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SUMMARY

Microseismic data is often used to locate fracture locations
and their origin in time created by fracking. Although surface
microseismic data can have large apertures and is easier to
acquire than the borehole data, it often suffers from poor signal
to noise ratio (S/R). Poor S/R poses a challenge in terms of
estimating the correct location and source-time function of a
microseismic source. In this work, we propose a denoising step
in combination with a computationally cheap debiasing based
approach to locate microseismic sources and to estimate their
source-time functions with correct amplitude from extremely
noisy data. Through numerical experiments, we demonstrate
that our method can work with closely spaced microseismic
sources with source-time functions of different peak amplitudes
and frequencies. We have also shown the ability of our method
with the smooth velocity model.

INTRODUCTION

To make unconventional reservoirs economical for the produc-
tion of oil & gas, hydraulic fracturing is a common practice
adapted by the oil & gas industry. During hydraulic fracturing
fractures are created, which give rise to microseismic events.
To make drilling decisions and to prevent hazardous situations,
we need accurate information on the location and temporal
evolution of these fractures. Because microseismic waves carry
important information about fracture’s location and origin time,
the microseismic data recorded at surface or along a monitor
well is often used to locate these fractures (Maxwell, 2014).

Because of the operational ease and option to cover wide aper-
ture, surface receivers are widely used (Duncan and Eisner,
2010; Lakings et al., 2006). But the microseismic data recorded
along the surface comes at a cost of poor signal to noise ratio
(S/R) in comparison to the data recorded along a monitor well.
This is because we record more ambient noise (Forghani-Arani
et al., 2012). Moreover, microseismic waves suffer from atten-
uation while travelling large distance from subsurface to the
surface receivers (Maxwell et al., 2013), which makes them
difficult to observe in noisy data. Thus, low S/R of surface
microseismic data poses a big challenge in terms of estima-
tion of accurate location and the origin time of microseismic
sources. For example, travel-time picking based methods rely
on accurate picking of first arrivals of P and S-phases. When
the noise levels are high, it becomes difficult to accurately pick
these first arrivals (Bolton and Masters, 2001). Sometimes, the
weak signal is not even visible to be picked.

In Sharan et al. (2016) & Sharan et al. (2017), we proposed a
computationally efficient sparsity promotion based method to
invert for the microseismic source wavefield from which we

extract locations and source-time functions of closely spaced
microseismic sources. Our method works with noisy data with
S/R as low as −1 dB, but performs poorly as the S/R decreases
further. Moreover, while our sparsity-promotion based method
is able to give us a good estimate of the shape of the source-
time function, its amplitude is often incorrect. To overcome
these limitations, we propose a debiasing approach to handle
the noise and correctly estimate the amplitude of the source-
time function. Our proposed approach consists of two main
steps. The first step involves curvelet based denoising along
with sparsity promotion based microseismic source inversion
to detect the location of the microseismic sources. Since noise
and signal has different morphological behaviour in curvelet
domain (Candes and Donoho, 2000) it is easy to separate the
noise in curvelet domain (Herrmann and Hennenfent, 2008;
Neelamani et al., 2008; Kumar et al., 2017). In the second
step, we use the estimated source location and perform a wave-
equation based debiasing step to get the source-time function
with correct amplitudes.

This paper is organized as follows. We first discuss the chal-
lenges in terms of detecting the location and estimating the
source-time function of microseismic sources in the presence of
strong incoherent noise in the observed data. Next, we explain
the basics of curvelet transform and the steps we are using to
denoise the noisy observed data. Subsequently, we explain the
debiasing step to get the correct amplitude of the source-time
function. Finally, we show the efficacy of the proposed ap-
proach on a noisy dataset generated on a complex subset of the
Marmousi model (Brougois et al., 1990).

METHODOLOGY

Fracturing of rocks during fracking causes emission of micro-
seismic waves. The microseismic events causing this emission
are mostly localized along the fracture tips. Therefore, we
assume these microseismic sources to be sparse in space. In
Sharan et al. (2016), we exploited the fact that microseismic
sources are sparse in space and have finite energy along time to
solve

min
Q

‖Q‖2,1 s.t. ‖F [m](Q)−d‖2 ≤ ε, (1)

