Removing density effects in LS-RTM with a low-rank matched filter
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ABSTRACT

Least-squares reverse-time migration faces difficulties when it
inverts the data containing strong components related to den-
sity variation with velocity-only Born modeling operator. The
strong density perturbation will be inverted as strong dummy ve-
locity perturbations, which influence the amplitudes and phase
of the velocity perturbations in the inverted model. The tradi-
tional method is to invert the additional density variations by
developing Born operator with respect to both density and ve-
locity or modify the image condition. In this work, we develop
a matched-filter based LS-RTM for velocity-only Born model-
ing operator, which removes the artifacts in the imaging created
by the strong density variation. This method doesn’t call for
extra work of finite difference stencil and is more general. In
the experiment part, we use a complex discontinuous layered
medium with strong density variations at the ocean bottom, and
show the efficacy of the propose formulation.

INTRODUCTION

Least-squares reverse-time migration (LS-RTM, Guitton et al.
(2006); Dai et al. (2012); Plessix et al. (2002)) tries to fit ob-
served reflection data in a least-squares sense to overcome
RTM’s shortcomings in producing high resolution and high-
fidelity amplitudes. In other words, LS-RTM attempts to invert
the linearized Born modeling operator iteratively whereas RTM
directly treats the adjoint of that operator as its inverse. So far,
LS-RTM has demonstrated an ability to produce high-resolution
images in combination with an efficient computational frame-
work (Herrmann et al., 2015; Yang et al., 2016), overcoming
drawbacks of overfitting artifacts (Herrmann and Li, 2012)
caused by minimizing the ¢, norm.

In addition to the developments listed above, people work-
ing on LS-RTM made lots of progress on incorporating
multi-parameters (elastic parameters (Duan et al., 2016),
visco-acoustic parameters (Dutta and Schuster, 2014) and so
on) for complex geological structures. The corresponding
Born modeling operators are linearized with respect to these
elastic parameters, which allow us to mimic the elastic
wave-propagation effects during the inversion. While important
progress has been made handling elastic effects— e.g. by
grouping subsets of elastic parameters that give rise to different
radiation patterns (Operto et al., 2013)— working with multiple
elastic parameters remains challenging.

Among the different parameters that rule the leading order be-
haviour of wave propagation, we count velocity and density
as the most important pair (Beylkin et al., 1987). The prod-
ucts of these two, i.e., the seismic impedance, determines the
amplitudes of the seismic waves to leading order. Perturba-

tions in density generate reflection events even for a constant
velocity model. This means that if we invert data generated
by strong density perturbations with a Born modeling that ac-
counts for velocity changes only we can expect strong artifacts
degrading the quality of migrated images (Przebindowska et al.,
2012,Plessix et al. (2013)). There are two main reasons for
these artifacts: (i) the wavefields scattered by the velocity and
density parameters exhibit similar behaviours for some scatter-
ing angles (Operto et al., 2013), and (ii) if we only invert for
velocity perturbations without incorporating the true density
perturbations in Born modeling operator then LS-RTM will try
to fit the amplitudes and phase of the observed seismic data
in terms of velocities only (Bai et al., 2014). This can lead to
dummy reflection events in the LS-RTM along with incorrect
amplitudes and phase distortions of the true reflectivity yielded
by the velocity perturbations.

In this work, we propose to use a matched-filter approach to
remove artifacts caused by strong unmodeled density perturba-
tions in the context of imaging with surface-related multiples.
Specifically, we are interested in imaging based on linearized
inversions that derive from velocity-only acoustic Born mod-
eling that handles strong water-bottom multiples generated by
strong density changes at the ocean bottom. We find that the
proposed matched-filter, when organized as a matrix, exhibits
low-rank structure. This is due to the fact that the matched-filter
tries to approximate the difference between radiation patterns
of velocity and a (strong ocean bottom) density contrast, which
varies smoothly with offset. Inspired by this observation, we
propose to simultaneously estimate velocity perturbations and a
low-rank matched-filter, which maps nonlinear (observed) data
that contains components related to both density and velocity
perturbations into “linearized” data close to data generated by
Born modeling for perturbations in velocity only. The proposed
method does not require the explicit Born operator for den-
sity but does need terms that depend on a smoothly varying
background density.

