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ABSTRACT

We illustrate a dual formulation for full-waveform inversion
potentially apt to large 3-D problems. It is based on the opti-
mization of the wave equation compliance, under the constraint
of data misfit not exceeding a prescribed noise level. In the La-
grangian formulation, model and wavefield state variables are
complemented with multipliers having the same dimension of
data (“dual data” variables). Analogously to classical wavefield
reconstruction inversion, the wavefield unknowns can be pro-
jected out in closed form, by solving a version of the augmented
wave equation. This leads to a saddle-point problem whose vari-
ables are only model and dual data. As such, this formulation
represents a model extension, and is potentially robust against
local minima. The classical downsides of model extension
methods and wavefield reconstruction inversion are here effec-
tively mitigated: storage of the dual variables is affordable, the
augmented wave equation is amenable to time-marching finite-
difference schemes, and no continuation strategy for penalty
parameters is needed, with the prospect of 3-D applications.

INTRODUCTION

Full-Waveform Inversion (FWI) can be cast as a constrained
optimization problem:

min
m,u

1
2
||d−Ru||2 subject to A(m)u = q. (1)

We aim at the optimal least-squares data misfit under the wave-
equation constraint (Biros and Ghattas, 2005; Grote et al., 2011;
van Leeuwen and Herrmann, 2013; Peters et al., 2014). Here,
the unknowns are represented by m, collecting model parame-
ters (e.g., the acoustic squared slowness), and u, the pressure
wavefield defined for every source and time or frequency. The
operator R restricts u to the receiver positions, where it is com-
pared to the collected data d. The wave equation is summarized
by the linear operator A(m) (dependent on m) and right hand
sides q (typically point sources).

The traditional approach to the problem in eq. (1) is based on
the exact solution of the wave equation:

A(m)u = q, (2)

which leads to the reduced FWI objective

min
m

1
2
||d−F(m)q||2, F(m) = RA(m)−1 (3)

(Tarantola and Valette, 1982). Computationally, the fundamen-
tal challenge for FWI is the need for efficient solvers for the
wave equation (2). For large problems, time-domain solvers
currently scale better than their frequency-domain counterparts

when explicit time-marching schemes are employed (perfor-
mances are comparable only when abundant compute cores are
available, Knibbe et al., 2016). Also, note that the evaluation
and gradient computation for the objective in eq. (3) do not
require the solution wavefields to be stored for every source
and time/frequency (e.g., see for a checkpointing strategy in
time domain Symes, 2007). Time-domain FWI has been proven
feasible for industrial-scale 3-D applications.

A notorious issue with FWI is its liability to local minima
(Virieux and Operto, 2009). Recently, many model extension
methods have been proposed as a way to circumvent the prob-
lem, by complementing the model parameter search space with
physically/mathematically-motivated dummy variables in order
to achieve better data fit. At the same time, the consistency
with the original problem need be promoted with ad-hoc reg-
ularization (Symes, 2008; Biondi and Almomin, 2014; van
Leeuwen and Herrmann, 2013; Warner and Guasch, 2016; Wu
and Alkhalifah, 2015; Huang et al., 2017; Aghamiry et al.,
2019). The space extension, however, must be chosen carefully
in order to control the well-posedness of the problem, and the
memory footprint needed to store the additional variables.

An instance of these methods particularly relevant for this work
is based on the Lagrangian formulation of eq. (1):

max
v

min
m,u

1
2
||d−Ru||2 + 〈v,q−A(m)u〉 (4)

(〈·, ·〉 denoting the Euclidean inner product). The multipliers v
belong to the same functional space as the wavefields u. Fur-
thermore, the evaluation and gradient computation in eq. (4)
do not require the solution of the wave equation (Haber et al.,
2000). However, the storage of wavefields and dual variables
for every source and time sample/frequency is unfeasible in
3-D (in the order of petabytes for a model of 10003 grid points
and data acquired in time domain with sparse source coverage).

The penalty method approach allows to avoid the multiplier
estimation by substituting v = λ 2 (q−A(m)u)/2 in eq. (4),
given a certain weight λ , yielding

min
m,u

1
2
||d−Ru||2 + λ 2

2
||q−A(m)u||2 (5)

(van den Berg and Kleinman, 1997; van Leeuwen and Her-
rmann, 2013). This comes at the cost of perturbing the original
problem, and a rigorous solution should involve a continuation
strategy for λ → ∞. In the Wavefield Reconstruction Inversion
scheme (WRI, van Leeuwen and Herrmann, 2013), a variable
projection scheme is employed (Golub and Pereyra, 2003),
which leads to the augmented wave equation:[

R
λA(m)

]
ū =

[
d

λq

]
, (6)



to be solved in a minimum-norm sense. Although this proce-
dure eliminates the need for simultaneous wavefield storage, it
requires the solution of a wave-equation related system which
is not easily tractable in the time domain (but refer to Wang
et al., 2016, for a workaround), and does not scale better than
the conventional wave equation in frequency domain (although,
see van Leeuwen and Herrmann, 2014; Peters et al., 2015).

