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SUMMARY

Recent years saw a surge of interest in seismic waveform in-
version approaches based on quadratic-penalty or augmented-
Lagrangian methods, including Wavefield Reconstruction In-
version. These methods typically need to solve a least-squares
sub-problem that contains a discretization of the Helmholtz
equation. Memory requirements for direct solvers are often
prohibitively large in three dimensions, and this limited the
examples in the literature to two dimensions. We present an
algorithm that uses iterative Helmholtz solvers as a black-
box to solve the least-squares problem corresponding to 3D
grids. This algorithm enables Wavefield Reconstruction In-
version and related formulations, in three dimensions. Our
new algorithm also includes a root-finding method to convert a
penalty into a constraint on the data-misfit without additional
computational cost, by reusing precomputed quantities. Nu-
merical experiments show that the cost of parallel communi-
cation and other computations are small compared to the main
cost of solving one Helmholtz problem per source and one per
receiver.

INTRODUCTION

Seismic full-waveform inversion (FWI) (Tarantola and Valette,
1982; Pratt et al., 1998; Knibbe et al., 2014) has the poten-
tial to provide high-resolution parameter estimates in terms of
acoustic velocity and other material properties. However, be-
cause of limited source / receiver coverage, and limited fre-
quency bandwidth in the data, it is extremely challenging to
estimate geologically realistic and reliable models. As a re-
sult, many authors proposed different FWI formulations based
on quadratic-penalty and augmented-Lagrangian methods (van
Leeuwen and Herrmann, 2013; van Leeuwen et al., 2014; Pe-
ters et al., 2014; Peters and Herrmann, 2014; van Leeuwen and
Herrmann, 2016; Wang et al., 2016; Esser et al., 2016; Wang
and Herrmann, 2017; Fu and Symes, 2017; da Silva and Yao,
2018; Esser et al., 2018; Fang et al., 2018; Aghamiry et al.,
2019). Empirical results suggest such formulations are more
likely to recover good model estimates under certain condi-
tions.

So far, all presented results for penalty and augmented-Lagrangian
based methods are in 2D, likely because the more difficult
sub-problems that involve discretizations of wave equations.
Whereas time-harmonic FWI has two sub-problems that in-
volve a Helmholtz solve for the forward and adjoint wave-
field, penalty-based methods usually need to solve a linear
least-squares problem, or corresponding normal equations that
contain a Helmholtz block. In 2D, this is not a big issue, as
there are fast implementations of direct QR or Cholesky fac-
torizations available in most programming languages. In 3D,
however, direct factorization is often not an option due to the

increased memory requirements.

Iterative algorithms for linear systems require less memory.
Various specialized solvers and preconditioners for Helmholtz
problems are available, but they cannot be applied to a least-
squares problem. In this work, we develop an algorithm that
solves the least-squares sub-problems that arise in Wavefield
Reconstruction Inversion (WRI) and variants. The proposed
algorithm can use standardly available Helmholtz solvers for
its sub-problems, the other computational work is negligible
in terms of computing complexity and time. The new algo-
rithm opens the door to WRI in 3D. We provide timings and
a numerical example. Finally, we show the relation between
sub-problems of the data-constrained and the penalty formula-
tion. This allows us to compute the correspondence expliticly
at low computational cost. Our algorithm is, therefore, suitable
to solve sub-problems of certain versions of both the quadratic
penalty and data-constrained formulation of seismic inversion.

WAVEFIELD RECONSTRUCTION INVERSION AND RE-
LATED FORMULATIONS

Many partial-differential-equation (PDE) constrained problems
often (Haber et al., 2000; Biros and Ghattas, 2005; Epanomer-
itakis et al., 2008) use the following formulation

min
m,u

1
2
‖Pu−d‖2

2 subject to H(m)u = q. (1)

Here, we stated the problem for one frequency and one source.
This problem represents the minimization of the misfit be-
tween observed data d ∈ CM and the predicted data Pu. The
matrix P∈RM×N selects from the wavefield u∈CN on N grid-
points, the field values at the M receiver locations. The equal-
ity constraints enforce that the Helmholtz equation holds in
discrete form, where q ∈ CN is the source vector and H(m) ∈
CN×N is the Helmholtz discretization that depends on the un-
known model parameters (velocity) m ∈ RN .