Our paper is organized as follows. First, we form the objec-
tive function for our extended LS-RTM with a low-rank matrix
constraint on the matched filter and conclude by describing a
computationally efficient algorithm. Next, we evaluate the per-
formance of the proposed approach on a quasi-layered model
with faults where the density varies strongly at the ocean bot-
tom. Finally, we show the benefits of inverting for the matched
filter to correctly image both the amplitude and phase of the
reflectivity for imaging problems that contain a strong density
contrast at the ocean bottom.
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METHODOLOGY

We start with a brief overview of LS-RTM, and then propose
a matched-filter based formulation to handle strong density-
related effects in imaging. As we mentioned before, LS-RTM
attempts to minimize the ¢, norm of the data residual between
the observed and synthetic data by solving the following (un-
constrained) optimization problem:
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where _#;(mq) represents the monochromatic Jacobian with
respect to velocity for all shots and followed by a matrication
putting monochromatic shots in its columns. The vector x
stands for the unknown velocity perturbations. Finally, the ma-
trix B; is the i"" frequency slice of the observed (nonlinear) data
in the S-R domain (source-receiver domain). In this work, we
think of non-linear data as the difference between the response
of the “true earth”—i.e., a “hard” model for velocities and
densities and the response of a “smoothed background earth”
where both velocity and density vary smoothly. The symbol
|| |F denotes the Frobenius norm. The above equation entails
a “velocity only” linearization, which is accurate in the absence
of strong density variations and a good background velocity
model with respect to which the linearization is carried out.
Under those conditions, equation 1 can produce good quality
migrated images, which can then be used to perform reservoir
characterization.
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However, if the observed seismic data contains strong density ef-
fects generated by a strong ocean bottom, then the linearization
undergirding equation 1 is no longer valid and as a consequence
this may lead to a degradation in quality of migrated images
(Przebindowska et al., 2012,Plessix et al. (2013)). One way
to address this issue is to include density into equation 1 and
re-linearize the Born modeling operator with respect to both
velocity and density. While this approach is certainly a viable
option, it is challenging and perhaps excessive to form a Born
modeling operator that includes density, especially because it
is well known that simultaneously inverting for both velocity
and density is difficult because the two parameters have similar
radiation patterns for certain scattering angles (Operto et al.,
2013). As aresult, LS-RTM runs the risk to map the perturba-
tions in density to the velocity, which results in crosstalk in the
imaging (Bai et al., 2014).

To address these issues, we propose to include a matched filter,
which allows us to compensate for certain leading order den-
sity effects while inverting for the velocity perturbations only.
Under the assumption that we can find such a matched filter M,
we modify equation 1 as follows:
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where M; is the matched filter matrix for i/ frequency. As
in our earlier work involving on-the-fly source estimation (Tu
et al., 2013,Yang et al. (2016)), we use variable projections
to solve for M; while minimizing the above objective with

respect to the velocity perturbations collected in the vector x.
However, contrary to finding a single time signature for the
wavelet, the above matched filter involves for each frequency
a full wavefield opening the risk of overfitting. To counter
this problem, we control the rank ; for each frequency. We
motivate this choice by the fact that the difference in radiation
patterns of velocity and the strong density contrasts at the ocean
bottom vary smoothly over offset and we use this to stabilize
the inversion. We now solve
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s.t. rank(M;) = k;,

For simplicity, we will now focus on solving the above problem
for one single frequency and drop the subscript i accordingly
and implicitly sum over frequencies, i.e., Z:i | for the remain-
der of this section. As we mentioned before, we solve the
above problem 2 with variable projections (Golub and Pereyra,
2003,Tu et al. (2016), Yang et al. (2016)). This involves com-
puting gradient steps with respect to x that minimize the || - ||
norm —i.e,

X1 = X + SV [ (X, M) |x—x, M=M, > 3)

where s is the stepsize. As prescribed by variable projection,
we solve for M by minimizing 2 for x; fixed. Since rank-
minimization problems are NP hard, we use its convex relax-
ation instead, i.e., we replace the rank constraint by a nuclear-
norm constraint (Recht et al., 2010), following the strategy
proposed by Aravkin et al. (2014).

