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Introduction

Motivated by our work on deep convolutional neural networks in seismic data
reconstruction [4], we discuss how Generative Adversarial Networks (GANs)
[1] can be employed in prestack problems ranging from the relatively mun-
dane removal of the effects of the free surface to dealing with the complex ef-
fects of numerical dispersion in time-domain finite differences. Results show
the potential of transfer learning in the field of seismic especially for tasks that
obtaining suitable training data is hard.

Methodology

Generative Adversarial Networks

We explore the use of GANs i.e., networks that are capable of generating ex-
amples drawn from a probability distribution that may include a certain map-
ping. We will use the architecture based on ResNets [2] proposed by [3] and
the following objective [4]:
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Gθ(G) : X → Y is a CNN mapping an initial distribution pX(x) to a target
distribution pY (y). Dθ(D) : Rm×n→ [0, 1] is the discriminator CNN.

Transfer Learning

We propose exploiting transfer learning [5] by using a pre-trained CNN
trained on the data obtained from a survey with similar geological features,
and then fine-tuning it with a small percentage of data obtained on the new
survey area.

Removal of the free surface

Our goal here is to see whether a CNN can learn the mapping from data gen-
erated with a free surface to data without a free surface. We train a CNN that
maps shot-records with free surface multiple and ghost recorded at all receiver
locations to the corresponding shot in training data set without free surface
and ghost. The training velocity model has 25 percent different water depth.

Figure 1. SRME and deghosting result via a CNN

Figure 2. Comparison of Zero-offset traces

Removal of numerical dispersion

Our goal now is to train a CNN to map numerically dispersed wavefields to
non-dispersed wavelfields. We do the mentioned objective by training a GAN
on training velcicty pathces in Figure and later exploit transfer learning by
fine-tuning the network with 5 percent of shots on testing velocity, m∗.
We demonstrate that CNNs generalize well, as opposed to wave equation that

is too specific, by comparing the correction obtained by the following equation
using a slightly perturbed velocity model, m̂.

u = A−1(m∗)q,u = A−1(m∗)q,

û = A−1(m̂)A(m̂)u.
(2)

Figure 3. Numerical dispersion removal with a CNN and linear correction

Figure 4. Training and testing velocity models for dispersion removal

Figure 5. Numerical dispersion removal with a CNN and linear correction

Conclusion
While pedagogical, the numerical dispersion example has clearly demon-
strated to us that neural networks can compensate for unmodeled intricate
physics. There are strong indications that generative CNNs can have a major
impact on complex tasks in prestack seismic data processing and modeling for
inversion. We feel incorporating the idea of transfer learning in the field of
seismic can play a key role in the success of machine learning techniques.
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