FWI is mostly formulated using a reduced Lagrangian, or, reduced-
space formulation, where the constraints are always satisfied as
part of the unconstrained problem

min
m

1
2
‖PH(m)−1q−d‖2

2. (2)

van Leeuwen and Herrmann (2013, 2016) propose algorithms
based on the quadratic penalty form

φλ (m,u) =
1
2
‖H(m)u−q‖2

2 +
λ 2

2
‖Pu−d‖2

2 (3)

with scalar penalty parameter λ > 0. From here, there are
many ways to proceed, including directly solving (3), modified
gradient (Kleinman and den Berg, 1992) and contrast source
(van den Berg and Kleinman, 1997), alternating minimization
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van Leeuwen and Herrmann (2013), and variable projected
version (van Leeuwen and Herrmann, 2016) that solves a re-
duced version of (3) by projecting out the field variables u, see
(Golub and Pereyra, 1973; Aravkin and van Leeuwen, 2012;
Aravkin et al., 2018). This last approach minimizes

φ̄λ (m) =
1
2
‖H(m)ū−q‖2

2 +
λ 2

2
‖Pū−d‖2

2, (4)

where ū is the solution to

∇uφλ (u,m) = H(m)∗
(
H(m)u−q

)
+λ

2P∗
(
Pu−d

)
= 0.

(5)
The field variables are projected out at every iteration of min-
imizing (4) over m, and this sub-problem is equivalent to the
linear least-squares problem

ū = argmin
u

∥∥∥∥(H(m)
λP

)
u−

(
q

λd

)∥∥∥∥2

2
. (6)

If we instead use alternating minimization for problem (3), we
obtain the same sub-problem for u as (6). If we have accurate
knowledge about the data noise, it is appealing to minimize the
PDE error subject to a data-fit constraint,

min
m,u
‖H(m)u−q‖2

2 s.t. ‖Pu−d‖2
2 ≤ γ, (7)

see, e.g., Wang and Herrmann (2017); Fu and Symes (2017).
The scalar γ > 0 depends on the noise level in the observed
data. Note that alternating minimization for example, also
leads to the same subproblem, because

min
u
‖Hu−q‖2

2 s.t. ‖Pu−d‖2
2 ≤ γ. (8)

is equivalent to the linear least-squares problem (6) for a cer-
tain γ-λ pair (Gander, 1980; Björck, 1996). Moreover, there
are algorithms to retrieve the λ to a corresponding γ , see Björck
(1996) Sect. 5.3.2.

In conclusion, we see that the least-squares problem (6) or
equivalent normal equations occur in multiple problem formu-
lations and solution approaches. In the next few sections, we
propose algorithms for solving this sub-problem.

SOLUTION OF THE LEAST-SQUARES SUB-PROBLEM

We do not investigate which problem formulations is the ‘best’.
This work is about solving the sub-problem for problems dis-
cretized on 3D grids. The preceding section is to motivate the
problem, and show that this work applies to multiple formula-
tions of waveform inversion.

Our algorithm requires two assumptions that are not restrictive
for geophysical applications. 1) The PDE discretization is full
rank so H−1 exists. 2) there are no two receivers at the same
spatial location. This implies the rows of P are linearly inde-
pendent. We also assume that the number of receivers does not
exceed a few hundred for memory considerations. We start by
rewriting the normal equations from (5) as

(IN +λ
2H−∗P∗PH−1)y= q+λ

2H−∗P∗d, with Hu= y, (9)

where y ∈ CN is a temporary vector and IN is the N×N iden-
tity matrix. The complex-conjugate transpose of a matrix is

denoted as H−∗. We dropped the dependency of the PDE on
m because we are interested in solving sub-problems w.r.t. u
and for a fixed m. To better see structure in the equations and
make notation more compact, we define

W≡H−∗P∗ ∈ CN×M , (10)

which is a tall and dense matrix with a size of the number of
grid points × the number of receivers. Plugging this definition
in the preceding rewritten problem statement, we arrive at the
identity + low-rank factorized form:

(IN +λ
2WW∗)y = q+λ

2Wd, with Hu = y. (11)

The inverse of this system matrix is known in closed form as
the Sherman-Morrison-Woodbury (SMW) identity:

(IN +λ
2WW∗)−1 = IN −λ

2W(IM +λ
2W∗W)−1W∗. (12)

Via the SMW identity we rewrite (11) to obtain our final prob-
lem formulation as

y=(IN−λ
2W(IM+λ

2W∗W)−1W∗)(q+λ
2Wd)with Hu= y.

