximation of the optimal y

Reduced formulation:

Gradient:

See also
[van Leeuwen, 2019]



19

Other issues (2): Optimization strategy

Theoretical/numerical studies evidence:

y ≈ r data residual cheap approximation of the optimal y
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Other issues (2): Optimization strategy

Theoretical/numerical studies evidence:
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Other issues (3): Weighted PDE misfit

Yet another important theme!

 prior information about source position: weighted PDE misfit ([Huang et al, 2018]):
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Other issues (3): Weighted PDE misfit

Yet another important theme!

 prior information about source position: weighted PDE misfit ([Huang et al, 2018]):
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Other issues (3): Weighted PDE misfit

(alternatively)

Yet another important theme!

 prior information about source position: weighted PDE misfit ([Huang et al, 2018]):
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Other issues (3): Weighted PDE misfit

similarly to [Sharan et al, 2019]

Yet another important theme!

 prior information about source position: weighted PDE misfit ([Huang et al, 2018]):
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Numerical examples

Caveat:

inversion experiments carried out in the frequency domain:
 computational convenience
 fair comparison with conventional WRI (only feasible in frequency domain)
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Numerical examples – Gaussian lens [Huang et al, 2018]

Source/receiver configuration: 50 sources (top), 200 receivers (bottom)

Optimization strategy: Single frequency (6 Hz, wavelength ~ 333 m), Algorithm: L-BFGS (20 iters)
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Numerical examples – Gaussian lens [Huang et al, 2018]

Source/receiver configuration: 50 sources (top), 200 receivers (bottom)

Optimization strategy: Single frequency (6 Hz, wavelength ~ 333 m), Algorithm: L-BFGS (20 iters)



31

Numerical examples – Gaussian lens [Huang et al, 2018]

Source/receiver configuration: 50 sources (top), 200 receivers (bottom)

Optimization strategy: Single frequency (6 Hz, wavelength ~ 333 m), Algorithm: L-BFGS (20 iters)
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Numerical examples – BG Compass model

Source/receiver configuration: 50 sources, ~ 300 receivers

Optimization strategy: Multiscale, frequency range: 5 Hz to 14 Hz [2 sweeps], Algorithm: L-BFGS (10 iters)
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Numerical examples – BG Compass model
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Numerical examples – BG Compass model

Source/receiver configuration: 50 sources, ~ 300 receivers

Optimization strategy: Multiscale, frequency range: 5 Hz to 14 Hz [2 sweeps], Algorithm: L-BFGS (10 iters)
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Numerical examples – BG Compass model

Source/receiver configuration: 50 sources, ~ 300 receivers

Optimization strategy: Multiscale, frequency range: 5 Hz to 14 Hz [2 sweeps], Algorithm: L-BFGS (10 iters)
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Numerical examples – Marmousi model

Source/receiver configuration: 100 sources, ~ 850 receivers

Optimization strategy: Multiscale, frequency range: 3 Hz to 14 Hz [2 sweeps], Algorithm: L-BFGS (10 iters)
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Numerical examples – Marmousi model

Source/receiver configuration: 100 sources, ~ 850 receivers

Optimization strategy: Multiscale, frequency range: 3 Hz to 14 Hz [2 sweeps], Algorithm: L-BFGS (10 iters)
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Numerical examples – Marmousi model
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Numerical examples – Marmousi model

Source/receiver configuration: 100 sources, ~ 850 receivers

Optimization strategy: Multiscale, frequency range: 3 Hz to 14 Hz [2 sweeps], Algorithm: L-BFGS (10 iters)



41

Conclusions and road ahead

Reconstruction algorithm potentially apt to large 3D problems:

based on “partial” projection of slack variables
computational properties: can scale to 3D (unlike WRI!), but 2X FWI
 reconstruction quality: more robust to local minima wrt FWI, but inferior 

results compared to WRI

What’s next:

  time-domain implementation (almost ready)
  TTI acoustic (M. Louboutin)
  implement constraints, checkpointing, …
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Time-domain implementation details: Devito/JUDI

Devito:

domain specific language for stencil-based finite-difference C code generation 
for PDEs w/ explicit time stepping in Python using SymPy

https://www.devitoproject.org

JUDI:

Julia Devito inversion framework: Julia package based on Devito, high-level 
abstraction of the linear algebra involved in FWI, WRI, … (data vectors, 
restriction/injection operators, wave equation solution, forward modeling 
Jacobian and relative adjoint, …)

https://github.com/slimgroup/JUDI.jl

[Luporini et al., 2018; Louboutin et al., 2018]

[Witte et al., 2019]

https://www.devitoproject.org/
https://github.com/slimgroup/JUDI.jl
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Open source frequency-domain implementation

Frequency-domain implementation in Julia:

https://github.com/slimgroup/Software.rizzuti2019SEGadf
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