where Q ∈ Rnx×nt , with nx being the size of spatial grid and
nt being the number of time samples, is a matrix represent-
ing the complete microseismic source field containing the spa-
tial temporal distribution of different microseismic sources —
i.e. the (i, j) entry in Qi, j = q(xi, t j). F [m] = PA [m]−1 is the
linear operator modeling the 2D time-domain acoustic wave-
equation. The linear operator P restricts the wavefield to the
receivers. A [m] is the 2D finite-difference time stepping oper-
ator parametrized by the squared slowness m of the medium.
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The minimizaton problem 1 aims to find such a Q, which has
a minimum `1-norm in space and has a minimum `2-norm in
time while fitting the observed data d within the noise level
ε . As mentioned earlier, sparseness of microseismic source
wavefield Q in space justifies the choice of `1-norm in space
and finite energy of these microseismic sources justifies the
choice of `2-norm in time in Equation 1.

Problem 1 has a form very similar to the classic Basis Pursuit
Denoising (BPDN) problem (Chen et al., 1998; van den Berg
and Friedlander, 2008). In Sharan et al. (2016), we proposed
a new algorithm tailored to solve a slightly modified version
of the problem 1 for the situations when the forward modeling
operator is ill conditioned and computationally expensive. We
will discuss about this new algorithm in the next section.

Linearized Bregman algorithm

Motivated by the recent successful application of linearized
Bregman algorithm (Yin et al., 2008; Lorenz et al., 2014) to
solve sparsity promoting least-squares migration problem (Her-
rmann et al., 2015), in Sharan et al. (2016), we proposed to
solve

min
Q

‖Q‖2,1 +
1

2µ
‖Q‖2

F s.t. ‖F [m](Q)−d‖2 ≤ ε, (2)

which is strongly convex and a relaxed form of the original clas-
sic BPDN problem 1. ‖.‖F is the Frobenius norm and µ acts as
a trade-off parameter between sparsity given by `2,1-norm term
and the Frobenious norm term. When µ ↑ ∞, then Equation 2
is equivalent to solving the original BPDN problem 1. Solving
Equation 2 can be achieved through a simple algorithm with
few tuning parameters (Sharan et al., 2016). We estimate the
location of microseismic sources as outliers in the intensity plot
calculated as I(x) = vec−1 (

∑
t |Q(x, t) |) from the inverted

source field Q, where vec−1(·) reshapes a vector into its origi-
nal matrix form. The temporal variation of the inverted source
field Q at the estimated source locations give the source-time
function of microseismic sources.

To avoid fitting noise in the data, every iteration of linearized
Bregman algorithm involves projecting the data residual r
(i.e. difference between predicted and observed data) on the `2
ball of size ε (Sharan et al., 2016)

Πε (r) = max
{

0,1− ε

‖r‖

}
r. (3)

Linearized Bregman algorithm performs well in locating mi-
croseismic sources and estimating their source-time function
when the data has low to moderate levels of noise. But this
is not always the case, microseismic data can be very noisy—
i.e. ε � ‖r‖. Higher value of ε implies that the projection of
data residual in Equation 3 will give a vector with all zeros.
Therefore, linearized Bregman fails to update the source field
Q at every iteration. By using a smaller value of ε instead
of the actual noise level, projection in the Equation 3 works
and we can get source field Q updated in every iteration of
linearized Bregman algorithm. But using a smaller value of ε

instead of actual noise level in data means linearized Bregman
algorithm will invert for such a source field Q which will also
fit the noise. Hence, the inverted source field will have many

false sources as we observe this phenomenon in the numerical
experiment section. To avoid the above mentioned situations
with very noisy data, we propose to incorporate curvelet based
denoising step prior to applying linearized Bregman algorithm
to invert for the location followed by a wave-equation based
debiasing approach to get the source-time function with correct
amplitude.

Curvelet based denoising

Microseismic signals recorded by the surface receivers are very
weak in amplitude and are often contaminated with ambient
noise that have similar or higher amplitude level than the ampli-
tude of the microseismic signal present in the data (Forghani-
Arani et al., 2012). Also, the frequency range of the ambient
noise is very similar to that of the microseismic signal (St-Onge
and Eaton, 2011). This makes signal and noise separation very
difficult and eventually causes problems in detecting the mi-
croseismic sources and estimating their source-time functions.
Curvelet transform is a multi-scale and multi-directional trans-
form (Candes and Donoho, 2000), that maps seismic data into
angular wedges of different scales in the 2D Fourier domain
(Figure 1). This property of the curvelet transform helps in
separating signals components based on their location, dip and
scaling in the transform domain. Therefore, curvelet trans-
form has been succefully used for incoherent (Herrmann and
Hennenfent, 2008; Neelamani et al., 2008) and coherent noise
attenuation (Kumar et al., 2017; Lin and Herrmann, 2013).