(13)
The computationally difficult piece is the inverse matrix (IM +
λ 2W∗W)−1 ∈ CM×M . While this small matrix has a size of
the number of receivers squared, we need access to W to com-
pute it. We propose to make a one-time investment and com-
pute W column by column: a computational cost of one PDE
solve per receiver. This computation does not need to be re-
peated for every source location. Each of these columns may
be computed independently in parallel using iterative (or di-
rect) solvers. These last few observations suggest Algorithm
1 to solve the slightly overdetermined least-squares problem
(6). Algorithm 1 computes the fields for all sources and all

Algorithm 1 Algorithm for solving problem (6).

input:
H ∈ CN×N , q ∈ CN , P ∈ RM×N , d ∈ CM

for each receiver ( j) (row in P) in parallel do
H∗w j = p∗j {solve 1 PDE}

end for
W = [w1 w2 . . .wm] {distributed matrix}
S = (IM +λ 2W∗W)−1

{adjust λ using Algorithm 2 (optional)}
for source (i) in parallel do

yi = (IN −λ 2WSW∗)(qi +λ 2Wdi)
Hui = yi {solve 1 PDE}

end for
output: ui {fields for all sources}

receivers at a cost of 1 PDE per source + 1 PDE solve per re-
ceiver. This is different from the 2 PDEs per source location
for regular FWI via the adjoint-state method. Therefore, the
proposed algorithm is suitable for a moderate number of re-
ceivers. To keep the number of sources/receivers low, we may
employ simultaneous receivers (Habashy et al., 2011; Peters
et al., 2016), similar to simultaneous sources.

A possible problem in Algorithm 1 is the conditioning of (IM+
λ 2W∗W). Numerical experiments (not shown) suggest that
the condition number is often lower than 102 for 3D problems
on regular grids and values of λ that correspond to a γ of about
10% relative data-fit error in (8).
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THE λ -γ RELATION

The relation between the linear least-squares problem (6) and
the least-squares problem with quadratic inequality constraints
(8) was studied extensively (Gander, 1980; Björck, 1996), also
algorithmically. Our assumptions stated earlier suffice to guar-
antee that there is a λ -γ pair that causes the solutions of the two
problems to be the same (Björck, 1996, Thm. 5.3.1). Assump-
tion 2 implies minu ‖Pu−d‖= 0 ≤ γ , so at least one feasible
solutions exist. To reveal the connection between γ and λ , we
turn to the Lagrangian corresponding to (8),

L (u) = ‖Hu−q‖2
2 +µ(‖Pu−d‖2

2− γ
2), (14)

with scalar Lagrangian multiplier µ . A necessary condition for
optimality is ∇uL = 0, i.e.,

(H∗H+µP∗P)uµ = H∗q+µP∗d, (15)

where uµ satisfies the constraint ‖Puµ −d‖2 = γ . We can find
uµ at a root (zero) of the scalar equation (the secular equation)

f (µ) = ‖Puµ −d‖2− γ, (16)

where we require that uµ is a solution of (15). Secant root-
finding needs a solution of (15) at every iteration; very costly
without factorizations. The penalty-constraint relation and root-
finding procedure are well-established techniques. Our contri-
bution is that we derive a way to perform the rootfinding with-
out much additional computational cost and avoid re-solving
the normal equations (15) at every secant iteration.

We need to find a root of the secular equation (16) which de-
pends on ‖Puµ −d‖2. However, we do not need to know the
full solution uµ ; the restriction of the solution at the receivers
is sufficient to compute Puµ . After some manipulations, we
rewrite the normal equations (15) as

Puµ −d = S(W∗q−d). (17)

We already precomputed W and W∗W, so we can adjust λ

and recompute S = (IM +λ 2W∗W)−1 cheaply. All operations
in the secant method are on small matrices at a computational
cost insignificant compared to solving PDEs. The correspond-
ing Algorithm 2 fits in the middle of Algorithm 1. The output
λ is such that the final data-misfit satisfies ‖Pu−d‖2 ≤ γ .

COMPUTATIONS, MEMORY & COMMUNICATION

The two PDE solves, one per receiver and one per source, are
the main computational cost. Precomputations involving the
receivers are a one-time investment (for fixed m and one fre-
quency). Other computations related to the SMW identity are
not significant. The root-finding procedure, which is typically
very expensive computationally, is easy to compute because of
the precomputed quantities.
The primary memory requirement is the storage of W of size
(number of grid points) × (number of receivers). This matrix
may be distributed over the different compute nodes, however.
There is only one such matrix for all sources and receivers and
storage is typically not a problem if we have up to a few hun-
dred receivers and at least a couple of compute nodes.

The parallel communication occurs when computing matrix-
vector products with W and W∗ because these matrices are
distributed over multiple compute nodes. In the numerical
examples, we show that the communication time is not large
compared to the time it takes to solve PDEs.

Algorithm 2 Algorithm (secant) to obtain the penalty param-
eter λ corresponding to data fit constraint parameter γ using
precomputed quantities.