NUMERICAL EXPERIMENTS

To test the performance of the proposed method, we conduct
experiments on a quasi layered model with strong density con-
trast at the ocean bottom (Figure 1). Both velocity and density
models are 1km deep and 2km wide and the underlying grid
is discretized to 10m. The background velocity model mg
and background density model pg are smooth version of the
true velocity and density models respectively and kinemati-
cally correct. We use a Ricker wavelet centered at 10hz as
source wavelet and record the data for 4 seconds. The 100
shots and 100 receivers are spread over the model with 10m
spacing. To test this method on this model, we compare the
image inverted from ideal linearized data related to velocity
perturbation and images inverted from nonlinear data with and
without the matched-filter approach.

Given the true velocity and density models and their back-
grounds, we generate “observed” nonlinear data by subtracting
the response of the background models for varying velocity
and density from the response yielded by the true velocity and
density models. We compare this response with linear data
obtained by applying linearized velocity only Born scattering
operator to the true velocity perturbations plotted in Figure 1.

The monochromatic frequency slices of the linear data, nonlin-
ear data and the matched-filter matrix M at 5 and 10 Hz are
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Figure 1: Quasi layered model with faults. (a, b, ¢) background
velocity, the corresponding perturbation and the true veloicty.
(c, d, e) Same for density model.

shown in Figure 2. It is clear from the figures that the estimated
matched-filter varies smoothly across sources, thus, exhibits
low-rank structure. These results also validate our belief that
the the difference between radiation patterns of velocity and the
strong density contrast exhibits smooth structure over offset.

Figure 3a shows the idealized LS-RTM results using the lin-
earized data (Figure 2a). We can see that for the ideal scenario,
the layer interfaces are sharp and amplitudes are in the correct
range. Also it is clear that the velocity perturbations at shal-
lower interfaces especially at the ocean bottom are much weaker
than those at the deeper interfaces. Next, we invert the non-
linearized data (Figure 2b) without any matched-filter approach
using the velocity-only Born modeling operator. It is evident
from the inverted image (Figure 3b) that the LS-RTM maps
the strong density perturbations to the velocity perturbations,
thus, creating the dummy strong reflectors at the ocean bottom.
Moreover, the amplitudes and phase of the subsequent deeper
reflectors are wrong. Finally, we use the proposed matched-
filter approach to perform the LS-RTM (Figure 3c). Using the
propose method, we are able to remove the effects of the strong
density perturbations at both the shallow and deeper sections.
Thus, the estimated matched-filter can handle the strong den-
sity perturbation related effects while inverting for the velocity
perturbation only, and can successfully remove the crosstalk
created by density perturbations.

CONCLUSIONS

In this abstract, we propose a matched-filter based least-squares
reverse time migration formulation to remove the strong density
variation related components in the observed data. In contrast
to other methods which invert density as one additional output
or reform image condition, our method doesn’t require the work
related to finite difference. Our modified formulation invert
for the matched-filter and velocity perturbation simultaneously
that matching the nonlinear observed data to the linear data
with respect to velocity-only. In the experiment part, we used a
complex discontinuous layered model with strong density vari-
ations at ocean bottom to test our method. We showed that the
proposed matched-filter approach can remove the artifacts from

density perturbation and get artifacts free migrated image re-
lated to the velocity perturbation. Future work is to incorporate
the surface related multiples into the formulation since strong
density variation can leads to strong surface related multiples,
which can further enhance the resolution of the inverted images.
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Figure 2: Visualization of the linearized data, non-linearized data and the corresponding matched-filter M at 5 and 10 Hz. As
expected, the matched-filter M varies smoothly over offset, thus exhibits low-rank structure.
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Figure 3: LS-RTM results using velocity-only Born modeling operator. (a) Idealized linearized data, non-linearized data (b) without,
and (c) with matched-filter approach. We can clearly see that the matched-filter approach can remove the strong density effects at the
ocean bottom and correct the amplitudes and phase in both shallow and deeper parts of the inverted velocity perturbations.
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