In this paper, we are interested in combining a model-extension
approach, in order to leverage on local search optimization
schemes with a mitigated risk against spurious minima, and the
computational convenience of reduced approaches, especially
with respect to the availability of time-marching solvers for
the wave equation (or augmented version thereof). The model
extension need be feasible, i.e. the additional variables should
easily fit in memory.

THEORY

Our proposal starts from the denoising version of eq. (1), based
on a data-misfit constraint (Wang and Herrmann, 2017):

min
m,u

1
2
||q−A(m)u||2 s.t. ||d−Ru|| ≤ ε. (7)

Here, ε is a given noise level. Analogously to eq. (4), the
associated Lagrangian problem is

max
y

min
m,u

L (m,u,y),

L (m,u,y) =
1
2
||q−A(m)u||2 + 〈y,d−Ru〉− ε||y||.

(8)

It can be verified that maxy 〈y,d−Ru〉− ε||y|| is the indicator
function on the constraint set Cε = {d : ||d−Ru|| ≤ ε}.

The wavefield variables u are eliminated from eq. (8) by solving
the following augmented wave equation:

A(m) ū = q+F(m)∗ y (9)

(∗ denotes the adjoint operator). Here, the backpropagated dual
data y acts as an additional volumetric source for ū. The choice
y = 0 restores the conventional wave equation.

Substituting the expression in eq. (9) in eq. (8) leads to the
reduced saddle-point problem:

max
y

min
m

L̄ (m,y),

L̄ (m,y) =−1
2
||F(m)∗ y||2 + 〈y,d−F(m)q〉− ε||y||.

(10)

The gradients of L̄ with respect to m and y, when y 6= 0, are:

∇mL̄ =−DF [m,q+F(m)∗ y]∗ y,
∇yL̄ = d−F(m)(q+F(m)∗ y)− ε y/||y||.

(11)

When y = 0, a subgradient of L̄ is ∇yL̄ = d−F(m)q. Here
DF [m, f] denotes the Jacobian of the forward map F(m) f with
respect to m. Note that ∇mL̄ is similar to the gradient of
conventional FWI, since it is computed by the zero-lag cross-
correlation of the forward wavefield ū in eq. (9) and the back-
propagated (dual) data wavefield F(m)∗ y. The gradient ∇yL̄

is simply the data residual of the augmented wavefield ū, re-
laxed by the corrective term ε y/||y||.

The augmented system in eq. (9) is determined (for a fixed y),
and is amenable to time-domain methods. The same holds true
for the evaluation and gradient computation of L̄ . Also, the
dual variable y, having the same dimension of the data d, can be
conveniently stored in memory, which makes the optimization
of L̄ affordable.

Possible optimization strategies for the problem in eq. (10) are
alternating updates (as in the alternating direction method of
multipliers, Boyd et al., 2011; Aghamiry et al., 2019) or quasi-
Newton methods (as L-BFGS, Nocedal and Wright, 2006).
Given an initial background model m0, a natural starting guess
for y is a scaled version of the data residual y0 ∝ r0 = d−
F(m0)q. The scaling factor must be chosen carefully, as it
weights the relative contribution of y in the augmented wave-
field, with respect to the physical source q. In this respect, its
role is akin to the weighting parameter λ in WRI (see eq. (6)).
However, due to the underlying Lagrangian formulation, it can
be promptly adapted to any particular pair (m,y). The optimal
scaling factor argmaxα L̄ (m,α y) is calculated explicitly by:

α(m,y) =

sign〈y,r〉 |〈y,r〉|− ε ||y||
||F(m)∗ y||2

, |〈y,r〉| ≥ ε ||y||,

0, otherwise,
(12)

where r = d− F(m)q is the data residual. Plugging this
formula in eq. (10) produces a scale-invariant Lagrangian

¯̄L (m,y) := L̄ (m,α y):

¯̄L (m,y) =


1
2
(|〈ŷ,r〉|− ε ||ŷ||)2, |〈ŷ,r〉| ≥ ε ||ŷ||,

0, otherwise,
(13)

where ŷ = y/||F(m)∗ y||. Since ¯̄L has been obtained from a
variable projection scheme, the corresponding gradient expres-
sion follows directly from eq. (11):

∇m
¯̄L (m,y) = ∇mL̄ (m,α y),

∇y
¯̄L (m,y) = α∇yL̄ (m,α y).

(14)

Eq. (13) offers a simple geometric interpretation of how the
variables m,y are optimized, here seen as vectors in the Eu-
clidean space. The maximization of ¯̄L with respect to y re-
sults in an updated ŷ more aligned with respect to the resid-
ual r. Note that the norm of ŷ remains bounded from above
and below due to the (quasi-)normalization induced by the
factor c1(m)||y|| ≤ ||F(m)∗ y|| ≤ c2(m)||y||, with c1(m) > 0,
c2(m)> 0. The minimization of ¯̄L with respect to m, instead,
will reduce the length of the projection of the residual r on ŷ, by
decreasing the norm of r and/or by making r more orthogonal
to ŷ (up to a tolerance governed by ε).