(a) (b)

Figure 1: Properties of the curvelet transform (Source: Her-
rmann and Hennenfent (2008))

Motivated by prior successful application of curvelets, we pro-
pose following steps for denoising:

Algorithm 1 Denoising with curvelets.
1. Noisy data d, forward curvelet transform operator C, Thresh-
old parameter λ //Input
2. b = Cd //Forward curvelet transform
3. [sb, idx] = Sort(| b |) //Sorting in descending order

where idx stores the indices of sorted curvelet coefficients

4. (e)h =

√∑h
i=1 sb2

i∑l
i=1 sb2

i
//normalized cumulative energy

where l is the length of sb
5. Find the smallest index p such that (e)p ≥ λ

6. R=C>(idx(1 : p), :) //New inverse curvelet transform operator
7. bdn = (R>R)−1R>d //Solving the normal equation
8. ddn = ℜ(Rbdn) //denoising

Line 2 in the Algorithm 1 corresponds to forward curvelet
transform of the noisy microseismic data d (Figure 2a) in the
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curvelet domain (Figure 2b). The indices in Figure 2b are ar-
ranged from coarse to fine scale. Line 3 corresponds to sorting
of the absolute value of curvelet coefficients sb in descending
order. We also store the indices of the sorted curvelet coef-
ficients in idx. Line 4 corresponds to computing the square
root of normalized cumulative energy of the sorted curvelet
coefficients. Line 5 corresponds to finding the smallest index
p in vector e at which the square root of the normalized cumu-
lative energy of sorted curvelet coefficient exceeds or is equal
to the threshold λ . In line 6, we form a subset R⊆ C> of the
inverse curvelet transform operator. Columns of R correspond
to the curvelet coefficients whose square root of the normalized
cumulative energy in e is greater than or equal to the threshold
λ . Line 7 corresponds to solving the normal equation to get
the debiased and denoised curvelet coefficients bdn effectuated
by the new inverse curvelet transform operator R. Debiasing
neutralizes the shrinkage effect of thresholding and preserves
energy. Figure 2c shows absolute value of the denoised and
debiased curvelet coefficients bdn mapped to the corresponding
location of the noisy curvelet coefficients b. Line 8 corresponds
to taking inverse curvelet transform of the denoised curvelet
coefficients bdn and taking its real part to get the denoised mi-
croseismic data (Figure 2d). We choose the threshold parameter
as large as possible but for which we do not see any primary
leakage in the difference plot.

The curvelet based denoising involves very few forward and
inverse curvelet transform, which makes the proposed denois-
ing method computationally cheap. To detect the location of
microseismic sources from the denoised data ddn in a compu-
tationally efficient manner, we use the accelerated version of
linearized Bregman algorithm (Sharan et al., 2017) along with
a 2D left preconditioner (Herrmann et al., 2009).

(a) (b)

(c) (d)

Figure 2: Curvelet denoising schematic. (a) Noisy micro-
seismic data with S/R = −5.70 dB. (b) Absolute value noisy
curvelet coefficient. (c) Absolute value debiased curvelet coef-
ficients. (d) Denoised microseismic data with S/R = 5.3 dB.

Debiasing of the source-time function

Given the location of microseismic sources, next step is to esti-
mate the correct amplitude of source-time function. To achieve
this, we use the forward modeling operator F [m] and estimate
source locations to fit the noisy data d within some tolerance
level. We use noisy data to avoid any kind of amplitude errors
introduced in the approximated data by denoising. We now
solve a debiasing problem using least squares as

W̃ = argmin
W∈Rnt×n

‖F [m](HW>)−d‖, (4)

where H ∈ Rnx×n is a matrix, with n being the number of de-
tected microseismic sources, whose ith column is hi,which
corresponds to the location of the ith source. hi is a spatial
delta function δ (x−xi) with xi being the location of ith micro-
seismic source. Equation 4 solves for the unknown matrix W
whose ith column corresponds to the source-time function of
ith microseismic source. We run only a few iterations of the
unconstrained problem 4 to avoid overfitting the noise in the
data.