Input: W, X = W∗W, γ , v≡W∗q−d
f (λ )≡ ‖S(λ )v‖2− γ , S(λ ) = (IM +λ 2

k X)−1

λ0 = 0, λ1 ∈ (0,λ∗), k = 1
S0(λ ) = (IM +λ 2

0 X)−1,
while ‖Sk(λ )v‖2 > γ do

λk+1 = λk−
f (λk)(λk−λk−1)
f (λk)− f (λk−1)

k← k+1
end while
Output: λ

NUMERICAL EXAMPLES

The Helmholtz solves are considered a black-box in this work
so that we can use any solver, in principle. Our examples
use the CGMN algorithm (Björck and Elfving, 1979; Gordon
and Gordon, 2008), which is equivalent to a preconditioned
conjugate-gradient method where a double Kaczmarz sweep
acts as the matrix-vector product. This method has been used
to solve serveral wave-propagation problems and discretiza-
tions (Gordon and Gordon, 2012, 2013; Turkel et al., 2013;
van Leeuwen and Herrmann, 2014; Gordon et al., 2015; Li
et al., 2015). The numerical experiments are in complex dou-
ble precision and were carried out on nodes with two CPUs
of ten cores (Intel Ivy Bridge 2.8 GHz E5-2680v2) and 128
GB of memory per node. Parallel communication was han-
dled by Matlab Parallel Computing Toolbox. PDE solves are
in C++ (Silva and Herrmann, 2019) using a relative residual of
ε = 10−4 as stopping condition.

Frequency & grid scaling. Figure 1 shows the time as a func-
tion of frequency between 2 and 16 Hz. We discretize the 6
km3 model such that we always use six gridpoints per shortest
spatial wavelength. ‘comp U’ and ‘comp W’ indicate the time
to solve the two sets of PDEs. The figure shows that parallel
communication and other computations take a small amount
of time (‘other’ in figure). The computations use 8 compute
nodes and there are 64 sources and 64 receivers. The timings
are thus for 2×64 PDEs, 8 per compute node.

Weak parallel scaling with sources & receivers. The parallel
communication time depends on the number of grid points,
which increases with frequency, and the number of receivers.
The previous experiment showed a short communication time
in case of 64 receivers. Now, we fix the frequency (and grid) to
8 Hertz and increase the number of sources & receivers as well
as the number of compute nodes. We keep solving 8 PDEs per
node. Figure 2 shows timings when we increase the number
of sources and receivers from 8 to 128 while increasing the
number of compute nodes from one to 16. As expected, the
time for things other than PDE solves starts increasing, but is
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Figure 1: Time-frequency scaling for fixed number of sources,
receivers, and resources.

small for the assumed number of sources and receivers.
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Figure 2: Weak parallel scaling for an increasing number of
sources and receivers, while also increasing the number of
compute nodes.

3D WRI A simple 3D WRI example shows that a fixed relative
residual for the inexact Helmholtz sub-problems is sufficient
for Algorithm 1 to work properly. The true and initial model
are shown in Figures 3a and 3b.

The synthetic observed data were generated on a fine grid us-
ing a relative residual a factor×100 more accurate than we use
for the inverse problem. There is data from 2− 5 Hertz, and
we use a grid suitable for these frequencies, which is coarser
than the grid for data generation. There are 16 sources in two
corners and 16 receivers in the other two corners. We formu-
late the inverse problem as WRI in (4). The optimization uses
bound constraints implemented via the spectral projected gra-
dient algorithm (SPG) (Birgin et al., 1999). The result in Fig-
ure 4 recovers the true model relatively well, except for some
artifacts in the areas between the receiver boreholes and in be-
tween the source boreholes. These areas are difficult to image
because very little wave energy propagates through them from
source to receiver. Some regularization may be required to im-
prove the result.

CONCLUSIONS

We constructed a three-step algorithm for solving least-squares
sub-problem in penalty-based formulations for 3D seismic wave-
form inversion. The algorithm reduces the least-squares prob-
lem to an identity+low-rank factorization. The main computa-
tional ingredient is any iterative Helmholtz solver to solve one
PDE per source plus one per receiver. We also show that our al-
gorithm can solve sub-problems originating from both penalty
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Figure 3: True model and initial guess for the 3D acoustic pa-
rameter estimation example. Yellow circles represent sources,
purple crosses are receivers.

and data-constrained formulations of waveform inversion. A
root finding algorithm enables this functionality and requires
little additional computational cost because it employs quan-
tities that are by-products of our algorithm. Timings, scaling,
and a 3D wavefield reconstruction inversion example shows
that the proposed algorithm spends only a small amount of
time on parallel communication and computations other than
PDE solves.
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Figure 4: Estimated model with bound constraints and using
fixed accuracy (ε) for the Helmholtz sub-problems.
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