We conclude this section with a brief observation on the compu-
tational demands for the dual formulation. We already stressed
the memory complexity advantages over general extended mod-
eling methods, and the unfeasibility of a rigorous time-domain
approach for WRI. For the sake of a comparison with conven-
tional FWI, we consider the cost for the solution of the wave



equation as the basic working unit. The gradient computation
in eq. (11) requires the same work of FWI: that is, two working
units for forward and backward propagation. However, with an
alternating update procedure, the overall update for m requires
an intermediate y estimation, which results in twice as much
the cost needed for the update of m for FWI.

EXAMPLES

In this section we present some examples that illustrates the
main theoretical features of the method.

Augmented wave equation

In Figures 1 and 2, we demonstrate the difference between the
solution of the conventional wave equation (2) and the aug-
mented wave equation (9). In Figure 2, the difference between
wavefield snapshots reveals the effect of the dual variable y,
here chosen to be the data residual between perturbed and homo-
geneous models (Figure 1). The variable y acts as a secondary
source (cf. eq. (9)). Note that both wavefields propagate through
an homogeneous medium, and there is no physical scattering
effect due to the perturbation. The difference is entirely due to
the backpropagation of y.

Figure 1: Reference medium used for the comparison of wave-
fields obtained from conventional and augmented wave equa-
tion in Figure 2. The source is indicated with a red star, re-
ceivers by green triangles.

Lagrangian landscape

The second example aims to depict the qualitative character of
objective landscape associated to the Lagrangian in eq. (13). We
setup a 5 km-by-10 km velocity model linearly increasing with
depth, vβ (x,z) = v0 +β z, with v0 = 2000 m/s and β ranging
from 0.5 to 1. A single source is located at (x,z) = (0,0), and
the data are recorded at the surface z = 0 with x varying from 9
km to 10 km.

We plot the values of the Lagrangian on the two-dimensional
space discretized by the pairs (mi,y j), where mi is the squared
slowness associated to the velocity vβ j

, and y j = d−F(m j) f
is the data residual for m j. The range of value of β has been
chosen to produce severe cycle skipping, as it can be observed
in the vertical slices (y fixed) and diagonal slices of the objective
landscape in Figure 3. Note that the diagonal slice represents
qualitatively the classical FWI scenario, as it can be seen by
substituting y = r in eq. (13), under the assumptions ε ≈ 0
and ||r|| ≈ c||F(m)∗r||, for an m-independent constant c. This
shows the limitations of reduced space approaches. However,

(a) Incident wavefield

(b) Augmented wavefield

(c) Difference

Figure 2: Comparison of wavefield snapshots propagating
through an homogeneous medium, corresponding to: (a) con-
ventional wave equation, (b) augmented wave equation, (c)
difference. In this example, the medium m in eq. (2) and eq. (9)
is homogeneous, and the dual variable y in eq. (9) is the data
residual between the example in Figure 1 and the homogeneous
medium.

when the search space is augmented, the singular loci shown in
Figure 3 can be circumvented.

BG compass inversion

We show an inversion result obtained with the dual formulation
object of this paper. The model here considered is the BG
compass, shown in Figure 4a. The data consist of 50 shot
gathers, and is collected by 251 receivers positioned at the
surface. The time source function is a Ricker wavelet with a
peak frequency of 6 Hz. The starting background model is
depicted in Figure 4b.

We ran 10 iterations of an alternating update optimization (each
iteration consisting of one m update and one y update). For
both experiments, the water layer is kept fixed throughout the
inversion. We imposed the velocity values to be constrained on
the interval 1400–4700 m/s. No other regularization scheme is
used.

This example is notoriously challenging for conventional FWI,
as it displays high/low velocity inversion near the water bottom.
This generates poor updates with an inadequate starting guess.
The results, depicted in Figure 4c, seem to indicate a relative
robustness of the current method over these issues.



(a) Lagrangian landscape

(b) Vertical slice (c) Diagonal slice

Figure 3: Values of the Lagrangian in eq. (13) on a low-
dimensional projection of the (m,y) space. Vertical slice (y
fixed) and diagonal slice (approximately corresponding to con-
ventional FWI) of the objective displays many spurious singu-
larities. When the min-max optimization is carried out on the
full space, these singularities can be potentially circumvented.

SUMMARY

We introduced a dual formulation of full-waveform inversion:
starting from the denoising problem, where we optimize the
wave-equation fit with a data-misfit constraint, we offer a model
extension by means of Lagrangian multipliers which belong to
the data residual (dual) space and can be conveniently stored
during the optimization. As in WRI, the formulation entails the
solution of an augmented wave equation, where the physical
source is complemented by an additional one governed by the
multiplier. The augmented system is determined, and therefore
can be solved in time domain with traditional time-marching
solvers, along with the evaluation of the Lagrangian and its
gradient computation. Moreover, we do not need to resort to
continuation strategies to adapt weighting parameters in the aug-
mented wave equation. We introduced an automatic scaling pro-
cedure to resolve the ill-conditioning of the Lagrangian, which
would result in an unbalanced contribution of the physical and
backpropagated sources in the augmented wave equation. Due
to robustness and computational feasibility, the method is an
enticing prospect for large-scale seismic inverse problems.
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(a) True model
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