NUMERICAL EXPERIMENTS

To demonstrate the effectiveness of our method for data with
high noise level (S/R = −7.30 dB), we performed a numerical
experiment. We used 2D acoustic finite-difference modeling
code (Louboutin et al., 2017) to generate microseismic data of
record length 1.0s. To make the experimental setup more real-
istic, we used 5 microseismic sources of different amplitudes
(differ by a factor of 2) and dominant frequencies (30.0, and
25.0)Hz activating at a small time interval with overlapping
source-time functions to generate the microseismic data. Be-
cause of its geological complexity, we chose a part of Marmousi
model with dimensions 3.15km×1.08km (631×217 points)
to perform the experiment. We place 5 microseismic sources
(indicated by black dots in Figure 3a) in low velocity layer
to generate the data. The adjacent sources are separated by
half a dominant wavelength. We use surface receivers placed
at a depth of 20.0m from the top surface to record the data.
To get noisy data (Figure 4a) we add random noise (5.0Hz
to 40.0Hz) to the noise free data. We use kinematically cor-
rect smooth velocity model to invert for microseismic source
field in the experiment. As expected, our method performs
poorly without curvelet denoising and gives an intensity plot
(Figure 3b) that is not very informative. This is because of the
presence of lots of false sources in the estimated intensity plot
(Figure 3b). Therefore, we apply the proposed curvelet based
denoising steps to the noisy data (Figure 4a) to get denoised
data (Figure 4b) with improved S/R of 3.5 dB. The difference
plot (Figure 4c) between noisy (Figure 4a) and the denoised
data (Figure 4b) shows that we do not loose any coherent signal
with the proposed denoising method. With only 10 iterations
of accelerated version of linearized Bregman algorithm, we are
now able to locate all the 5 microseismic sources (Figure 4d)
from this denoised data (Figure 4b). The white colour crosses
in the estimated intensity plot correspond to the actual location
of microseismic sources. All the outliers are located near the
actual location of microseismic sources. To get the correct
source-time function (blue colour plot in Figures 5a to 5e), we
perform debiasing by least-squares using the estimated source
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location. We use the noisy data to perform this debiasing.
Denoising helps us to get the correct source location and the
debiasing step helps us to recover the source-time function with
correct scaling. We further compare the source-time function
(blue colour plot in Figures 5a to 5e) estimated by proposed
approach to the source-time function estimated by Sharan et al.
(2017) (red colour plot in Figures 5a to 5e). For visualization
purpose, we scale the wavelets displayed in red color by a factor
of 40. Thus, the proposed method can estimate the location and
source-time function with correct scaling for microseismic data
acquired in extremely noisy environment.

(a) (b)

Figure 3: (a) Acquisition geometry with velocity model. In-
verted yellow colour triangles indicate receivers buried at a
depth of 20.0m & separated by 10.0m. Black dots indicate
the location of two microseismic sources. (b) Estimated inten-
sity plot from noisy data without denoising. White colour dots
indicate actual location of microseismic sources.

(a) (b)

(c) (d)

Figure 4: Noisy microseismic data and estimated intensity
plots(zoomed): noisy data with (a) S/R = −7.3 dB. (b) De-
noised data using curvelet based denoising with improved S/R
of 3.5 dB. (c) Data difference plots after denoising. (d) Esti-
mated intensity plot. White colour crosses indicate the true
location of microseismic sources.

CONCLUSIONS

We proposed a debiasing based approach to estimate the lo-
cation and source-time function of microseismic sources with
correct amplitude from data with very low S/R. We showed

(a) (b)

(c) (d)

(e)

Figure 5: Source-time function comparison: Comparison of
the true source-time functions (solid green) with source-time
function (blue color) estimated by proposed method. We also
perform comparison with the source-time function (amplified
by 40 times) estimated using the approach proposed in Sharan
et al. (2017) (solid magenta) at locations (a) 1, (b) 2, (c) 3, (d)
4, (e) 5 from LtoR in Figure 3a. Dominant frequency of source-
time functions at (from LtoR) locations 1 and 2 is 25.0Hz, at
locations 3, 4 and 5 dominant frequency is 30.0Hz.

ability of the proposed method to resolve microseismic events
even when the sources are spatially close and have overlapping
source-time functions. The proposed method is also computa-
tionally cheap as it requires very few forward and backward
curvelet transforms along with few iterations of the accelerated
version of linearized Bregman. Also, the source-time function
estimation requires only a very few least-squares iterations. In
future, we would like to apply PCA based denoising techniques
to deal with different types of noise such as ground roll, source
side noise etc.
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